This file is indexed.

/usr/lib/python2.7/dist-packages/dicompyler/dicomparser.py is in dicompyler 0.4.1-1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
#!/usr/bin/env python
# -*- coding: ISO-8859-1 -*-
# dicomparser.py
"""Class that parses and returns formatted DICOM RT data."""
# Copyright (c) 2009-2011 Aditya Panchal
# Copyright (c) 2009-2010 Roy Keyes
# This file is part of dicompyler, relased under a BSD license.
#    See the file license.txt included with this distribution, also
#    available at http://code.google.com/p/dicompyler/

import logging
logger = logging.getLogger('dicompyler.dicomparser')
import numpy as np
import dicom
import random
from PIL import Image
from math import pow, sqrt

class DicomParser:
    """Parses DICOM / DICOM RT files."""

    def __init__(self, dataset=None, filename=None):

        if dataset:
            self.ds = dataset
        elif filename:
            try:
                # Only pydicom 0.9.5 and above supports the force read argument
                if (dicom.__version__ >= "0.9.5"):
                    self.ds = dicom.read_file(filename, defer_size=100, force=True)
                else:
                    self.ds = dicom.read_file(filename, defer_size=100)
            except (EOFError, IOError):
                # Raise the error for the calling method to handle
                raise
            else:
                # Sometimes DICOM files may not have headers, but they should always
                # have a SOPClassUID to declare what type of file it is. If the
                # file doesn't have a SOPClassUID, then it probably isn't DICOM.
                if not "SOPClassUID" in self.ds:
                    raise AttributeError
        else:
            raise AttributeError

######################## SOP Class and Instance Methods ########################

    def GetSOPClassUID(self):
        """Determine the SOP Class UID of the current file."""

        if (self.ds.SOPClassUID == '1.2.840.10008.5.1.4.1.1.481.2'):
            return 'rtdose'
        elif (self.ds.SOPClassUID == '1.2.840.10008.5.1.4.1.1.481.3'):
            return 'rtss'
        elif (self.ds.SOPClassUID == '1.2.840.10008.5.1.4.1.1.481.5'):
            return 'rtplan'
        elif (self.ds.SOPClassUID == '1.2.840.10008.5.1.4.1.1.2'):
            return 'ct'
        else:
            return None

    def GetSOPInstanceUID(self):
        """Determine the SOP Class UID of the current file."""

        return self.ds.SOPInstanceUID

    def GetStudyInfo(self):
        """Return the study information of the current file."""

        study = {}
        if 'StudyDescription' in self.ds:
            desc=self.ds.StudyDescription
        else:
            desc='No description'
        study['description'] = desc
        study['id'] = self.ds.StudyInstanceUID
        
        return study

    def GetSeriesInfo(self):
        """Return the series information of the current file."""

        series = {}
        if 'SeriesDescription' in self.ds:
            desc=self.ds.SeriesDescription
        else:
            desc='No description'
        series['description'] = desc
        series['id'] = self.ds.SeriesInstanceUID
        series['study'] = self.ds.StudyInstanceUID
        series['referenceframe'] = self.ds.FrameofReferenceUID
        
        return series
    
    def GetReferencedSeries(self):
        """Return the SOP Class UID of the referenced series."""

        if "ReferencedFrameofReferences" in self.ds:
            if "RTReferencedStudies" in self.ds.ReferencedFrameofReferences[0]:
                if "RTReferencedSeries" in self.ds.ReferencedFrameofReferences[0].RTReferencedStudies[0]:
                    if "SeriesInstanceUID" in self.ds.ReferencedFrameofReferences[0].RTReferencedStudies[0].RTReferencedSeries[0]:
                        return self.ds.ReferencedFrameofReferences[0].RTReferencedStudies[0].RTReferencedSeries[0].SeriesInstanceUID
        else:
            return ''

    def GetFrameofReferenceUID(self):
        """Determine the Frame of Reference UID of the current file."""

        if 'FrameofReferenceUID' in self.ds:
            return self.ds.FrameofReferenceUID
        elif 'ReferencedFrameofReferences' in self.ds:
            return self.ds.ReferencedFrameofReferences[0].FrameofReferenceUID
        else:
            return ''

    def GetReferencedStructureSet(self):
        """Return the SOP Class UID of the referenced structure set."""

        if "ReferencedStructureSets" in self.ds:
            return self.ds.ReferencedStructureSets[0].ReferencedSOPInstanceUID
        else:
            return ''

    def GetReferencedRTPlan(self):
        """Return the SOP Class UID of the referenced RT plan."""

        if "ReferencedRTPlans" in self.ds:
            return self.ds.ReferencedRTPlans[0].ReferencedSOPInstanceUID
        else:
            return ''

    def GetDemographics(self):
        """Return the patient demographics from a DICOM file."""

        patient = {}
        patient['name'] = str(self.ds.PatientsName).replace('^', ', ')
        patient['id'] = self.ds.PatientID
        if (self.ds.PatientsSex == 'M'):
            patient['gender'] = 'Male'
        elif (self.ds.PatientsSex == 'F'):
            patient['gender'] = 'Female'
        else:
            patient['gender'] = 'Other'
        if len(self.ds.PatientsBirthDate):
            patient['dob'] = str(self.ds.PatientsBirthDate)
        else:
            patient['dob'] = 'None found'

        return patient

################################ Image Methods #################################

    def GetImageData(self):
        """Return the image data from a DICOM file."""

        data = {}

        data['position'] = self.ds.ImagePositionPatient
        data['orientation'] = self.ds.ImageOrientationPatient
        data['pixelspacing'] = self.ds.PixelSpacing
        data['rows'] = self.ds.Rows
        data['columns'] = self.ds.Columns
        if 'PatientPosition' in self.ds:
            data['patientposition'] = self.ds.PatientPosition

        return data

    def GetImage(self, window = 0, level = 0):
        """Return the image from a DICOM image storage file."""

        if ((window == 0) and (level == 0)):
            window, level = self.GetDefaultImageWindowLevel()
        # Rescale the slope and intercept of the image if present
        if (self.ds.has_key('RescaleIntercept') and
            self.ds.has_key('RescaleSlope')):
            rescaled_image = self.ds.pixel_array*self.ds.RescaleSlope + \
                             self.ds.RescaleIntercept
        else:
            rescaled_image = self.ds.pixel_array
        image = self.GetLUTValue(rescaled_image, window, level)

        return Image.fromarray(image).convert('L')

    def GetDefaultImageWindowLevel(self):
        """Determine the default window/level for the DICOM image."""

        window, level = 0, 0
        if ('WindowWidth' in self.ds) and ('WindowCenter' in self.ds):
            if isinstance(self.ds.WindowWidth, float):
                window = self.ds.WindowWidth
            elif isinstance(self.ds.WindowWidth, list):
                if (len(self.ds.WindowWidth) > 1):
                    window = self.ds.WindowWidth[1]
            if isinstance(self.ds.WindowCenter, float):
                level = self.ds.WindowCenter
            elif isinstance(self.ds.WindowCenter, list):
                if (len(self.ds.WindowCenter) > 1):
                    level = self.ds.WindowCenter[1]
        else:
            wmax = 0
            wmin = 0
            # Rescale the slope and intercept of the image if present
            if (self.ds.has_key('RescaleIntercept') and
                self.ds.has_key('RescaleSlope')):
                pixel_array = self.ds.pixel_array*self.ds.RescaleSlope + \
                              self.ds.RescaleIntercept
            else:
                pixel_array = self.ds.pixel_array
            if (pixel_array.max() > wmax):
                wmax = pixel_array.max()
            if (pixel_array.min() < wmin):
                wmin = pixel_array.min()
            # Default window is the range of the data array
            window = int(abs(wmax) + abs(wmin))
            # Default level is the range midpoint minus the window minimum
            level = int(window / 2 - abs(wmin))
        return window, level

    def GetLUTValue(self, data, window, level):
        """Apply the RGB Look-Up Table for the given data and window/level value."""

        lutvalue = np.piecewise(data,
            [data <= (level - 0.5 - (window-1)/2),
                data > (level - 0.5 + (window-1)/2)],
                [0, 255, lambda data: ((data - (level - 0.5))/(window-1) + 0.5)*(255-0)])
        # Convert the resultant array to an unsigned 8-bit array to create
        # an 8-bit grayscale LUT since the range is only from 0 to 255
        return np.array(lutvalue, dtype=np.uint8)

    def GetPatientToPixelLUT(self):
        """Get the image transformation matrix from the DICOM standard Part 3
            Section C.7.6.2.1.1"""

        di = self.ds.PixelSpacing[0]
        dj = self.ds.PixelSpacing[1]
        orientation = self.ds.ImageOrientationPatient
        position = self.ds.ImagePositionPatient

        m = np.matrix(
            [[orientation[0]*di, orientation[3]*dj, 0, position[0]],
            [orientation[1]*di, orientation[4]*dj, 0, position[1]],
            [orientation[2]*di, orientation[5]*dj, 0, position[2]],
            [0, 0, 0, 1]])

        x = []
        y = []
        for i in range(0, self.ds.Columns):
            imat = m * np.matrix([[i], [0], [0], [1]])
            x.append(float(imat[0]))
        for j in range(0, self.ds.Rows):
            jmat = m * np.matrix([[0], [j], [0], [1]])
            y.append(float(jmat[1]))

        return (x, y)

########################### RT Structure Set Methods ###########################

    def GetStructureInfo(self):
        """Return the patient demographics from a DICOM file."""

        structure = {}
        structure['label'] = self.ds.StructureSetLabel
        structure['date'] = self.ds.StructureSetDate
        structure['time'] = self.ds.StructureSetTime
        structure['numcontours'] = len(self.ds.ROIContours)

        return structure

    def GetStructures(self):
        """Returns the structures (ROIs) with their coordinates."""

        structures = {}

        # Determine whether this is RT Structure Set file
        if not (self.GetSOPClassUID() == 'rtss'):
            return structures

        # Locate the name and number of each ROI
        if self.ds.has_key('StructureSetROIs'):
            for item in self.ds.StructureSetROIs:
                data = {}
                number = item.ROINumber
                data['id'] = number
                data['name'] = item.ROIName
                logger.debug("Found ROI #%s: %s", str(number), data['name'])
                structures[number] = data

        # Determine the type of each structure (PTV, organ, external, etc)
        if self.ds.has_key('RTROIObservations'):
            for item in self.ds.RTROIObservations:
                number = item.ReferencedROINumber
                structures[number]['RTROIType'] = item.RTROIInterpretedType

        # The coordinate data of each ROI is stored within ROIContourSequence
        if self.ds.has_key('ROIContours'):
            for roi in self.ds.ROIContours:
                number = roi.ReferencedROINumber

                # Get the RGB color triplet for the current ROI
                if roi.has_key('ROIDisplayColor'):
                    structures[number]['color'] = np.array(roi.ROIDisplayColor, dtype=float)
                # Otherwise generate a random color for the current ROI
                else:
                    structures[number]['color'] = np.array((
                        random.randint(0,255),
                        random.randint(0,255),
                        random.randint(0,255)), dtype=float)

                planes = {}
                if roi.has_key('Contours'):
                    # Locate the contour sequence for each referenced ROI
                    for contour in roi.Contours:
                        # For each plane, initialize a new plane dictionary
                        plane = {}

                        # Determine all the plane properties
                        plane['geometricType'] = contour.ContourGeometricType
                        plane['numContourPoints'] = contour.NumberofContourPoints
                        plane['contourData'] = self.GetContourPoints(contour.ContourData)

                        # Each plane which coincides with a image slice will have a unique ID
                        if contour.has_key('ContourImages'):
                            plane['UID'] = contour.ContourImages[0].ReferencedSOPInstanceUID

                        # Add each plane to the planes dictionary of the current ROI
                        if plane.has_key('geometricType'):
                            z = ('%.2f' % plane['contourData'][0][2]).replace('-0','0')
                            if not planes.has_key(z):
                                planes[z] = []
                            planes[z].append(plane)

                # Calculate the plane thickness for the current ROI
                structures[number]['thickness'] = self.CalculatePlaneThickness(planes)

                # Add the planes dictionary to the current ROI
                structures[number]['planes'] = planes

        return structures

    def GetContourPoints(self, array):
        """Parses an array of xyz points and returns a array of point dictionaries."""

        return zip(*[iter(array)]*3)

    def CalculatePlaneThickness(self, planesDict):
        """Calculates the plane thickness for each structure."""

        planes = []

        # Iterate over each plane in the structure
        for z in planesDict.iterkeys():
            planes.append(float(z))
        planes.sort()

        # Determine the thickness
        thickness = 10000
        for n in range(0, len(planes)):
            if (n > 0):
                newThickness = planes[n] - planes[n-1]
                if (newThickness < thickness):
                    thickness = newThickness

        # If the thickness was not detected, set it to 0
        if (thickness == 10000):
            thickness = 0

        return thickness

############################### RT Dose Methods ###############################

    def HasDVHs(self):
        """Returns whether dose-volume histograms (DVHs) exist."""

        if not "DVHs" in self.ds:
            return False
        else:
            return True

    def GetDVHs(self):
        """Returns the dose-volume histograms (DVHs)."""

        self.dvhs = {}

        if self.HasDVHs():
            for item in self.ds.DVHs:
                dvhitem = {}
                # If the DVH is differential, convert it to a cumulative DVH
                if (self.ds.DVHs[0].DVHType == 'DIFFERENTIAL'):
                    dvhitem['data'] = self.GenerateCDVH(item.DVHData)
                    dvhitem['bins'] = len(dvhitem['data'])
                # Otherwise the DVH is cumulative
                # Remove "filler" values from DVH data array (even values are DVH values)
                else:
                    dvhitem['data'] = np.array(item.DVHData[1::2])
                    dvhitem['bins'] = int(item.DVHNumberofBins)
                dvhitem['type'] = 'CUMULATIVE'
                dvhitem['doseunits'] = item.DoseUnits
                dvhitem['volumeunits'] = item.DVHVolumeUnits
                dvhitem['scaling'] = item.DVHDoseScaling
                if "DVHMinimumDose" in item:
                    dvhitem['min'] = item.DVHMinimumDose
                else:
                    # save the min dose as -1 so we can calculate it later
                    dvhitem['min'] = -1
                if "DVHMaximumDose" in item:
                    dvhitem['max'] = item.DVHMaximumDose
                else:
                    # save the max dose as -1 so we can calculate it later
                    dvhitem['max'] = -1
                if "DVHMeanDose" in item:
                    dvhitem['mean'] = item.DVHMeanDose
                else:
                    # save the mean dose as -1 so we can calculate it later
                    dvhitem['mean'] = -1
                self.dvhs[item.DVHReferencedROIs[0].ReferencedROINumber] = dvhitem

        return self.dvhs

    def GenerateCDVH(self, data):
        """Generate a cumulative DVH (cDVH) from a differential DVH (dDVH)"""

        dDVH = np.array(data)
        # Separate the dose and volume values into distinct arrays 
        dose = data[0::2]
        volume = data[1::2]

        # Get the min and max dose and volume values
        mindose = int(dose[0]*100)
        maxdose = int(sum(dose)*100)
        maxvol = sum(volume)

        # Determine the dose values that are missing from the original data
        missingdose = np.ones(mindose) * maxvol

        # Generate the cumulative dose and cumulative volume data
        k = 0
        cumvol = []
        cumdose = []
        while k < len(dose):
            cumvol += [sum(volume[k:])]
            cumdose += [sum(dose[:k])]
            k += 1
        cumvol = np.array(cumvol)
        cumdose = np.array(cumdose)*100

        # Interpolate the dDVH data for 1 cGy bins
        interpdose = np.arange(mindose, maxdose+1)
        interpcumvol = np.interp(interpdose, cumdose, cumvol)

        # Append the interpolated values to the missing dose values
        cumDVH = np.append(missingdose, interpcumvol)

        return cumDVH

    def GetDoseGrid(self, z = 0, threshold = 0.5):
        """
        Return the 2d dose grid for the given slice position (mm).

        :param z:           Slice position in mm.
        :param threshold:   Threshold in mm to determine the max difference from z to the closest dose slice without using interpolation.
        :return:            An numpy 2d array of dose points.
        """

        # If this is a multi-frame dose pixel array,
        # determine the offset for each frame
        if 'GridFrameOffsetVector' in self.ds:
            z = float(z)
            # Get the initial dose grid position (z) in patient coordinates
            imagepatpos = self.ds.ImagePositionPatient[2]
            # Add the position to the offset vector to determine the
            # z coordinate of each dose plane
            planes = np.array(self.ds.GridFrameOffsetVector)+imagepatpos
            frame = -1
            # Check to see if the requested plane exists in the array
            if (np.amin(np.fabs(planes - z)) < threshold):
                frame = np.argmin(np.fabs(planes - z))
            # Return the requested dose plane, since it was found
            if not (frame == -1):
                return self.ds.pixel_array[frame]
            # Check whether the requested plane is within the dose grid boundaries
            elif ((z < np.amin(planes)) or (z > np.amax(planes))):
                return []
            # The requested plane was not found, so interpolate between planes
            else:
                frame = np.argmin(np.fabs(planes - z))
                if (planes[frame] - z > 0):
                    ub = frame
                    lb = frame-1
                elif (planes[frame] - z < 0):
                    ub = frame+1
                    lb = frame
                # Fractional distance of dose plane between upper and lower bound
                fz = (z - planes[lb]) / (planes[ub] - planes[lb])
                plane = self.InterpolateDosePlanes(
                    self.ds.pixel_array[ub], self.ds.pixel_array[lb], fz)
                return plane
        else:
            return []

    def InterpolateDosePlanes(self, uplane, lplane, fz):
        """Interpolates a dose plane between two bounding planes at the given relative location."""

        # uplane and lplane are the upper and lower dose plane, between which the new dose plane
        #   will be interpolated.
        # fz is the fractional distance from the bottom to the top, where the new plane is located.
        #   E.g. if fz = 1, the plane is at the upper plane, fz = 0, it is at the lower plane.

        # A simple linear interpolation
        doseplane = fz*uplane + (1.0 - fz)*lplane

        return doseplane

    def GetIsodosePoints(self, z = 0, level = 100, threshold = 0.5):
        """
        Return points for the given isodose level and slice position from the dose grid.

        :param z:           Slice position in mm.
        :param threshold:   Threshold in mm to determine the max difference from z to the closest dose slice without using interpolation.
        :param level:       Isodose level in scaled form (multiplied by self.ds.DoseGridScaling)
        :return:            An array of tuples representing isodose points.
        """

        plane = self.GetDoseGrid(z, threshold)
        isodose = (plane >= level).nonzero()
        return zip(isodose[1].tolist(), isodose[0].tolist())

    def InterpolatePlanes(self, ub, lb, location, ubpoints, lbpoints):
        """Interpolates a plane between two bounding planes at the given location."""

        # If the number of points in the upper bound is higher, use it as the starting bound
        # otherwise switch the upper and lower bounds
        if not (len(ubpoints) >= len(lbpoints)):
            lbCopy = lb.copy()
            lb = ub.copy()
            ub = lbCopy.copy()

        plane = []
        # Determine the closest point in the lower bound from each point in the upper bound
        for u, up in enumerate(ubpoints):
            dist = 100000 # Arbitrary large number
            # Determine the distance from each point in the upper bound to each point in the lower bound
            for l, lp in enumerate(lbpoints):
                newDist = sqrt(pow((up[0]-lp[0]), 2) + pow((up[1]-lp[1]), 2) + pow((ub-lb), 2))
                # If the distance is smaller, then linearly interpolate the point
                if (newDist < dist):
                    dist = newDist
                    x = lp[0] + (location-lb) * (up[0]-lp[0]) / (ub-lb)
                    y = lp[1] + (location-lb) * (up[1]-lp[1]) / (ub-lb)
            if not (dist == 100000):
                plane.append((int(x),int(y)))
        return plane

    def GetDoseData(self):
        """Return the dose data from a DICOM RT Dose file."""

        data = self.GetImageData()
        data['doseunits'] = self.ds.DoseUnits
        data['dosetype'] = self.ds.DoseType
        data['dosesummationtype'] = self.ds.DoseSummationType
        data['dosegridscaling'] = self.ds.DoseGridScaling
        data['dosemax'] = float(self.ds.pixel_array.max())

        return data

############################### RT Plan Methods ###############################

    def GetPlan(self):
        """Returns the plan information."""

        self.plan = {}

        self.plan['label'] = self.ds.RTPlanLabel
        self.plan['date'] = self.ds.RTPlanDate
        self.plan['time'] = self.ds.RTPlanTime
        self.plan['name'] = ''
        self.plan['rxdose'] = 0
        if "DoseReferences" in self.ds:
            for item in self.ds.DoseReferences:
                if item.DoseReferenceStructureType == 'SITE':
                    self.plan['name'] = item.DoseReferenceDescription
                    if item.has_key('TargetPrescriptionDose'):
                        rxdose = item.TargetPrescriptionDose * 100
                        if (rxdose > self.plan['rxdose']):
                            self.plan['rxdose'] = rxdose
                elif item.DoseReferenceStructureType == 'VOLUME':
                    if 'TargetPrescriptionDose' in item:
                        self.plan['rxdose'] = item.TargetPrescriptionDose * 100

        return self.plan