/usr/lib/coffee-script/src/nodes.coffee is in coffeescript 1.4.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 | # `nodes.coffee` contains all of the node classes for the syntax tree. Most
# nodes are created as the result of actions in the [grammar](grammar.html),
# but some are created by other nodes as a method of code generation. To convert
# the syntax tree into a string of JavaScript code, call `compile()` on the root.
{Scope} = require './scope'
{RESERVED, STRICT_PROSCRIBED} = require './lexer'
# Import the helpers we plan to use.
{compact, flatten, extend, merge, del, starts, ends, last, some} = require './helpers'
exports.extend = extend # for parser
# Constant functions for nodes that don't need customization.
YES = -> yes
NO = -> no
THIS = -> this
NEGATE = -> @negated = not @negated; this
#### Base
# The **Base** is the abstract base class for all nodes in the syntax tree.
# Each subclass implements the `compileNode` method, which performs the
# code generation for that node. To compile a node to JavaScript,
# call `compile` on it, which wraps `compileNode` in some generic extra smarts,
# to know when the generated code needs to be wrapped up in a closure.
# An options hash is passed and cloned throughout, containing information about
# the environment from higher in the tree (such as if a returned value is
# being requested by the surrounding function), information about the current
# scope, and indentation level.
exports.Base = class Base
# Common logic for determining whether to wrap this node in a closure before
# compiling it, or to compile directly. We need to wrap if this node is a
# *statement*, and it's not a *pureStatement*, and we're not at
# the top level of a block (which would be unnecessary), and we haven't
# already been asked to return the result (because statements know how to
# return results).
compile: (o, lvl) ->
o = extend {}, o
o.level = lvl if lvl
node = @unfoldSoak(o) or this
node.tab = o.indent
if o.level is LEVEL_TOP or not node.isStatement(o)
node.compileNode o
else
node.compileClosure o
# Statements converted into expressions via closure-wrapping share a scope
# object with their parent closure, to preserve the expected lexical scope.
compileClosure: (o) ->
if @jumps()
throw SyntaxError 'cannot use a pure statement in an expression.'
o.sharedScope = yes
Closure.wrap(this).compileNode o
# If the code generation wishes to use the result of a complex expression
# in multiple places, ensure that the expression is only ever evaluated once,
# by assigning it to a temporary variable. Pass a level to precompile.
cache: (o, level, reused) ->
unless @isComplex()
ref = if level then @compile o, level else this
[ref, ref]
else
ref = new Literal reused or o.scope.freeVariable 'ref'
sub = new Assign ref, this
if level then [sub.compile(o, level), ref.value] else [sub, ref]
# Compile to a source/variable pair suitable for looping.
compileLoopReference: (o, name) ->
src = tmp = @compile o, LEVEL_LIST
unless -Infinity < +src < Infinity or IDENTIFIER.test(src) and o.scope.check(src, yes)
src = "#{ tmp = o.scope.freeVariable name } = #{src}"
[src, tmp]
# Construct a node that returns the current node's result.
# Note that this is overridden for smarter behavior for
# many statement nodes (e.g. If, For)...
makeReturn: (res) ->
me = @unwrapAll()
if res
new Call new Literal("#{res}.push"), [me]
else
new Return me
# Does this node, or any of its children, contain a node of a certain kind?
# Recursively traverses down the *children* of the nodes, yielding to a block
# and returning true when the block finds a match. `contains` does not cross
# scope boundaries.
contains: (pred) ->
contains = no
@traverseChildren no, (node) ->
if pred node
contains = yes
return no
contains
# Is this node of a certain type, or does it contain the type?
containsType: (type) ->
this instanceof type or @contains (node) -> node instanceof type
# Pull out the last non-comment node of a node list.
lastNonComment: (list) ->
i = list.length
return list[i] while i-- when list[i] not instanceof Comment
null
# `toString` representation of the node, for inspecting the parse tree.
# This is what `coffee --nodes` prints out.
toString: (idt = '', name = @constructor.name) ->
tree = '\n' + idt + name
tree += '?' if @soak
@eachChild (node) -> tree += node.toString idt + TAB
tree
# Passes each child to a function, breaking when the function returns `false`.
eachChild: (func) ->
return this unless @children
for attr in @children when @[attr]
for child in flatten [@[attr]]
return this if func(child) is false
this
traverseChildren: (crossScope, func) ->
@eachChild (child) ->
return false if func(child) is false
child.traverseChildren crossScope, func
invert: ->
new Op '!', this
unwrapAll: ->
node = this
continue until node is node = node.unwrap()
node
# Default implementations of the common node properties and methods. Nodes
# will override these with custom logic, if needed.
children: []
isStatement : NO
jumps : NO
isComplex : YES
isChainable : NO
isAssignable : NO
unwrap : THIS
unfoldSoak : NO
# Is this node used to assign a certain variable?
assigns: NO
#### Block
# The block is the list of expressions that forms the body of an
# indented block of code -- the implementation of a function, a clause in an
# `if`, `switch`, or `try`, and so on...
exports.Block = class Block extends Base
constructor: (nodes) ->
@expressions = compact flatten nodes or []
children: ['expressions']
# Tack an expression on to the end of this expression list.
push: (node) ->
@expressions.push node
this
# Remove and return the last expression of this expression list.
pop: ->
@expressions.pop()
# Add an expression at the beginning of this expression list.
unshift: (node) ->
@expressions.unshift node
this
# If this Block consists of just a single node, unwrap it by pulling
# it back out.
unwrap: ->
if @expressions.length is 1 then @expressions[0] else this
# Is this an empty block of code?
isEmpty: ->
not @expressions.length
isStatement: (o) ->
for exp in @expressions when exp.isStatement o
return yes
no
jumps: (o) ->
for exp in @expressions
return exp if exp.jumps o
# A Block node does not return its entire body, rather it
# ensures that the final expression is returned.
makeReturn: (res) ->
len = @expressions.length
while len--
expr = @expressions[len]
if expr not instanceof Comment
@expressions[len] = expr.makeReturn res
@expressions.splice(len, 1) if expr instanceof Return and not expr.expression
break
this
# A **Block** is the only node that can serve as the root.
compile: (o = {}, level) ->
if o.scope then super o, level else @compileRoot o
# Compile all expressions within the **Block** body. If we need to
# return the result, and it's an expression, simply return it. If it's a
# statement, ask the statement to do so.
compileNode: (o) ->
@tab = o.indent
top = o.level is LEVEL_TOP
codes = []
for node in @expressions
node = node.unwrapAll()
node = (node.unfoldSoak(o) or node)
if node instanceof Block
# This is a nested block. We don't do anything special here like enclose
# it in a new scope; we just compile the statements in this block along with
# our own
codes.push node.compileNode o
else if top
node.front = true
code = node.compile o
unless node.isStatement o
code = "#{@tab}#{code};"
code = "#{code}\n" if node instanceof Literal
codes.push code
else
codes.push node.compile o, LEVEL_LIST
if top
if @spaced
return "\n#{codes.join '\n\n'}\n"
else
return codes.join '\n'
code = codes.join(', ') or 'void 0'
if codes.length > 1 and o.level >= LEVEL_LIST then "(#{code})" else code
# If we happen to be the top-level **Block**, wrap everything in
# a safety closure, unless requested not to.
# It would be better not to generate them in the first place, but for now,
# clean up obvious double-parentheses.
compileRoot: (o) ->
o.indent = if o.bare then '' else TAB
o.scope = new Scope null, this, null
o.level = LEVEL_TOP
@spaced = yes
prelude = ""
unless o.bare
preludeExps = for exp, i in @expressions
break unless exp.unwrap() instanceof Comment
exp
rest = @expressions[preludeExps.length...]
@expressions = preludeExps
prelude = "#{@compileNode merge(o, indent: '')}\n" if preludeExps.length
@expressions = rest
code = @compileWithDeclarations o
return code if o.bare
"#{prelude}(function() {\n#{code}\n}).call(this);\n"
# Compile the expressions body for the contents of a function, with
# declarations of all inner variables pushed up to the top.
compileWithDeclarations: (o) ->
code = post = ''
for exp, i in @expressions
exp = exp.unwrap()
break unless exp instanceof Comment or exp instanceof Literal
o = merge(o, level: LEVEL_TOP)
if i
rest = @expressions.splice i, 9e9
[spaced, @spaced] = [@spaced, no]
[code , @spaced] = [(@compileNode o), spaced]
@expressions = rest
post = @compileNode o
{scope} = o
if scope.expressions is this
declars = o.scope.hasDeclarations()
assigns = scope.hasAssignments
if declars or assigns
code += '\n' if i
code += "#{@tab}var "
if declars
code += scope.declaredVariables().join ', '
if assigns
code += ",\n#{@tab + TAB}" if declars
code += scope.assignedVariables().join ",\n#{@tab + TAB}"
code += ';\n'
code + post
# Wrap up the given nodes as a **Block**, unless it already happens
# to be one.
@wrap: (nodes) ->
return nodes[0] if nodes.length is 1 and nodes[0] instanceof Block
new Block nodes
#### Literal
# Literals are static values that can be passed through directly into
# JavaScript without translation, such as: strings, numbers,
# `true`, `false`, `null`...
exports.Literal = class Literal extends Base
constructor: (@value) ->
makeReturn: ->
if @isStatement() then this else super
isAssignable: ->
IDENTIFIER.test @value
isStatement: ->
@value in ['break', 'continue', 'debugger']
isComplex: NO
assigns: (name) ->
name is @value
jumps: (o) ->
return this if @value is 'break' and not (o?.loop or o?.block)
return this if @value is 'continue' and not o?.loop
compileNode: (o) ->
code = if @value is 'this'
if o.scope.method?.bound then o.scope.method.context else @value
else if @value.reserved
"\"#{@value}\""
else
@value
if @isStatement() then "#{@tab}#{code};" else code
toString: ->
' "' + @value + '"'
class exports.Undefined extends Base
isAssignable: NO
isComplex: NO
compileNode: (o) ->
if o.level >= LEVEL_ACCESS then '(void 0)' else 'void 0'
class exports.Null extends Base
isAssignable: NO
isComplex: NO
compileNode: -> "null"
class exports.Bool extends Base
isAssignable: NO
isComplex: NO
compileNode: -> @val
constructor: (@val) ->
#### Return
# A `return` is a *pureStatement* -- wrapping it in a closure wouldn't
# make sense.
exports.Return = class Return extends Base
constructor: (expr) ->
@expression = expr if expr and not expr.unwrap().isUndefined
children: ['expression']
isStatement: YES
makeReturn: THIS
jumps: THIS
compile: (o, level) ->
expr = @expression?.makeReturn()
if expr and expr not instanceof Return then expr.compile o, level else super o, level
compileNode: (o) ->
@tab + "return#{[" #{@expression.compile o, LEVEL_PAREN}" if @expression]};"
#### Value
# A value, variable or literal or parenthesized, indexed or dotted into,
# or vanilla.
exports.Value = class Value extends Base
constructor: (base, props, tag) ->
return base if not props and base instanceof Value
@base = base
@properties = props or []
@[tag] = true if tag
return this
children: ['base', 'properties']
# Add a property (or *properties* ) `Access` to the list.
add: (props) ->
@properties = @properties.concat props
this
hasProperties: ->
!!@properties.length
# Some boolean checks for the benefit of other nodes.
isArray : -> not @properties.length and @base instanceof Arr
isComplex : -> @hasProperties() or @base.isComplex()
isAssignable : -> @hasProperties() or @base.isAssignable()
isSimpleNumber : -> @base instanceof Literal and SIMPLENUM.test @base.value
isString : -> @base instanceof Literal and IS_STRING.test @base.value
isAtomic : ->
for node in @properties.concat @base
return no if node.soak or node instanceof Call
yes
isStatement : (o) -> not @properties.length and @base.isStatement o
assigns : (name) -> not @properties.length and @base.assigns name
jumps : (o) -> not @properties.length and @base.jumps o
isObject: (onlyGenerated) ->
return no if @properties.length
(@base instanceof Obj) and (not onlyGenerated or @base.generated)
isSplice: ->
last(@properties) instanceof Slice
# The value can be unwrapped as its inner node, if there are no attached
# properties.
unwrap: ->
if @properties.length then this else @base
# A reference has base part (`this` value) and name part.
# We cache them separately for compiling complex expressions.
# `a()[b()] ?= c` -> `(_base = a())[_name = b()] ? _base[_name] = c`
cacheReference: (o) ->
name = last @properties
if @properties.length < 2 and not @base.isComplex() and not name?.isComplex()
return [this, this] # `a` `a.b`
base = new Value @base, @properties[...-1]
if base.isComplex() # `a().b`
bref = new Literal o.scope.freeVariable 'base'
base = new Value new Parens new Assign bref, base
return [base, bref] unless name # `a()`
if name.isComplex() # `a[b()]`
nref = new Literal o.scope.freeVariable 'name'
name = new Index new Assign nref, name.index
nref = new Index nref
[base.add(name), new Value(bref or base.base, [nref or name])]
# We compile a value to JavaScript by compiling and joining each property.
# Things get much more interesting if the chain of properties has *soak*
# operators `?.` interspersed. Then we have to take care not to accidentally
# evaluate anything twice when building the soak chain.
compileNode: (o) ->
@base.front = @front
props = @properties
code = @base.compile o, if props.length then LEVEL_ACCESS else null
code = "#{code}." if (@base instanceof Parens or props.length) and SIMPLENUM.test code
code += prop.compile o for prop in props
code
# Unfold a soak into an `If`: `a?.b` -> `a.b if a?`
unfoldSoak: (o) ->
return @unfoldedSoak if @unfoldedSoak?
result = do =>
if ifn = @base.unfoldSoak o
Array::push.apply ifn.body.properties, @properties
return ifn
for prop, i in @properties when prop.soak
prop.soak = off
fst = new Value @base, @properties[...i]
snd = new Value @base, @properties[i..]
if fst.isComplex()
ref = new Literal o.scope.freeVariable 'ref'
fst = new Parens new Assign ref, fst
snd.base = ref
return new If new Existence(fst), snd, soak: on
null
@unfoldedSoak = result or no
#### Comment
# CoffeeScript passes through block comments as JavaScript block comments
# at the same position.
exports.Comment = class Comment extends Base
constructor: (@comment) ->
isStatement: YES
makeReturn: THIS
compileNode: (o, level) ->
code = '/*' + multident(@comment, @tab) + "\n#{@tab}*/\n"
code = o.indent + code if (level or o.level) is LEVEL_TOP
code
#### Call
# Node for a function invocation. Takes care of converting `super()` calls into
# calls against the prototype's function of the same name.
exports.Call = class Call extends Base
constructor: (variable, @args = [], @soak) ->
@isNew = false
@isSuper = variable is 'super'
@variable = if @isSuper then null else variable
children: ['variable', 'args']
# Tag this invocation as creating a new instance.
newInstance: ->
base = @variable?.base or @variable
if base instanceof Call and not base.isNew
base.newInstance()
else
@isNew = true
this
# Grab the reference to the superclass's implementation of the current
# method.
superReference: (o) ->
method = o.scope.namedMethod()
throw SyntaxError 'cannot call super outside of a function.' unless method
{name} = method
throw SyntaxError 'cannot call super on an anonymous function.' unless name?
if method.klass
accesses = [new Access(new Literal '__super__')]
accesses.push new Access new Literal 'constructor' if method.static
accesses.push new Access new Literal name
(new Value (new Literal method.klass), accesses).compile o
else
"#{name}.__super__.constructor"
# The appropriate `this` value for a `super` call.
superThis : (o) ->
method = o.scope.method
(method and not method.klass and method.context) or "this"
# Soaked chained invocations unfold into if/else ternary structures.
unfoldSoak: (o) ->
if @soak
if @variable
return ifn if ifn = unfoldSoak o, this, 'variable'
[left, rite] = new Value(@variable).cacheReference o
else
left = new Literal @superReference o
rite = new Value left
rite = new Call rite, @args
rite.isNew = @isNew
left = new Literal "typeof #{ left.compile o } === \"function\""
return new If left, new Value(rite), soak: yes
call = this
list = []
loop
if call.variable instanceof Call
list.push call
call = call.variable
continue
break unless call.variable instanceof Value
list.push call
break unless (call = call.variable.base) instanceof Call
for call in list.reverse()
if ifn
if call.variable instanceof Call
call.variable = ifn
else
call.variable.base = ifn
ifn = unfoldSoak o, call, 'variable'
ifn
# Walk through the objects in the arguments, moving over simple values.
# This allows syntax like `call a: b, c` into `call({a: b}, c);`
filterImplicitObjects: (list) ->
nodes = []
for node in list
unless node.isObject?() and node.base.generated
nodes.push node
continue
obj = null
for prop in node.base.properties
if prop instanceof Assign or prop instanceof Comment
nodes.push obj = new Obj properties = [], true if not obj
properties.push prop
else
nodes.push prop
obj = null
nodes
# Compile a vanilla function call.
compileNode: (o) ->
@variable?.front = @front
if code = Splat.compileSplattedArray o, @args, true
return @compileSplat o, code
args = @filterImplicitObjects @args
args = (arg.compile o, LEVEL_LIST for arg in args).join ', '
if @isSuper
@superReference(o) + ".call(#{@superThis(o)}#{ args and ', ' + args })"
else
(if @isNew then 'new ' else '') + @variable.compile(o, LEVEL_ACCESS) + "(#{args})"
# `super()` is converted into a call against the superclass's implementation
# of the current function.
compileSuper: (args, o) ->
"#{@superReference(o)}.call(#{@superThis(o)}#{ if args.length then ', ' else '' }#{args})"
# If you call a function with a splat, it's converted into a JavaScript
# `.apply()` call to allow an array of arguments to be passed.
# If it's a constructor, then things get real tricky. We have to inject an
# inner constructor in order to be able to pass the varargs.
compileSplat: (o, splatArgs) ->
return "#{ @superReference o }.apply(#{@superThis(o)}, #{splatArgs})" if @isSuper
if @isNew
idt = @tab + TAB
return """
(function(func, args, ctor) {
#{idt}ctor.prototype = func.prototype;
#{idt}var child = new ctor, result = func.apply(child, args);
#{idt}return Object(result) === result ? result : child;
#{@tab}})(#{ @variable.compile o, LEVEL_LIST }, #{splatArgs}, function(){})
"""
base = new Value @variable
if (name = base.properties.pop()) and base.isComplex()
ref = o.scope.freeVariable 'ref'
fun = "(#{ref} = #{ base.compile o, LEVEL_LIST })#{ name.compile o }"
else
fun = base.compile o, LEVEL_ACCESS
fun = "(#{fun})" if SIMPLENUM.test fun
if name
ref = fun
fun += name.compile o
else
ref = 'null'
"#{fun}.apply(#{ref}, #{splatArgs})"
#### Extends
# Node to extend an object's prototype with an ancestor object.
# After `goog.inherits` from the
# [Closure Library](http://closure-library.googlecode.com/svn/docs/closureGoogBase.js.html).
exports.Extends = class Extends extends Base
constructor: (@child, @parent) ->
children: ['child', 'parent']
# Hooks one constructor into another's prototype chain.
compile: (o) ->
new Call(new Value(new Literal utility 'extends'), [@child, @parent]).compile o
#### Access
# A `.` access into a property of a value, or the `::` shorthand for
# an access into the object's prototype.
exports.Access = class Access extends Base
constructor: (@name, tag) ->
@name.asKey = yes
@soak = tag is 'soak'
children: ['name']
compile: (o) ->
name = @name.compile o
if IDENTIFIER.test name then ".#{name}" else "[#{name}]"
isComplex: NO
#### Index
# A `[ ... ]` indexed access into an array or object.
exports.Index = class Index extends Base
constructor: (@index) ->
children: ['index']
compile: (o) ->
"[#{ @index.compile o, LEVEL_PAREN }]"
isComplex: ->
@index.isComplex()
#### Range
# A range literal. Ranges can be used to extract portions (slices) of arrays,
# to specify a range for comprehensions, or as a value, to be expanded into the
# corresponding array of integers at runtime.
exports.Range = class Range extends Base
children: ['from', 'to']
constructor: (@from, @to, tag) ->
@exclusive = tag is 'exclusive'
@equals = if @exclusive then '' else '='
# Compiles the range's source variables -- where it starts and where it ends.
# But only if they need to be cached to avoid double evaluation.
compileVariables: (o) ->
o = merge o, top: true
[@fromC, @fromVar] = @from.cache o, LEVEL_LIST
[@toC, @toVar] = @to.cache o, LEVEL_LIST
[@step, @stepVar] = step.cache o, LEVEL_LIST if step = del o, 'step'
[@fromNum, @toNum] = [@fromVar.match(SIMPLENUM), @toVar.match(SIMPLENUM)]
@stepNum = @stepVar.match(SIMPLENUM) if @stepVar
# When compiled normally, the range returns the contents of the *for loop*
# needed to iterate over the values in the range. Used by comprehensions.
compileNode: (o) ->
@compileVariables o unless @fromVar
return @compileArray(o) unless o.index
# Set up endpoints.
known = @fromNum and @toNum
idx = del o, 'index'
idxName = del o, 'name'
namedIndex = idxName and idxName isnt idx
varPart = "#{idx} = #{@fromC}"
varPart += ", #{@toC}" if @toC isnt @toVar
varPart += ", #{@step}" if @step isnt @stepVar
[lt, gt] = ["#{idx} <#{@equals}", "#{idx} >#{@equals}"]
# Generate the condition.
condPart = if @stepNum
if +@stepNum > 0 then "#{lt} #{@toVar}" else "#{gt} #{@toVar}"
else if known
[from, to] = [+@fromNum, +@toNum]
if from <= to then "#{lt} #{to}" else "#{gt} #{to}"
else
cond = "#{@fromVar} <= #{@toVar}"
"#{cond} ? #{lt} #{@toVar} : #{gt} #{@toVar}"
# Generate the step.
stepPart = if @stepVar
"#{idx} += #{@stepVar}"
else if known
if namedIndex
if from <= to then "++#{idx}" else "--#{idx}"
else
if from <= to then "#{idx}++" else "#{idx}--"
else
if namedIndex
"#{cond} ? ++#{idx} : --#{idx}"
else
"#{cond} ? #{idx}++ : #{idx}--"
varPart = "#{idxName} = #{varPart}" if namedIndex
stepPart = "#{idxName} = #{stepPart}" if namedIndex
# The final loop body.
"#{varPart}; #{condPart}; #{stepPart}"
# When used as a value, expand the range into the equivalent array.
compileArray: (o) ->
if @fromNum and @toNum and Math.abs(@fromNum - @toNum) <= 20
range = [+@fromNum..+@toNum]
range.pop() if @exclusive
return "[#{ range.join(', ') }]"
idt = @tab + TAB
i = o.scope.freeVariable 'i'
result = o.scope.freeVariable 'results'
pre = "\n#{idt}#{result} = [];"
if @fromNum and @toNum
o.index = i
body = @compileNode o
else
vars = "#{i} = #{@fromC}" + if @toC isnt @toVar then ", #{@toC}" else ''
cond = "#{@fromVar} <= #{@toVar}"
body = "var #{vars}; #{cond} ? #{i} <#{@equals} #{@toVar} : #{i} >#{@equals} #{@toVar}; #{cond} ? #{i}++ : #{i}--"
post = "{ #{result}.push(#{i}); }\n#{idt}return #{result};\n#{o.indent}"
hasArgs = (node) -> node?.contains (n) -> n instanceof Literal and n.value is 'arguments' and not n.asKey
args = ', arguments' if hasArgs(@from) or hasArgs(@to)
"(function() {#{pre}\n#{idt}for (#{body})#{post}}).apply(this#{args ? ''})"
#### Slice
# An array slice literal. Unlike JavaScript's `Array#slice`, the second parameter
# specifies the index of the end of the slice, just as the first parameter
# is the index of the beginning.
exports.Slice = class Slice extends Base
children: ['range']
constructor: (@range) ->
super()
# We have to be careful when trying to slice through the end of the array,
# `9e9` is used because not all implementations respect `undefined` or `1/0`.
# `9e9` should be safe because `9e9` > `2**32`, the max array length.
compileNode: (o) ->
{to, from} = @range
fromStr = from and from.compile(o, LEVEL_PAREN) or '0'
compiled = to and to.compile o, LEVEL_PAREN
if to and not (not @range.exclusive and +compiled is -1)
toStr = ', ' + if @range.exclusive
compiled
else if SIMPLENUM.test compiled
"#{+compiled + 1}"
else
compiled = to.compile o, LEVEL_ACCESS
"+#{compiled} + 1 || 9e9"
".slice(#{ fromStr }#{ toStr or '' })"
#### Obj
# An object literal, nothing fancy.
exports.Obj = class Obj extends Base
constructor: (props, @generated = false) ->
@objects = @properties = props or []
children: ['properties']
compileNode: (o) ->
props = @properties
return (if @front then '({})' else '{}') unless props.length
if @generated
for node in props when node instanceof Value
throw new Error 'cannot have an implicit value in an implicit object'
idt = o.indent += TAB
lastNoncom = @lastNonComment @properties
props = for prop, i in props
join = if i is props.length - 1
''
else if prop is lastNoncom or prop instanceof Comment
'\n'
else
',\n'
indent = if prop instanceof Comment then '' else idt
if prop instanceof Value and prop.this
prop = new Assign prop.properties[0].name, prop, 'object'
if prop not instanceof Comment
if prop not instanceof Assign
prop = new Assign prop, prop, 'object'
(prop.variable.base or prop.variable).asKey = yes
indent + prop.compile(o, LEVEL_TOP) + join
props = props.join ''
obj = "{#{ props and '\n' + props + '\n' + @tab }}"
if @front then "(#{obj})" else obj
assigns: (name) ->
for prop in @properties when prop.assigns name then return yes
no
#### Arr
# An array literal.
exports.Arr = class Arr extends Base
constructor: (objs) ->
@objects = objs or []
children: ['objects']
filterImplicitObjects: Call::filterImplicitObjects
compileNode: (o) ->
return '[]' unless @objects.length
o.indent += TAB
objs = @filterImplicitObjects @objects
return code if code = Splat.compileSplattedArray o, objs
code = (obj.compile o, LEVEL_LIST for obj in objs).join ', '
if code.indexOf('\n') >= 0
"[\n#{o.indent}#{code}\n#{@tab}]"
else
"[#{code}]"
assigns: (name) ->
for obj in @objects when obj.assigns name then return yes
no
#### Class
# The CoffeeScript class definition.
# Initialize a **Class** with its name, an optional superclass, and a
# list of prototype property assignments.
exports.Class = class Class extends Base
constructor: (@variable, @parent, @body = new Block) ->
@boundFuncs = []
@body.classBody = yes
children: ['variable', 'parent', 'body']
# Figure out the appropriate name for the constructor function of this class.
determineName: ->
return null unless @variable
decl = if tail = last @variable.properties
tail instanceof Access and tail.name.value
else
@variable.base.value
if decl in STRICT_PROSCRIBED
throw SyntaxError "variable name may not be #{decl}"
decl and= IDENTIFIER.test(decl) and decl
# For all `this`-references and bound functions in the class definition,
# `this` is the Class being constructed.
setContext: (name) ->
@body.traverseChildren false, (node) ->
return false if node.classBody
if node instanceof Literal and node.value is 'this'
node.value = name
else if node instanceof Code
node.klass = name
node.context = name if node.bound
# Ensure that all functions bound to the instance are proxied in the
# constructor.
addBoundFunctions: (o) ->
if @boundFuncs.length
for bvar in @boundFuncs
lhs = (new Value (new Literal "this"), [new Access bvar]).compile o
@ctor.body.unshift new Literal "#{lhs} = #{utility 'bind'}(#{lhs}, this)"
# Merge the properties from a top-level object as prototypal properties
# on the class.
addProperties: (node, name, o) ->
props = node.base.properties[..]
exprs = while assign = props.shift()
if assign instanceof Assign
base = assign.variable.base
delete assign.context
func = assign.value
if base.value is 'constructor'
if @ctor
throw new Error 'cannot define more than one constructor in a class'
if func.bound
throw new Error 'cannot define a constructor as a bound function'
if func instanceof Code
assign = @ctor = func
else
@externalCtor = o.scope.freeVariable 'class'
assign = new Assign new Literal(@externalCtor), func
else
if assign.variable.this
func.static = yes
if func.bound
func.context = name
else
assign.variable = new Value(new Literal(name), [(new Access new Literal 'prototype'), new Access base ])
if func instanceof Code and func.bound
@boundFuncs.push base
func.bound = no
assign
compact exprs
# Walk the body of the class, looking for prototype properties to be converted.
walkBody: (name, o) ->
@traverseChildren false, (child) =>
return false if child instanceof Class
if child instanceof Block
for node, i in exps = child.expressions
if node instanceof Value and node.isObject(true)
exps[i] = @addProperties node, name, o
child.expressions = exps = flatten exps
# `use strict` (and other directives) must be the first expression statement(s)
# of a function body. This method ensures the prologue is correctly positioned
# above the `constructor`.
hoistDirectivePrologue: ->
index = 0
{expressions} = @body
++index while (node = expressions[index]) and node instanceof Comment or
node instanceof Value and node.isString()
@directives = expressions.splice 0, index
# Make sure that a constructor is defined for the class, and properly
# configured.
ensureConstructor: (name) ->
if not @ctor
@ctor = new Code
@ctor.body.push new Literal "#{name}.__super__.constructor.apply(this, arguments)" if @parent
@ctor.body.push new Literal "#{@externalCtor}.apply(this, arguments)" if @externalCtor
@ctor.body.makeReturn()
@body.expressions.unshift @ctor
@ctor.ctor = @ctor.name = name
@ctor.klass = null
@ctor.noReturn = yes
# Instead of generating the JavaScript string directly, we build up the
# equivalent syntax tree and compile that, in pieces. You can see the
# constructor, property assignments, and inheritance getting built out below.
compileNode: (o) ->
decl = @determineName()
name = decl or '_Class'
name = "_#{name}" if name.reserved
lname = new Literal name
@hoistDirectivePrologue()
@setContext name
@walkBody name, o
@ensureConstructor name
@body.spaced = yes
@body.expressions.unshift @ctor unless @ctor instanceof Code
@body.expressions.push lname
@body.expressions.unshift @directives...
@addBoundFunctions o
call = Closure.wrap @body
if @parent
@superClass = new Literal o.scope.freeVariable 'super', no
@body.expressions.unshift new Extends lname, @superClass
call.args.push @parent
params = call.variable.params or call.variable.base.params
params.push new Param @superClass
klass = new Parens call, yes
klass = new Assign @variable, klass if @variable
klass.compile o
#### Assign
# The **Assign** is used to assign a local variable to value, or to set the
# property of an object -- including within object literals.
exports.Assign = class Assign extends Base
constructor: (@variable, @value, @context, options) ->
@param = options and options.param
@subpattern = options and options.subpattern
forbidden = (name = @variable.unwrapAll().value) in STRICT_PROSCRIBED
if forbidden and @context isnt 'object'
throw SyntaxError "variable name may not be \"#{name}\""
children: ['variable', 'value']
isStatement: (o) ->
o?.level is LEVEL_TOP and @context? and "?" in @context
assigns: (name) ->
@[if @context is 'object' then 'value' else 'variable'].assigns name
unfoldSoak: (o) ->
unfoldSoak o, this, 'variable'
# Compile an assignment, delegating to `compilePatternMatch` or
# `compileSplice` if appropriate. Keep track of the name of the base object
# we've been assigned to, for correct internal references. If the variable
# has not been seen yet within the current scope, declare it.
compileNode: (o) ->
if isValue = @variable instanceof Value
return @compilePatternMatch o if @variable.isArray() or @variable.isObject()
return @compileSplice o if @variable.isSplice()
return @compileConditional o if @context in ['||=', '&&=', '?=']
name = @variable.compile o, LEVEL_LIST
unless @context
unless (varBase = @variable.unwrapAll()).isAssignable()
throw SyntaxError "\"#{ @variable.compile o }\" cannot be assigned."
unless varBase.hasProperties?()
if @param
o.scope.add name, 'var'
else
o.scope.find name
if @value instanceof Code and match = METHOD_DEF.exec name
@value.klass = match[1] if match[1]
@value.name = match[2] ? match[3] ? match[4] ? match[5]
val = @value.compile o, LEVEL_LIST
return "#{name}: #{val}" if @context is 'object'
val = name + " #{ @context or '=' } " + val
if o.level <= LEVEL_LIST then val else "(#{val})"
# Brief implementation of recursive pattern matching, when assigning array or
# object literals to a value. Peeks at their properties to assign inner names.
# See the [ECMAScript Harmony Wiki](http://wiki.ecmascript.org/doku.php?id=harmony:destructuring)
# for details.
compilePatternMatch: (o) ->
top = o.level is LEVEL_TOP
{value} = this
{objects} = @variable.base
unless olen = objects.length
code = value.compile o
return if o.level >= LEVEL_OP then "(#{code})" else code
isObject = @variable.isObject()
if top and olen is 1 and (obj = objects[0]) not instanceof Splat
# Unroll simplest cases: `{v} = x` -> `v = x.v`
if obj instanceof Assign
{variable: {base: idx}, value: obj} = obj
else
if obj.base instanceof Parens
[obj, idx] = new Value(obj.unwrapAll()).cacheReference o
else
idx = if isObject
if obj.this then obj.properties[0].name else obj
else
new Literal 0
acc = IDENTIFIER.test idx.unwrap().value or 0
value = new Value value
value.properties.push new (if acc then Access else Index) idx
if obj.unwrap().value in RESERVED
throw new SyntaxError "assignment to a reserved word: #{obj.compile o} = #{value.compile o}"
return new Assign(obj, value, null, param: @param).compile o, LEVEL_TOP
vvar = value.compile o, LEVEL_LIST
assigns = []
splat = false
if not IDENTIFIER.test(vvar) or @variable.assigns(vvar)
assigns.push "#{ ref = o.scope.freeVariable 'ref' } = #{vvar}"
vvar = ref
for obj, i in objects
# A regular array pattern-match.
idx = i
if isObject
if obj instanceof Assign
# A regular object pattern-match.
{variable: {base: idx}, value: obj} = obj
else
# A shorthand `{a, b, @c} = val` pattern-match.
if obj.base instanceof Parens
[obj, idx] = new Value(obj.unwrapAll()).cacheReference o
else
idx = if obj.this then obj.properties[0].name else obj
if not splat and obj instanceof Splat
name = obj.name.unwrap().value
obj = obj.unwrap()
val = "#{olen} <= #{vvar}.length ? #{ utility 'slice' }.call(#{vvar}, #{i}"
if rest = olen - i - 1
ivar = o.scope.freeVariable 'i'
val += ", #{ivar} = #{vvar}.length - #{rest}) : (#{ivar} = #{i}, [])"
else
val += ") : []"
val = new Literal val
splat = "#{ivar}++"
else
name = obj.unwrap().value
if obj instanceof Splat
obj = obj.name.compile o
throw new SyntaxError \
"multiple splats are disallowed in an assignment: #{obj}..."
if typeof idx is 'number'
idx = new Literal splat or idx
acc = no
else
acc = isObject and IDENTIFIER.test idx.unwrap().value or 0
val = new Value new Literal(vvar), [new (if acc then Access else Index) idx]
if name? and name in RESERVED
throw new SyntaxError "assignment to a reserved word: #{obj.compile o} = #{val.compile o}"
assigns.push new Assign(obj, val, null, param: @param, subpattern: yes).compile o, LEVEL_LIST
assigns.push vvar unless top or @subpattern
code = assigns.join ', '
if o.level < LEVEL_LIST then code else "(#{code})"
# When compiling a conditional assignment, take care to ensure that the
# operands are only evaluated once, even though we have to reference them
# more than once.
compileConditional: (o) ->
[left, right] = @variable.cacheReference o
# Disallow conditional assignment of undefined variables.
if not left.properties.length and left.base instanceof Literal and
left.base.value != "this" and not o.scope.check left.base.value
throw new Error "the variable \"#{left.base.value}\" can't be assigned with #{@context} because it has not been defined."
if "?" in @context then o.isExistentialEquals = true
new Op(@context[...-1], left, new Assign(right, @value, '=') ).compile o
# Compile the assignment from an array splice literal, using JavaScript's
# `Array#splice` method.
compileSplice: (o) ->
{range: {from, to, exclusive}} = @variable.properties.pop()
name = @variable.compile o
[fromDecl, fromRef] = from?.cache(o, LEVEL_OP) or ['0', '0']
if to
if from?.isSimpleNumber() and to.isSimpleNumber()
to = +to.compile(o) - +fromRef
to += 1 unless exclusive
else
to = to.compile(o, LEVEL_ACCESS) + ' - ' + fromRef
to += ' + 1' unless exclusive
else
to = "9e9"
[valDef, valRef] = @value.cache o, LEVEL_LIST
code = "[].splice.apply(#{name}, [#{fromDecl}, #{to}].concat(#{valDef})), #{valRef}"
if o.level > LEVEL_TOP then "(#{code})" else code
#### Code
# A function definition. This is the only node that creates a new Scope.
# When for the purposes of walking the contents of a function body, the Code
# has no *children* -- they're within the inner scope.
exports.Code = class Code extends Base
constructor: (params, body, tag) ->
@params = params or []
@body = body or new Block
@bound = tag is 'boundfunc'
@context = '_this' if @bound
children: ['params', 'body']
isStatement: -> !!@ctor
jumps: NO
# Compilation creates a new scope unless explicitly asked to share with the
# outer scope. Handles splat parameters in the parameter list by peeking at
# the JavaScript `arguments` object. If the function is bound with the `=>`
# arrow, generates a wrapper that saves the current value of `this` through
# a closure.
compileNode: (o) ->
o.scope = new Scope o.scope, @body, this
o.scope.shared = del(o, 'sharedScope')
o.indent += TAB
delete o.bare
delete o.isExistentialEquals
params = []
exprs = []
for name in @paramNames() # this step must be performed before the others
unless o.scope.check name then o.scope.parameter name
for param in @params when param.splat
for {name: p} in @params
if p.this then p = p.properties[0].name
if p.value then o.scope.add p.value, 'var', yes
splats = new Assign new Value(new Arr(p.asReference o for p in @params)),
new Value new Literal 'arguments'
break
for param in @params
if param.isComplex()
val = ref = param.asReference o
val = new Op '?', ref, param.value if param.value
exprs.push new Assign new Value(param.name), val, '=', param: yes
else
ref = param
if param.value
lit = new Literal ref.name.value + ' == null'
val = new Assign new Value(param.name), param.value, '='
exprs.push new If lit, val
params.push ref unless splats
wasEmpty = @body.isEmpty()
exprs.unshift splats if splats
@body.expressions.unshift exprs... if exprs.length
o.scope.parameter params[i] = p.compile o for p, i in params
uniqs = []
for name in @paramNames()
throw SyntaxError "multiple parameters named '#{name}'" if name in uniqs
uniqs.push name
@body.makeReturn() unless wasEmpty or @noReturn
if @bound
if o.scope.parent.method?.bound
@bound = @context = o.scope.parent.method.context
else if not @static
o.scope.parent.assign '_this', 'this'
idt = o.indent
code = 'function'
code += ' ' + @name if @ctor
code += '(' + params.join(', ') + ') {'
code += "\n#{ @body.compileWithDeclarations o }\n#{@tab}" unless @body.isEmpty()
code += '}'
return @tab + code if @ctor
if @front or (o.level >= LEVEL_ACCESS) then "(#{code})" else code
# A list of parameter names, excluding those generated by the compiler.
paramNames: ->
names = []
names.push param.names()... for param in @params
names
# Short-circuit `traverseChildren` method to prevent it from crossing scope boundaries
# unless `crossScope` is `true`.
traverseChildren: (crossScope, func) ->
super(crossScope, func) if crossScope
#### Param
# A parameter in a function definition. Beyond a typical Javascript parameter,
# these parameters can also attach themselves to the context of the function,
# as well as be a splat, gathering up a group of parameters into an array.
exports.Param = class Param extends Base
constructor: (@name, @value, @splat) ->
if (name = @name.unwrapAll().value) in STRICT_PROSCRIBED
throw SyntaxError "parameter name \"#{name}\" is not allowed"
children: ['name', 'value']
compile: (o) ->
@name.compile o, LEVEL_LIST
asReference: (o) ->
return @reference if @reference
node = @name
if node.this
node = node.properties[0].name
if node.value.reserved
node = new Literal o.scope.freeVariable node.value
else if node.isComplex()
node = new Literal o.scope.freeVariable 'arg'
node = new Value node
node = new Splat node if @splat
@reference = node
isComplex: ->
@name.isComplex()
# Finds the name or names of a `Param`; useful for detecting duplicates.
# In a sense, a destructured parameter represents multiple JS parameters,
# thus this method returns an `Array` of names.
# Reserved words used as param names, as well as the Object and Array
# literals used for destructured params, get a compiler generated name
# during the `Code` compilation step, so this is necessarily an incomplete
# list of a parameter's names.
names: (name = @name)->
atParam = (obj) ->
{value} = obj.properties[0].name
return if value.reserved then [] else [value]
# * simple literals `foo`
return [name.value] if name instanceof Literal
# * at-params `@foo`
return atParam(name) if name instanceof Value
names = []
for obj in name.objects
# * assignments within destructured parameters `{foo:bar}`
if obj instanceof Assign
names.push obj.value.unwrap().value
# * splats within destructured parameters `[xs...]`
else if obj instanceof Splat
names.push obj.name.unwrap().value
else if obj instanceof Value
# * destructured parameters within destructured parameters `[{a}]`
if obj.isArray() or obj.isObject()
names.push @names(obj.base)...
# * at-params within destructured parameters `{@foo}`
else if obj.this
names.push atParam(obj)...
# * simple destructured parameters {foo}
else names.push obj.base.value
else
throw SyntaxError "illegal parameter #{obj.compile()}"
names
#### Splat
# A splat, either as a parameter to a function, an argument to a call,
# or as part of a destructuring assignment.
exports.Splat = class Splat extends Base
children: ['name']
isAssignable: YES
constructor: (name) ->
@name = if name.compile then name else new Literal name
assigns: (name) ->
@name.assigns name
compile: (o) ->
if @index? then @compileParam o else @name.compile o
unwrap: -> @name
# Utility function that converts an arbitrary number of elements, mixed with
# splats, to a proper array.
@compileSplattedArray: (o, list, apply) ->
index = -1
continue while (node = list[++index]) and node not instanceof Splat
return '' if index >= list.length
if list.length is 1
code = list[0].compile o, LEVEL_LIST
return code if apply
return "#{ utility 'slice' }.call(#{code})"
args = list[index..]
for node, i in args
code = node.compile o, LEVEL_LIST
args[i] = if node instanceof Splat
then "#{ utility 'slice' }.call(#{code})"
else "[#{code}]"
return args[0] + ".concat(#{ args[1..].join ', ' })" if index is 0
base = (node.compile o, LEVEL_LIST for node in list[...index])
"[#{ base.join ', ' }].concat(#{ args.join ', ' })"
#### While
# A while loop, the only sort of low-level loop exposed by CoffeeScript. From
# it, all other loops can be manufactured. Useful in cases where you need more
# flexibility or more speed than a comprehension can provide.
exports.While = class While extends Base
constructor: (condition, options) ->
@condition = if options?.invert then condition.invert() else condition
@guard = options?.guard
children: ['condition', 'guard', 'body']
isStatement: YES
makeReturn: (res) ->
if res
super
else
@returns = not @jumps loop: yes
this
addBody: (@body) ->
this
jumps: ->
{expressions} = @body
return no unless expressions.length
for node in expressions
return node if node.jumps loop: yes
no
# The main difference from a JavaScript *while* is that the CoffeeScript
# *while* can be used as a part of a larger expression -- while loops may
# return an array containing the computed result of each iteration.
compileNode: (o) ->
o.indent += TAB
set = ''
{body} = this
if body.isEmpty()
body = ''
else
if @returns
body.makeReturn rvar = o.scope.freeVariable 'results'
set = "#{@tab}#{rvar} = [];\n"
if @guard
if body.expressions.length > 1
body.expressions.unshift new If (new Parens @guard).invert(), new Literal "continue"
else
body = Block.wrap [new If @guard, body] if @guard
body = "\n#{ body.compile o, LEVEL_TOP }\n#{@tab}"
code = set + @tab + "while (#{ @condition.compile o, LEVEL_PAREN }) {#{body}}"
if @returns
code += "\n#{@tab}return #{rvar};"
code
#### Op
# Simple Arithmetic and logical operations. Performs some conversion from
# CoffeeScript operations into their JavaScript equivalents.
exports.Op = class Op extends Base
constructor: (op, first, second, flip ) ->
return new In first, second if op is 'in'
if op is 'do'
return @generateDo first
if op is 'new'
return first.newInstance() if first instanceof Call and not first.do and not first.isNew
first = new Parens first if first instanceof Code and first.bound or first.do
@operator = CONVERSIONS[op] or op
@first = first
@second = second
@flip = !!flip
return this
# The map of conversions from CoffeeScript to JavaScript symbols.
CONVERSIONS =
'==': '==='
'!=': '!=='
'of': 'in'
# The map of invertible operators.
INVERSIONS =
'!==': '==='
'===': '!=='
children: ['first', 'second']
isSimpleNumber: NO
isUnary: ->
not @second
isComplex: ->
not (@isUnary() and (@operator in ['+', '-'])) or @first.isComplex()
# Am I capable of
# [Python-style comparison chaining](http://docs.python.org/reference/expressions.html#notin)?
isChainable: ->
@operator in ['<', '>', '>=', '<=', '===', '!==']
invert: ->
if @isChainable() and @first.isChainable()
allInvertable = yes
curr = this
while curr and curr.operator
allInvertable and= (curr.operator of INVERSIONS)
curr = curr.first
return new Parens(this).invert() unless allInvertable
curr = this
while curr and curr.operator
curr.invert = !curr.invert
curr.operator = INVERSIONS[curr.operator]
curr = curr.first
this
else if op = INVERSIONS[@operator]
@operator = op
if @first.unwrap() instanceof Op
@first.invert()
this
else if @second
new Parens(this).invert()
else if @operator is '!' and (fst = @first.unwrap()) instanceof Op and
fst.operator in ['!', 'in', 'instanceof']
fst
else
new Op '!', this
unfoldSoak: (o) ->
@operator in ['++', '--', 'delete'] and unfoldSoak o, this, 'first'
generateDo: (exp) ->
passedParams = []
func = if exp instanceof Assign and (ref = exp.value.unwrap()) instanceof Code
ref
else
exp
for param in func.params or []
if param.value
passedParams.push param.value
delete param.value
else
passedParams.push param
call = new Call exp, passedParams
call.do = yes
call
compileNode: (o) ->
isChain = @isChainable() and @first.isChainable()
# In chains, there's no need to wrap bare obj literals in parens,
# as the chained expression is wrapped.
@first.front = @front unless isChain
if @operator is 'delete' and o.scope.check(@first.unwrapAll().value)
throw SyntaxError 'delete operand may not be argument or var'
if @operator in ['--', '++'] and @first.unwrapAll().value in STRICT_PROSCRIBED
throw SyntaxError 'prefix increment/decrement may not have eval or arguments operand'
return @compileUnary o if @isUnary()
return @compileChain o if isChain
return @compileExistence o if @operator is '?'
code = @first.compile(o, LEVEL_OP) + ' ' + @operator + ' ' +
@second.compile(o, LEVEL_OP)
if o.level <= LEVEL_OP then code else "(#{code})"
# Mimic Python's chained comparisons when multiple comparison operators are
# used sequentially. For example:
#
# bin/coffee -e 'console.log 50 < 65 > 10'
# true
compileChain: (o) ->
[@first.second, shared] = @first.second.cache o
fst = @first.compile o, LEVEL_OP
code = "#{fst} #{if @invert then '&&' else '||'} #{ shared.compile o } #{@operator} #{ @second.compile o, LEVEL_OP }"
"(#{code})"
compileExistence: (o) ->
if @first.isComplex()
ref = new Literal o.scope.freeVariable 'ref'
fst = new Parens new Assign ref, @first
else
fst = @first
ref = fst
new If(new Existence(fst), ref, type: 'if').addElse(@second).compile o
# Compile a unary **Op**.
compileUnary: (o) ->
if o.level >= LEVEL_ACCESS
return (new Parens this).compile o
parts = [op = @operator]
plusMinus = op in ['+', '-']
parts.push ' ' if op in ['new', 'typeof', 'delete'] or
plusMinus and @first instanceof Op and @first.operator is op
if (plusMinus && @first instanceof Op) or (op is 'new' and @first.isStatement o)
@first = new Parens @first
parts.push @first.compile o, LEVEL_OP
parts.reverse() if @flip
parts.join ''
toString: (idt) ->
super idt, @constructor.name + ' ' + @operator
#### In
exports.In = class In extends Base
constructor: (@object, @array) ->
children: ['object', 'array']
invert: NEGATE
compileNode: (o) ->
if @array instanceof Value and @array.isArray()
for obj in @array.base.objects when obj instanceof Splat
hasSplat = yes
break
# `compileOrTest` only if we have an array literal with no splats
return @compileOrTest o unless hasSplat
@compileLoopTest o
compileOrTest: (o) ->
return "#{!!@negated}" if @array.base.objects.length is 0
[sub, ref] = @object.cache o, LEVEL_OP
[cmp, cnj] = if @negated then [' !== ', ' && '] else [' === ', ' || ']
tests = for item, i in @array.base.objects
(if i then ref else sub) + cmp + item.compile o, LEVEL_ACCESS
tests = tests.join cnj
if o.level < LEVEL_OP then tests else "(#{tests})"
compileLoopTest: (o) ->
[sub, ref] = @object.cache o, LEVEL_LIST
code = utility('indexOf') + ".call(#{ @array.compile o, LEVEL_LIST }, #{ref}) " +
if @negated then '< 0' else '>= 0'
return code if sub is ref
code = sub + ', ' + code
if o.level < LEVEL_LIST then code else "(#{code})"
toString: (idt) ->
super idt, @constructor.name + if @negated then '!' else ''
#### Try
# A classic *try/catch/finally* block.
exports.Try = class Try extends Base
constructor: (@attempt, @error, @recovery, @ensure) ->
children: ['attempt', 'recovery', 'ensure']
isStatement: YES
jumps: (o) -> @attempt.jumps(o) or @recovery?.jumps(o)
makeReturn: (res) ->
@attempt = @attempt .makeReturn res if @attempt
@recovery = @recovery.makeReturn res if @recovery
this
# Compilation is more or less as you would expect -- the *finally* clause
# is optional, the *catch* is not.
compileNode: (o) ->
o.indent += TAB
errorPart = if @error then " (#{ @error.compile o }) " else ' '
tryPart = @attempt.compile o, LEVEL_TOP
catchPart = if @recovery
if @error.value in STRICT_PROSCRIBED
throw SyntaxError "catch variable may not be \"#{@error.value}\""
o.scope.add @error.value, 'param' unless o.scope.check @error.value
" catch#{errorPart}{\n#{ @recovery.compile o, LEVEL_TOP }\n#{@tab}}"
else unless @ensure or @recovery
' catch (_error) {}'
ensurePart = if @ensure then " finally {\n#{ @ensure.compile o, LEVEL_TOP }\n#{@tab}}" else ''
"""#{@tab}try {
#{tryPart}
#{@tab}}#{ catchPart or '' }#{ensurePart}"""
#### Throw
# Simple node to throw an exception.
exports.Throw = class Throw extends Base
constructor: (@expression) ->
children: ['expression']
isStatement: YES
jumps: NO
# A **Throw** is already a return, of sorts...
makeReturn: THIS
compileNode: (o) ->
@tab + "throw #{ @expression.compile o };"
#### Existence
# Checks a variable for existence -- not *null* and not *undefined*. This is
# similar to `.nil?` in Ruby, and avoids having to consult a JavaScript truth
# table.
exports.Existence = class Existence extends Base
constructor: (@expression) ->
children: ['expression']
invert: NEGATE
compileNode: (o) ->
@expression.front = @front
code = @expression.compile o, LEVEL_OP
if IDENTIFIER.test(code) and not o.scope.check code
[cmp, cnj] = if @negated then ['===', '||'] else ['!==', '&&']
code = "typeof #{code} #{cmp} \"undefined\" #{cnj} #{code} #{cmp} null"
else
# do not use strict equality here; it will break existing code
code = "#{code} #{if @negated then '==' else '!='} null"
if o.level <= LEVEL_COND then code else "(#{code})"
#### Parens
# An extra set of parentheses, specified explicitly in the source. At one time
# we tried to clean up the results by detecting and removing redundant
# parentheses, but no longer -- you can put in as many as you please.
#
# Parentheses are a good way to force any statement to become an expression.
exports.Parens = class Parens extends Base
constructor: (@body) ->
children: ['body']
unwrap : -> @body
isComplex : -> @body.isComplex()
compileNode: (o) ->
expr = @body.unwrap()
if expr instanceof Value and expr.isAtomic()
expr.front = @front
return expr.compile o
code = expr.compile o, LEVEL_PAREN
bare = o.level < LEVEL_OP and (expr instanceof Op or expr instanceof Call or
(expr instanceof For and expr.returns))
if bare then code else "(#{code})"
#### For
# CoffeeScript's replacement for the *for* loop is our array and object
# comprehensions, that compile into *for* loops here. They also act as an
# expression, able to return the result of each filtered iteration.
#
# Unlike Python array comprehensions, they can be multi-line, and you can pass
# the current index of the loop as a second parameter. Unlike Ruby blocks,
# you can map and filter in a single pass.
exports.For = class For extends While
constructor: (body, source) ->
{@source, @guard, @step, @name, @index} = source
@body = Block.wrap [body]
@own = !!source.own
@object = !!source.object
[@name, @index] = [@index, @name] if @object
throw SyntaxError 'index cannot be a pattern matching expression' if @index instanceof Value
@range = @source instanceof Value and @source.base instanceof Range and not @source.properties.length
@pattern = @name instanceof Value
throw SyntaxError 'indexes do not apply to range loops' if @range and @index
throw SyntaxError 'cannot pattern match over range loops' if @range and @pattern
@returns = false
children: ['body', 'source', 'guard', 'step']
# Welcome to the hairiest method in all of CoffeeScript. Handles the inner
# loop, filtering, stepping, and result saving for array, object, and range
# comprehensions. Some of the generated code can be shared in common, and
# some cannot.
compileNode: (o) ->
body = Block.wrap [@body]
lastJumps = last(body.expressions)?.jumps()
@returns = no if lastJumps and lastJumps instanceof Return
source = if @range then @source.base else @source
scope = o.scope
name = @name and @name.compile o, LEVEL_LIST
index = @index and @index.compile o, LEVEL_LIST
scope.find(name) if name and not @pattern
scope.find(index) if index
rvar = scope.freeVariable 'results' if @returns
ivar = (@object and index) or scope.freeVariable 'i'
kvar = (@range and name) or index or ivar
kvarAssign = if kvar isnt ivar then "#{kvar} = " else ""
# the `_by` variable is created twice in `Range`s if we don't prevent it from being declared here
stepvar = scope.freeVariable "step" if @step and not @range
name = ivar if @pattern
varPart = ''
guardPart = ''
defPart = ''
idt1 = @tab + TAB
if @range
forPart = source.compile merge(o, {index: ivar, name, @step})
else
svar = @source.compile o, LEVEL_LIST
if (name or @own) and not IDENTIFIER.test svar
defPart = "#{@tab}#{ref = scope.freeVariable 'ref'} = #{svar};\n"
svar = ref
if name and not @pattern
namePart = "#{name} = #{svar}[#{kvar}]"
unless @object
lvar = scope.freeVariable 'len'
forVarPart = "#{kvarAssign}#{ivar} = 0, #{lvar} = #{svar}.length"
forVarPart += ", #{stepvar} = #{@step.compile o, LEVEL_OP}" if @step
stepPart = "#{kvarAssign}#{if @step then "#{ivar} += #{stepvar}" else (if kvar isnt ivar then "++#{ivar}" else "#{ivar}++")}"
forPart = "#{forVarPart}; #{ivar} < #{lvar}; #{stepPart}"
if @returns
resultPart = "#{@tab}#{rvar} = [];\n"
returnResult = "\n#{@tab}return #{rvar};"
body.makeReturn rvar
if @guard
if body.expressions.length > 1
body.expressions.unshift new If (new Parens @guard).invert(), new Literal "continue"
else
body = Block.wrap [new If @guard, body] if @guard
if @pattern
body.expressions.unshift new Assign @name, new Literal "#{svar}[#{kvar}]"
defPart += @pluckDirectCall o, body
varPart = "\n#{idt1}#{namePart};" if namePart
if @object
forPart = "#{kvar} in #{svar}"
guardPart = "\n#{idt1}if (!#{utility 'hasProp'}.call(#{svar}, #{kvar})) continue;" if @own
body = body.compile merge(o, indent: idt1), LEVEL_TOP
body = '\n' + body + '\n' if body
"""
#{defPart}#{resultPart or ''}#{@tab}for (#{forPart}) {#{guardPart}#{varPart}#{body}#{@tab}}#{returnResult or ''}
"""
pluckDirectCall: (o, body) ->
defs = ''
for expr, idx in body.expressions
expr = expr.unwrapAll()
continue unless expr instanceof Call
val = expr.variable.unwrapAll()
continue unless (val instanceof Code) or
(val instanceof Value and
val.base?.unwrapAll() instanceof Code and
val.properties.length is 1 and
val.properties[0].name?.value in ['call', 'apply'])
fn = val.base?.unwrapAll() or val
ref = new Literal o.scope.freeVariable 'fn'
base = new Value ref
if val.base
[val.base, base] = [base, val]
body.expressions[idx] = new Call base, expr.args
defs += @tab + new Assign(ref, fn).compile(o, LEVEL_TOP) + ';\n'
defs
#### Switch
# A JavaScript *switch* statement. Converts into a returnable expression on-demand.
exports.Switch = class Switch extends Base
constructor: (@subject, @cases, @otherwise) ->
children: ['subject', 'cases', 'otherwise']
isStatement: YES
jumps: (o = {block: yes}) ->
for [conds, block] in @cases
return block if block.jumps o
@otherwise?.jumps o
makeReturn: (res) ->
pair[1].makeReturn res for pair in @cases
@otherwise or= new Block [new Literal 'void 0'] if res
@otherwise?.makeReturn res
this
compileNode: (o) ->
idt1 = o.indent + TAB
idt2 = o.indent = idt1 + TAB
code = @tab + "switch (#{ @subject?.compile(o, LEVEL_PAREN) or false }) {\n"
for [conditions, block], i in @cases
for cond in flatten [conditions]
cond = cond.invert() unless @subject
code += idt1 + "case #{ cond.compile o, LEVEL_PAREN }:\n"
code += body + '\n' if body = block.compile o, LEVEL_TOP
break if i is @cases.length - 1 and not @otherwise
expr = @lastNonComment block.expressions
continue if expr instanceof Return or (expr instanceof Literal and expr.jumps() and expr.value isnt 'debugger')
code += idt2 + 'break;\n'
code += idt1 + "default:\n#{ @otherwise.compile o, LEVEL_TOP }\n" if @otherwise and @otherwise.expressions.length
code + @tab + '}'
#### If
# *If/else* statements. Acts as an expression by pushing down requested returns
# to the last line of each clause.
#
# Single-expression **Ifs** are compiled into conditional operators if possible,
# because ternaries are already proper expressions, and don't need conversion.
exports.If = class If extends Base
constructor: (condition, @body, options = {}) ->
@condition = if options.type is 'unless' then condition.invert() else condition
@elseBody = null
@isChain = false
{@soak} = options
children: ['condition', 'body', 'elseBody']
bodyNode: -> @body?.unwrap()
elseBodyNode: -> @elseBody?.unwrap()
# Rewrite a chain of **Ifs** to add a default case as the final *else*.
addElse: (elseBody) ->
if @isChain
@elseBodyNode().addElse elseBody
else
@isChain = elseBody instanceof If
@elseBody = @ensureBlock elseBody
this
# The **If** only compiles into a statement if either of its bodies needs
# to be a statement. Otherwise a conditional operator is safe.
isStatement: (o) ->
o?.level is LEVEL_TOP or
@bodyNode().isStatement(o) or @elseBodyNode()?.isStatement(o)
jumps: (o) -> @body.jumps(o) or @elseBody?.jumps(o)
compileNode: (o) ->
if @isStatement o then @compileStatement o else @compileExpression o
makeReturn: (res) ->
@elseBody or= new Block [new Literal 'void 0'] if res
@body and= new Block [@body.makeReturn res]
@elseBody and= new Block [@elseBody.makeReturn res]
this
ensureBlock: (node) ->
if node instanceof Block then node else new Block [node]
# Compile the `If` as a regular *if-else* statement. Flattened chains
# force inner *else* bodies into statement form.
compileStatement: (o) ->
child = del o, 'chainChild'
exeq = del o, 'isExistentialEquals'
if exeq
return new If(@condition.invert(), @elseBodyNode(), type: 'if').compile o
cond = @condition.compile o, LEVEL_PAREN
o.indent += TAB
body = @ensureBlock(@body)
ifPart = "if (#{cond}) {\n#{body.compile(o)}\n#{@tab}}"
ifPart = @tab + ifPart unless child
return ifPart unless @elseBody
ifPart + ' else ' + if @isChain
o.indent = @tab
o.chainChild = yes
@elseBody.unwrap().compile o, LEVEL_TOP
else
"{\n#{ @elseBody.compile o, LEVEL_TOP }\n#{@tab}}"
# Compile the `If` as a conditional operator.
compileExpression: (o) ->
cond = @condition.compile o, LEVEL_COND
body = @bodyNode().compile o, LEVEL_LIST
alt = if @elseBodyNode() then @elseBodyNode().compile(o, LEVEL_LIST) else 'void 0'
code = "#{cond} ? #{body} : #{alt}"
if o.level >= LEVEL_COND then "(#{code})" else code
unfoldSoak: ->
@soak and this
# Faux-Nodes
# ----------
# Faux-nodes are never created by the grammar, but are used during code
# generation to generate other combinations of nodes.
#### Closure
# A faux-node used to wrap an expressions body in a closure.
Closure =
# Wrap the expressions body, unless it contains a pure statement,
# in which case, no dice. If the body mentions `this` or `arguments`,
# then make sure that the closure wrapper preserves the original values.
wrap: (expressions, statement, noReturn) ->
return expressions if expressions.jumps()
func = new Code [], Block.wrap [expressions]
args = []
if (mentionsArgs = expressions.contains @literalArgs) or expressions.contains @literalThis
meth = new Literal if mentionsArgs then 'apply' else 'call'
args = [new Literal 'this']
args.push new Literal 'arguments' if mentionsArgs
func = new Value func, [new Access meth]
func.noReturn = noReturn
call = new Call func, args
if statement then Block.wrap [call] else call
literalArgs: (node) ->
node instanceof Literal and node.value is 'arguments' and not node.asKey
literalThis: (node) ->
(node instanceof Literal and node.value is 'this' and not node.asKey) or
(node instanceof Code and node.bound) or
(node instanceof Call and node.isSuper)
# Unfold a node's child if soak, then tuck the node under created `If`
unfoldSoak = (o, parent, name) ->
return unless ifn = parent[name].unfoldSoak o
parent[name] = ifn.body
ifn.body = new Value parent
ifn
# Constants
# ---------
UTILITIES =
# Correctly set up a prototype chain for inheritance, including a reference
# to the superclass for `super()` calls, and copies of any static properties.
extends: -> """
function(child, parent) { for (var key in parent) { if (#{utility 'hasProp'}.call(parent, key)) child[key] = parent[key]; } function ctor() { this.constructor = child; } ctor.prototype = parent.prototype; child.prototype = new ctor(); child.__super__ = parent.prototype; return child; }
"""
# Create a function bound to the current value of "this".
bind: -> '''
function(fn, me){ return function(){ return fn.apply(me, arguments); }; }
'''
# Discover if an item is in an array.
indexOf: -> """
[].indexOf || function(item) { for (var i = 0, l = this.length; i < l; i++) { if (i in this && this[i] === item) return i; } return -1; }
"""
# Shortcuts to speed up the lookup time for native functions.
hasProp: -> '{}.hasOwnProperty'
slice : -> '[].slice'
# Levels indicate a node's position in the AST. Useful for knowing if
# parens are necessary or superfluous.
LEVEL_TOP = 1 # ...;
LEVEL_PAREN = 2 # (...)
LEVEL_LIST = 3 # [...]
LEVEL_COND = 4 # ... ? x : y
LEVEL_OP = 5 # !...
LEVEL_ACCESS = 6 # ...[0]
# Tabs are two spaces for pretty printing.
TAB = ' '
IDENTIFIER_STR = "[$A-Za-z_\\x7f-\\uffff][$\\w\\x7f-\\uffff]*"
IDENTIFIER = /// ^ #{IDENTIFIER_STR} $ ///
SIMPLENUM = /^[+-]?\d+$/
METHOD_DEF = ///
^
(?:
(#{IDENTIFIER_STR})
\.prototype
(?:
\.(#{IDENTIFIER_STR})
| \[("(?:[^\\"\r\n]|\\.)*"|'(?:[^\\'\r\n]|\\.)*')\]
| \[(0x[\da-fA-F]+ | \d*\.?\d+ (?:[eE][+-]?\d+)?)\]
)
)
|
(#{IDENTIFIER_STR})
$
///
# Is a literal value a string?
IS_STRING = /^['"]/
# Utility Functions
# -----------------
# Helper for ensuring that utility functions are assigned at the top level.
utility = (name) ->
ref = "__#{name}"
Scope.root.assign ref, UTILITIES[name]()
ref
multident = (code, tab) ->
code = code.replace /\n/g, '$&' + tab
code.replace /\s+$/, ''
|