/usr/share/common-lisp/source/alexandria/numbers.lisp is in cl-alexandria 0.0.20130703-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | (in-package :alexandria)
(declaim (inline clamp))
(defun clamp (number min max)
"Clamps the NUMBER into [min, max] range. Returns MIN if NUMBER is lesser then
MIN and MAX if NUMBER is greater then MAX, otherwise returns NUMBER."
(if (< number min)
min
(if (> number max)
max
number)))
(defun gaussian-random (&optional min max)
"Returns two gaussian random double floats as the primary and secondary value,
optionally constrained by MIN and MAX. Gaussian random numbers form a standard
normal distribution around 0.0d0.
Sufficiently positive MIN or negative MAX will cause the algorithm used to
take a very long time. If MIN is positive it should be close to zero, and
similarly if MAX is negative it should be close to zero."
(labels ((gauss ()
(loop
for x1 = (- (random 2.0d0) 1.0d0)
for x2 = (- (random 2.0d0) 1.0d0)
for w = (+ (expt x1 2) (expt x2 2))
when (< w 1.0d0)
do (let ((v (sqrt (/ (* -2.0d0 (log w)) w))))
(return (values (* x1 v) (* x2 v))))))
(guard (x min max)
(unless (<= min x max)
(tagbody
:retry
(multiple-value-bind (x1 x2) (gauss)
(when (<= min x1 max)
(setf x x1)
(go :done))
(when (<= min x2 max)
(setf x x2)
(go :done))
(go :retry))
:done))
x))
(multiple-value-bind (g1 g2) (gauss)
(values (guard g1 (or min g1) (or max g1))
(guard g2 (or min g2) (or max g2))))))
(declaim (inline iota))
(defun iota (n &key (start 0) (step 1))
"Return a list of n numbers, starting from START (with numeric contagion
from STEP applied), each consequtive number being the sum of the previous one
and STEP. START defaults to 0 and STEP to 1.
Examples:
(iota 4) => (0 1 2 3)
(iota 3 :start 1 :step 1.0) => (1.0 2.0 3.0)
(iota 3 :start -1 :step -1/2) => (-1 -3/2 -2)
"
(declare (type (integer 0) n) (number start step))
(loop repeat n
;; KLUDGE: get numeric contagion right for the first element too
for i = (+ (- (+ start step) step)) then (+ i step)
collect i))
(declaim (inline map-iota))
(defun map-iota (function n &key (start 0) (step 1))
"Calls FUNCTION with N numbers, starting from START (with numeric contagion
from STEP applied), each consequtive number being the sum of the previous one
and STEP. START defaults to 0 and STEP to 1. Returns N.
Examples:
(map-iota #'print 3 :start 1 :step 1.0) => 3
;;; 1.0
;;; 2.0
;;; 3.0
"
(declare (type (integer 0) n) (number start step))
(loop repeat n
;; KLUDGE: get numeric contagion right for the first element too
for i = (+ start (- step step)) then (+ i step)
do (funcall function i))
n)
(declaim (inline lerp))
(defun lerp (v a b)
"Returns the result of linear interpolation between A and B, using the
interpolation coefficient V."
(+ a (* v (- b a))))
(declaim (inline mean))
(defun mean (sample)
"Returns the mean of SAMPLE. SAMPLE must be a sequence of numbers."
(/ (reduce #'+ sample) (length sample)))
(declaim (inline median))
(defun median (sample)
"Returns median of SAMPLE. SAMPLE must be a sequence of real numbers."
(let* ((vector (sort (copy-sequence 'vector sample) #'<))
(length (length vector))
(middle (truncate length 2)))
(if (oddp length)
(aref vector middle)
(/ (+ (aref vector middle) (aref vector (1- middle))) 2))))
(declaim (inline variance))
(defun variance (sample &key (biased t))
"Variance of SAMPLE. Returns the biased variance if BIASED is true (the default),
and the unbiased estimator of variance if BIASED is false. SAMPLE must be a
sequence of numbers."
(let ((mean (mean sample)))
(/ (reduce (lambda (a b)
(+ a (expt (- b mean) 2)))
sample
:initial-value 0)
(- (length sample) (if biased 0 1)))))
(declaim (inline standard-deviation))
(defun standard-deviation (sample &key (biased t))
"Standard deviation of SAMPLE. Returns the biased standard deviation if
BIASED is true (the default), and the square root of the unbiased estimator
for variance if BIASED is false (which is not the same as the unbiased
estimator for standard deviation). SAMPLE must be a sequence of numbers."
(sqrt (variance sample :biased biased)))
(define-modify-macro maxf (&rest numbers) max
"Modify-macro for MAX. Sets place designated by the first argument to the
maximum of its original value and NUMBERS.")
(define-modify-macro minf (&rest numbers) min
"Modify-macro for MIN. Sets place designated by the first argument to the
minimum of its original value and NUMBERS.")
;;;; Factorial
;;; KLUDGE: This is really dependant on the numbers in question: for
;;; small numbers this is larger, and vice versa. Ideally instead of a
;;; constant we would have RANGE-FAST-TO-MULTIPLY-DIRECTLY-P.
(defconstant +factorial-bisection-range-limit+ 8)
;;; KLUDGE: This is really platform dependant: ideally we would use
;;; (load-time-value (find-good-direct-multiplication-limit)) instead.
(defconstant +factorial-direct-multiplication-limit+ 13)
(defun %multiply-range (i j)
;; We use a a bit of cleverness here:
;;
;; 1. For large factorials we bisect in order to avoid expensive bignum
;; multiplications: 1 x 2 x 3 x ... runs into bignums pretty soon,
;; and once it does that all further multiplications will be with bignums.
;;
;; By instead doing the multiplication in a tree like
;; ((1 x 2) x (3 x 4)) x ((5 x 6) x (7 x 8))
;; we manage to get less bignums.
;;
;; 2. Division isn't exactly free either, however, so we don't bisect
;; all the way down, but multiply ranges of integers close to each
;; other directly.
;;
;; For even better results it should be possible to use prime
;; factorization magic, but Nikodemus ran out of steam.
;;
;; KLUDGE: We support factorials of bignums, but it seems quite
;; unlikely anyone would ever be able to use them on a modern lisp,
;; since the resulting numbers are unlikely to fit in memory... but
;; it would be extremely unelegant to define FACTORIAL only on
;; fixnums, _and_ on lisps with 16 bit fixnums this can actually be
;; needed.
(labels ((bisect (j k)
(declare (type (integer 1 #.most-positive-fixnum) j k))
(if (< (- k j) +factorial-bisection-range-limit+)
(multiply-range j k)
(let ((middle (+ j (truncate (- k j) 2))))
(* (bisect j middle)
(bisect (+ middle 1) k)))))
(bisect-big (j k)
(declare (type (integer 1) j k))
(if (= j k)
j
(let ((middle (+ j (truncate (- k j) 2))))
(* (if (<= middle most-positive-fixnum)
(bisect j middle)
(bisect-big j middle))
(bisect-big (+ middle 1) k)))))
(multiply-range (j k)
(declare (type (integer 1 #.most-positive-fixnum) j k))
(do ((f k (* f m))
(m (1- k) (1- m)))
((< m j) f)
(declare (type (integer 0 (#.most-positive-fixnum)) m)
(type unsigned-byte f)))))
(bisect i j)))
(declaim (inline factorial))
(defun %factorial (n)
(if (< n 2)
1
(%multiply-range 1 n)))
(defun factorial (n)
"Factorial of non-negative integer N."
(check-type n (integer 0))
(%factorial n))
;;;; Combinatorics
(defun binomial-coefficient (n k)
"Binomial coefficient of N and K, also expressed as N choose K. This is the
number of K element combinations given N choises. N must be equal to or
greater then K."
(check-type n (integer 0))
(check-type k (integer 0))
(assert (>= n k))
(if (or (zerop k) (= n k))
1
(let ((n-k (- n k)))
;; Swaps K and N-K if K < N-K because the algorithm
;; below is faster for bigger K and smaller N-K
(when (< k n-k)
(rotatef k n-k))
(if (= 1 n-k)
n
;; General case, avoid computing the 1x...xK twice:
;;
;; N! 1x...xN (K+1)x...xN
;; -------- = ---------------- = ------------, N>1
;; K!(N-K)! 1x...xK x (N-K)! (N-K)!
(/ (%multiply-range (+ k 1) n)
(%factorial n-k))))))
(defun subfactorial (n)
"Subfactorial of the non-negative integer N."
(check-type n (integer 0))
(if (zerop n)
1
(do ((x 1 (1+ x))
(a 0 (* x (+ a b)))
(b 1 a))
((= n x) a))))
(defun count-permutations (n &optional (k n))
"Number of K element permutations for a sequence of N objects.
K defaults to N"
(check-type n (integer 0))
(check-type k (integer 0))
(assert (>= n k))
(%multiply-range (1+ (- n k)) n))
|