/usr/share/pyshared/Epigrass/report.py is in epigrass 2.3.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 | """
This module generates a report of the network simulation model
using LaTeX.
"""
import os, sys, commands, string, time, matplotlib, codecs
#matplotlib.use("Agg")
#from pylab import *
#from matplotlib.mlab import *
header =r"""
\documentclass[a4paper,10pt]{report}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage[latin1]{inputenc}
"""
class report:
"""
Generates reports in pdf format.
Takes as input arg. a simulation object.
"""
def __init__(self, simulation):
self.workdir = os.getcwd()
pltx = commands.getoutput('which latex')
pppdfltx = commands.getoutput('which pdflatex')
if pltx.startswith('which:'):
self.latex = 0
else:
self.latex = 1
if pppdfltx.startswith('which:'):
self.pdflatex = 0
else:
self.pdflatex = 1
if not (self.latex or self.pdflatex):
sys.exit('Cannot Generate report. LaTeX not present.')
self.sim = simulation
self.encoding = self.sim.encoding
if self.encoding == 'latin-1':enc = 'latin1'
elif self.encoding == 'utf-8':enc = 'utf8'
self.header =r"""
\documentclass[a4paper,10pt]{report}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage[%s]{inputenc}
"""%enc
def genNetTitle(self):
"""
Generates title section of the preamble from
data extracted from the simulation.
"""
modname = self.sim.modelName
title = r"""
\title{Model %s Network Report}
\author{John Doe}
\begin{document}
\maketitle
\tableofcontents
\listoffigures
\begin{abstract}
Edit the report.tex file and add your model's description here.
\end{abstract}
"""% modname.split('/')[-1]
return title
def genEpiTitle(self):
"""
Generates title section of the preamble from
data extracted from the simulation.
"""
modname = self.sim.modelName
title = r"""
\title{Model %s Epidemiological Report}
\author{John Doe}
\begin{document}
\maketitle
\tableofcontents
\listoffigures
\begin{abstract}
Edit the report.tex file and add your model's description here.
\end{abstract}
"""% modname.split('/')[-1]
return title
def genFullTitle(self):
"""
Generates title section of the preamble from
data extracted from the simulation.
"""
modname = self.sim.modelName
title = r"""
\title{Model %s Full Report}
\author{John Doe}
\begin{document}
\maketitle
\tableofcontents
\listoffigures
\begin{abstract}
Edit the report.tex file and add your model's description here.
\end{abstract}
"""% modname.split('/')[-1]
return title
def graphDesc(self):
"""
Generates the Graph description section.
"""
self.sim.g.drawGraph() # draws the network and saves to a file
self.sim.g.plotDegreeDist() # draws the network and saves to a file
stats = tuple(self.sim.g.doStats())
nodd = sum([1 for i in self.sim.g.site_list if len(i.neighbors)%2 != 0])
if nodd: #check if Graph is Eulerian and/or traversable
Eul = 'No'
if nodd == 2:
Trav = 'Yes'
else: Trav = 'No'
else: Eul = 'Yes'
## #formats distance matrix for LaTeX=========
## m =''
## for i in stats[0]:
## l=''
## for j in i:
## l += '%s&' % j
## l = l[:-1]+r'\\'
## m += l
## #print m, stats[0]
## #======================================
## cols = stats[0].shape[1]
nnodes = len(self.sim.g.site_list)
nedges = len(self.sim.g.edge_list)
deglist = [len(i.neighbors) for i in self.sim.g.site_list]
#check if graph is hamiltonian
if nnodes >= 3:
if min(deglist) >= nnodes/2.:
Ham = 'Yes'
else: Ham = 'Possibly'
else: Ham = 'Yes'
hist(stats[0].flat,normed=1)
title('Shortest paths distribution')
#colorbar()
savefig('spd.png')
close()
pcolor(stats[12])
#yticks(())
#xticks(())
title('Adjacency Matrix')
colorbar()
savefig('am.png')
close()
matrix = r"""
\chapter{General Network Analyses}
Figure \ref{fig:g} contains a simple drawing of your graph. If your network
is not very complex,it can help you to verify if the topology specifed correspond to
your expectations.
\begin{figure}[h]
\includegraphics[width=8cm]{graph.png}
\caption{Network diagram}
\label{fig:g}
\end{figure}
\section{Network Descriptive Statistics}
In this section you will find quantitative descriptors and plots
that will help you analyze you network.
\subsection{Basic Numbers}
\begin{description}
\item[Order (Number of Nodes):] %s
\item[Size (Number of Edges):] %s
\item[Eulerian:] %s
\item[Traversable:] %s
\item[Hamiltonian:] %s
\end{description}
\begin{figure}[h]
\includegraphics[width=8cm]{degdist.png}
\caption{Distribution of nodes degrees}
\label{fig:dd}
\end{figure}
\subsection{Distance matrix}
The distance Matrix (figure \ref{fig:spd}) represents the number of edges separating any
pair of nodes via the shortest path between them. \footnote{Due to size restriction,
the matrix is not included in this report but it can be found in the database
table containing the results of your simulation.}
\begin{figure}[h]
\includegraphics[width=8cm]{spd.png}
\caption{Shortest paths distribution}
\label{fig:spd}
\end{figure}
\subsection{Adjacencyy Matrix}
The most basic measure of accessibility involves network connectivity
where a network is represented as a connectivity matrix(figure \ref{fig:cm}), which
expresses the connectivity of each node with its adjacent nodes.
The number of columns and rows in this matrix is equal to the number
of nodes in the network and a value of 1 is given for each cell where
this is a connected pair and a value of 0 for each cell where there
is an unconnected pair. The summation of this matrix provides a very
basic measure of accessibility, also known as the degree of a node.
\begin{figure}[h]
\includegraphics[width=8cm]{am.png}
\caption{Connectivity matrix}
\label{fig:cm}
\end{figure}
""" % (nnodes,nedges,Eul,Trav, Ham)
indices = r"""
\subsection{Number of Cycles}
The maximum number of independent cycles in a graph.
This number ($u$) is estimated by knowing the number of nodes ($v$),
links ($e$) and of sub-graphs ($p$); $u = e-v+p$.
Trees and simple networks will have a value of 0 since they have
no cycles.
The more complex a network is, the higher the value of u,
so it can be used as an indicator of the level of development
of a transport system.
Cycles(u) $=%s$
\subsection{Wiener Distance}
The Wiener distance is the sum of all the shortest distances in the network.
Wiener's D $=%s$
\subsection{Mean Distance}
The mean distance of a network is the mean of of the set of shortest paths,
excluding the 0-length paths.
$\bar{D}=%s$
\subsection{Network Diameter}
The diameter of a network is the longest element of the shortest paths set.
$D(N)=%s$
\subsection{Length of the Network}
The length of a network is the sum in metric units (e.g., km) of all the edges in the network.
$L(N)=%s$
\subsection{Weight of the Network}
The weight of a network is the weight of all nodes in the graph ($W(N)$), which is the summation
of each node's order ($o$) multiplied by 2 for all orders above 1.
$W(N)=%s$
\subsection{Iota ($\iota$) Index}
The Iota index measures the ratio between the network and its weighed vertices.
It considers the structure, the length and the function
of a network and it is mainly used when data about traffic
is not available.
It divides the length of a network (L(N)) by its weight (W(N)).
The lower its value, the more efficient the network is.
This measure is based on the fact that an intersection
(represented as a node) of a high order is able to handle
large amounts of traffic.
The weight of all nodes in the network (W(N)) is the summation
of each node's order (o) multiplied by 2 for all orders above 1.
$\iota=\dfrac{L(N)}{W(N)}=%s$
\subsection{Pi ($\Pi$) Index}
The Pi index represents the relationship between the
total length of the network L(N)
and the distance along the diameter D(d).
It is labeled as Pi because of its similarity with the
trigonometric $\Pi$ (3.14), which is expressing the ratio between
the circumference and the diameter of a circle.
A high index shows a developed network. It is a measure
of distance per units of diameter and an indicator of
the shape of a network.
$\Pi=L(N)/D(d)=%s$
\subsection{Beta ($\beta$) Index}
The Beta index
measures the level of connectivity in a network and is
expressed by the relationship between the number of
edges (e) over the number of nodes (v).
Trees and simple networks have Beta value of less than one.
A connected network with one cycle has a value of 1.
More complex networks have a value greater than 1.
In a network with a fixed number of nodes, the higher the
number of links, the higher the number of paths possible in
the network. Complex networks have a high value of Beta.
$\beta = %s$
"""% stats[1:10]
section = matrix+indices
return section
def siteReport(self,geoc):
"""
Puts together a report for a given site.
"""
site = None
for i in self.sim.g.site_list:
if int(i.geocode) == int(geoc):
site = i
if not site:
sys.exit("Wrong Geocode specified in the siteRep list")
stats = site.doStats()
name = [site.sitename]
site.plotItself()
section = r"""
\section{%s}
\subsection{Centrality}
$$C=%s$$
\subsection{Degree}
$$D=%s$$
\subsection{Theta Index}
$$\theta=%s$$
\subsection{Betweeness}
$$B=%s$$
\begin{figure}[h]
\centering
\includegraphics[width=8cm]{%s.png}
\caption{Time series plot}
\end{figure}
""" % tuple(name+stats+[geoc])
return section
def genSiteEpi(self, geoc):
"""
Generate epidemiological reports at the site level.
"""
site = None
for i in self.sim.g.site_list:
if int(i.geocode) == int(geoc):
site = i
if not site:
sys.exit("Wrong Geocode specified in the siteRep list")
name = site.sitename
incidence = site.incidence
totcases = site.totalcases
cuminc=[sum(incidence[:i]) for i in range(len(incidence))]
infc = site.thetahist
bar(range(len(cuminc)),cuminc)
xlabel('Time')
ylabel('Incidence')
savefig('inc.png')
close()
bar(range(len(infc)),infc)
xlabel('Time')
ylabel('Infectious individuous')
savefig('inf.png')
close()
section = r"""
\section{%s}
\subsection{Incidence}
\begin{figure}[h]
\centering
\includegraphics[width=8cm]{%s.png}
\caption{Incidence per unit of time}
\end{figure}
\subsection{Total number of cases}
$$N_c=%s$$
\subsection{Infectious arriving}
\begin{figure}[h]
\centering
\includegraphics[width=8cm]{%s.png}
\caption{Number of infectious individuals arriving per unit of time}
\end{figure}
"""%(name,'inc',totcases,'inf')
return section
def genEpi(self):
"""
Generate epidemiological report.
"""
epistats = self.sim.g.getEpistats()
cumcities = [sum(epistats[1][:i]) for i in range(len(epistats[1]))]
bar(range(len(cumcities)),cumcities)
ylabel=('Number of infected cities')
xlabel=('Time')
savefig('sp.png')
close()
#print (epistats[0],average(epistats[1]),epistats[2],epistats[3],epistats[4],'sp')
section = r"""
\chapter{Epidemiological Statistics}
\section{Network-wide Epidemiological Statistics}
In the table \ref{tab:epi} below, we presen some useful epidemiological statistics about this simulation.
They include the following descriptors:
\begin{description}
\item [Epidemic size (people)] This is the total number
of cases that happened during the full course of the simulation.
\item [Epidemic size (sites)] This is the total number of sites infected durint the epidemic.
\item [Epidemic speed] This is the average number of new cities infected
per unit of time, during the epidemic.
\item [Epidemic duration] The total number of units of time, the epidemic lasted.
\item [Median survival time] The time it took for fifty percent of the cities to become infected.
\end{description}
\begin{table}
\caption{Epidemic statistics}
\centering
\begin{tabular}{|c|c|}
\hline
Size (people) & %s \\ \hline
Speed & %s \\ \hline
Size (sites)& %s \\ \hline
Duration & %s \\ \hline
Survival & %s \\ \hline
Total vaccines & %s \\ \hline
Total Quarantined & %s \\ \hline
\end{tabular}
\label{tab:epi}
\end{table}
\begin{figure}[h]
\centering
\includegraphics[width=8cm]{%s.png}
\caption{Speed of the epidemic spread over time}
\end{figure}
"""%(epistats[0],mean(epistats[1]),epistats[2],epistats[3],
epistats[4],epistats[5],epistats[6],'sp')
return section
def Assemble(self,type):
"""
Assemble the type of report desired
types:
1: network only
2: epidemiological only
3: both
"""
dirname = self.sim.modelName+ r'-report-'
Path= dirname+time.ctime()
Path = Path.replace(' ','-')
os.system('mkdir '+Path)
os.chdir(Path)
print "Starting report generation..."
sitehead = r"""
\chapter{Site Specific Analyses}"
\begin{description}
\item[Centrality:]Also known as closeness. A measure of global centrality, is the
inverse of the sum of the shortest paths to all other nodes
in the graph.
\item[Degree:]The order (degree) of a node is the number of its attached links
and is a simple, but effective measure of nodal importance.
The higher its value, the more a node is important in a graph
as many links converge to it. Hub nodes have a high order,
while terminal points have an order that can be as low as 1.
A perfect hub would have its order equal to the summation of
all the orders of the other nodes in the graph and a perfect
spoke would have an order of 1.
\item[Theta Index:]Measures the function of a node, that is the average
amount of traffic per intersection. The higher theta is,
the greater the load of the network.
\item[Betweeness:]Is the number of times any node figures in the the shortest path
between any other pair of nodes.
\end{description}
"""
if type == 1:
start = time.clock()
tail =r"\end{document}"
latexsrc = header + self.genNetTitle() + self.graphDesc()
# Generate reports for every site specified in the script, if any.
if self.sim.siteRep:
latexsrc += sitehead
for site in self.sim.siteRep:
latexsrc += self.siteReport(site)
latexsrc += tail
timer = time.clock()-start
print 'Time to generate Network report: %s seconds.'% timer
if self.sim.gui:
self.sim.gui.textEdit1.insertParagraph('Time to generate Network report: %s seconds.'% timer,-1)
self.savenBuild('Netreport',latexsrc)
elif type == 2:
start = time.clock()
tail =r"\end{document}"
latexsrc = header + self.genEpiTitle() + self.genEpi()
if self.sim.siteRep:
for site in self.sim.siteRep:
latexsrc += self.genSiteEpi(site)
latexsrc += tail
timer = time.clock()-start
print 'Time to generate Epidemiological report: %s seconds.'% timer
if self.sim.gui:
self.sim.gui.textEdit1.insertParagraph('Time to generate epidemiological report: %s seconds.'% timer,-1)
self.savenBuild('epireport',latexsrc)
elif type == 3:
start = time.clock()
tail =r"\end{document}"
latexsrc = header + self.genFullTitle() + self.graphDesc()
# Generate reports for every site specified in the script, if any.
if self.sim.siteRep:
latexsrc += sitehead
for site in self.sim.siteRep:
latexsrc += self.siteReport(site)
latexsrc += self.genEpi()
if self.sim.siteRep:
for site in self.sim.siteRep:
latexsrc += self.genSiteEpi(site)
latexsrc += tail
timer = time.clock()-start
print 'Time to generate full report: %s seconds.'% timer
if self.sim.gui:
self.sim.gui.textEdit1.insertParagraph('Time to generate full report: %s seconds.'% timer,-1)
self.savenBuild('fullreport',latexsrc)
def Say(self,string):
"""
Exits outputs messages to the console or the gui accordingly
"""
if self.sim.gui:
self.sim.gui.textEdit1.insertParagraph(string,-1)
else:
print string
def savenBuild(self,name,src):
"""
Saves the LaTeX in a newly created directory and builds it.
"""
fs = codecs.open(name+'.tex','w', self.encoding)
fs.write(src)
fs.close()
if self.pdflatex:
os.system('pdflatex --interaction nonstopmode %s.tex'%name)
os.system('pdflatex --interaction nonstopmode %s.tex'%name)
self.Say('PDF compiled!')
self.sim.repname = os.getcwd()+'/'+name+'.pdf'
os.chdir(self.workdir)
#do it twice to get the references right
elif self.latex:
os.system('latex %s.tex'%name)
os.system('latex %s.tex'%name)
self.Say('DVI compiled!')
self.sim.repname = os.getcwd()+'/'+name+'.dvi'
os.chdir(self.workdir)
else:
self.Say("""You don't seem to have 'latex' or 'pdflatex' instaled.
The tex source for the report, has been generated
and can be compiled later, when these tools are available.""")
|