This file is indexed.

/usr/src/castle-game-engine-4.1.1/x3d/opengl/castleprecalculatedanimation.pas is in castle-game-engine-src 4.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
{
  Copyright 2006-2013 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ A precalculated 3D animation rendered in OpenGL (TCastlePrecalculatedAnimation). }
unit CastlePrecalculatedAnimation;

interface

uses SysUtils, Classes, X3DNodes, CastleRenderer, CastleSceneCore, CastleScene,
  CastleUtils, CastleBoxes, CastleClassUtils, CastlePrecalculatedAnimationCore,
  CastleKeysMouse, CastleTimeUtils, CastleFrustum, CastleVectors, Castle3D, X3DTriangles,
  FGL, CastleTriangles;

type
  TGetRootNodeWithTime = procedure (const Index: Cardinal;
    out RootNode: TX3DRootNode; out Time: Single) of object;

  { A "precalculated" animation done by
    interpolating between a number of 3D model states.

    After constructing an object of this class, you must actually
    load it's animation by calling Load or LoadFromFile or LoadFromEvents
    etc.

    When loading you must provide one or more VRML models with
    their associated times. Animation will show a transition from the first
    model to the last. If models are "structurally equal" then the transition
    between two successive models will be smooth, otherwise a sudden change
    will be shown. "Structurally equal" means
    the same nodes hierarchy, the same names of nodes,
    the same values of all fields (with the exception of fields
    that are floating-point based and so can be interpolated, for example
    SFFloat, SFVec3f and equivalent MFXxx fields).
    For multi-valued fields (MFXxx) that can be interpolated: note that values
    of items may differ, but still the counts of items must be equal.

    This creates a list of @link(Scenes) such that
    @unorderedList(
      @itemSpacing Compact
      @item the first scene on the list is exactly the 1st object
      @item the last scene on the list is exactly the last object
      @item(intermediate scenes are accordingly interpolated between
        the two surrounding "predefined" by you scenes)
    )

    For example, first object may be a small sphere with blue color, the other
    object may be a larger sphere with white color, and the simplest
    times are 0.0 for the 1st scene and 1.0 for the 2nd scene.
    The animation will show the blue sphere growing larger
    and fading into the white
    color. Of course, any kind of models is allowed --- e.g. it can
    be a walking man at various stages, so in effect you get an animation
    of walking man.

    A special case when you pass only one scene to this class is allowed
    (it may be handy in some situations). This will obviously produce
    just a still result, i.e. resulting TCastlePrecalculatedAnimation will be just
    a wrapper around single TCastleScene instance.

    For more information see our engine documentation on
    [http://castle-engine.sourceforge.net/engine_doc.php].
    Specifically the section
    "Non-interactive precalculated animation: TCastlePrecalculatedAnimation",
    [http://castle-engine.sourceforge.net/vrml_engine_doc/output/xsl/html/section.animation_precalculated.html]. }
  TCastlePrecalculatedAnimation = class(TCastlePrecalculatedAnimationCore)
  private
    FScenes: TCastleSceneList;
    function GetScenes(I: Integer): TCastleScene;
  private
    Renderer: TGLRenderer;
    FCache: TGLRendererContextCache;
    FTimeBegin, FTimeEnd: Single;
    FTimeLoop: boolean;
    FTimeBackwards: boolean;
    FOwnsFirstRootNode: boolean;
    FLoaded: boolean;
    FTimePlaying: boolean;
    FTimePlayingSpeed: Single;
    FTimeAtLoad: TFloatTime;
    FTime: TFloatTime;
    FShadowMaps: boolean;
    FShadowMapsDefaultSize: Cardinal;
    FTryFirstSceneDynamic: boolean;

    ValidBoundingBox: boolean;
    FBoundingBox: TBox3D;
    FCollisionUseLastScene: boolean;
    FInitialViewpointIndex: Cardinal;
    FInitialViewpointName: string;

    procedure SetShadowMaps(const Value: boolean);
    procedure SetShadowMapsDefaultSize(const Value: Cardinal);

    function InfoBoundingBox: string;
  private
    { Helpers for Load implementation. }
    Load_RootNodes: TX3DNodeList;
    Load_Times: TSingleList;
    procedure Load_GetRootNodeWithTime(const Index: Cardinal;
      out RootNode: TX3DRootNode; out Time: Single);
  private
    { Helpers for LoadFromEvents implementation. }
    LoadFromEvents_TimeBegin: Single;
    LoadFromEvents_Scene: TCastleSceneCore;
    LoadFromEvents_ScenesPerTime: Cardinal;
    procedure LoadFromEvents_GetRootNodeWithTime(const Index: Cardinal;
      out RootNode: TX3DRootNode; out Time: Single);
    procedure LoadFromEvents_GetRootNodeWithTime_Progress(
      const Index: Cardinal;
      out RootNode: TX3DRootNode; out Time: Single);

    procedure SetOwnsFirstRootNode(const Value: boolean);
  protected
    { Internal version of @link(Load) routines, feasible to load
      from both ready RootNodes array and to automatically generate RootNodes
      on the fly.

      GetRootNodeWithTime will be called with indexes from 0 to RootNodesCount - 1.
      It's guaranteed that it will be called in this order (from 0 upwards to
      RootNodesCount - 1) and will be called exactly once for each index.
      So it's safe to e.g. create RootNode with some costly operation there.

      Note that RootNode passed to GetRootNodeWithTime becomes owned by
      this class. Well, you can get control over only the first one,
      by AOwnsFirstRootNode, but you cannot free it anyway while this is loaded.

      See @link(Load) for more information, including the meaning of
      EqualityEpsilon. }
    procedure LoadCore(
      GetRootNodeWithTime: TGetRootNodeWithTime;
      RootNodesCount: Cardinal;
      AOwnsFirstRootNode: boolean;
      ScenesPerTime: Cardinal;
      const EqualityEpsilon: Single);

    function HeightCollision(const Position, GravityUp: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
      out AboveHeight: Single; out AboveGround: P3DTriangle): boolean; override;
    function MoveCollision(
      const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function MoveCollision(
      const OldPos, NewPos: TVector3Single;
      const IsRadius: boolean; const Radius: Single;
      const OldBox, NewBox: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function SegmentCollision(const Pos1, Pos2: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
      const ALineOfSight: boolean): boolean; override;
    function SphereCollision(const Pos: TVector3Single; const Radius: Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function BoxCollision(const Box: TBox3D;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean; override;
    function RayCollision(const RayOrigin, RayDirection: TVector3Single;
      const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): TRayCollision; override;
  public
    constructor Create(AOwner: TComponent); override;

    { Constructor that allows you to pass your own Cache instance. }
    constructor CreateCustomCache(AOwner: TComponent;
      ACache: TGLRendererContextCache);

    destructor Destroy; override;

    { Load the animation scenes.
      Must be called (this or some other loading routine like LoadFromFile)
      before you do almost anything with this object.
      @link(Loaded) changes to @true after calling this.

      @param(RootNodes
        Models describing the "predefined" frames of animation.
        They must descend from TX3DRootNode.

        For all nodes except the first: They are @italic(always)
        owned by this class --- that's needed,
        because actually we may do some operations on these models when
        building animation (including even freeing some RootNodes,
        if we will find that they are equivalent to some other RootNodes).
        They all must point to different objects.

        You must supply at least one item here (you cannot make an animation
        from 0 items).)

      @param(Times Array specifying the point of time for each "predefined"
        frame. Length of this array must equal to length of RootNodes array.)

      @param(ScenesPerTime
        This says how many scenes will be used for period of time equal to 1.0.
        This will determine Scenes.Count.
        RootNodes[0] always takes Scenes[0] and RootNodes[High(RootNodes)]
        always takes Scenes[Scenes.High].

        Note that if we will find that some nodes along the way are
        exactly equal, we may drop scenes count between --- because if they are
        both equal, we can simply render the same scene for some period
        of time. This is an optimization, and you shouldn't notice it at all,
        since rendeting will be the same (but less memory-consuming).

        Special value ScenesPerTime = 0 means that you want to have only the
        RootNodes you explicitly passed in the scene, not more.
        No more intermediate scenes will ever be created.
        This creates a trivial animation that suddenly jumps from
        one RootNode to the next at specified times. It may be useful if you
        already have generated a lot of RootNodes, densely distributed
        over time, and you don't need TCastlePrecalculatedAnimation to insert any more
        scenes.)

      @param(EqualityEpsilon
        This will be used for comparing fields, to decide if two fields
        (and, consequently, nodes) are equal. It will be simply
        passed to TX3DField.Equals.

        You can pass here 0 to use exact comparison, but it's
        advised to use here something > 0. Otherwise we could waste
        display list memory (and loading time) for many frames of the
        same node that are in fact equal.)
    }
    procedure Load(
      RootNodes: TX3DNodeList;
      AOwnsFirstRootNode: boolean;
      ATimes: TSingleList;
      ScenesPerTime: Cardinal;
      const EqualityEpsilon: Single);

    { Load precalculated animation by playing a single VRML file with
      events (interpolators, TimeSensor and such working).
      Conceptually, this "records" interactive animation stored in VRML file
      into TCastlePrecalculatedAnimation precalculated animation.

      ATimeBegin, ATimeEnd tell what time slice should be recorded.
      They will also set @link(TimeBegin) and @link(TimeEnd) properties.

      @param(ScenesPerTime
        tells with what density should the animation be recorded.
        See @link(Load) for ScenesPerTime, EqualityEpsilon precise documentation.
        Note that special value ScenesPerTime = 0 is interpreted here as
        "record only one, initial frame".)

      @param(ProgressTitle When <> '' we will use Progress.Init, Step, Fini
        to display nice progress of operation.) }
    procedure LoadFromEvents(
      RootNode: TX3DRootNode;
      AOwnsRootNode: boolean;
      const ATimeBegin, ATimeEnd: Single;
      ScenesPerTime: Cardinal;
      const EqualityEpsilon: Single;
      const ProgressTitle: string);

    { Load a dumb animation that consists of only one frame (so actually
      there's  no animation, everything is static).

      This just calls @link(Load) with parameters such that
      @orderedList(
        @item(RootNodes list contains one specified node)
        @item(Times contain only one item 0.0)
        @item(ScenesPerTime and EqualityEpsilon have some unimportant
          values --- they are not meaningfull when you have only one scene)
      )

      This is usefull when you know that you have a static scene,
      but still you want to treat it as TCastlePrecalculatedAnimation. }
    procedure LoadStatic(RootNode: TX3DNode; AOwnsRootNode: boolean);

    { Load animation parameters (models to use, times to use and such)
      from given file.

      Various file formats are possible, everything that can be handled by
      Load3DSequence, in particular simple 3D model files, MD3,
      kanim (described on
      [http://castle-engine.sourceforge.net/kanim_format.php]).

      If you need more control over loading, for example you want to
      change some parameters at loading (for example, ScenesPerTime
      and EqualityEpsilon of kanim files), you should use
      more flexible (and less comfortable to use)
      LoadFromFileToVars class procedure (specialized for kanim files)
      or Load3DSequence (if you want to handle any files).

      @link(Loaded) property changes to @true after calling this.

      @param(AllowStdIn If @true, then URL = '-' is understood
        as "standard input".)

      @param(LoadTime If @true then loading changes
        current TimeLoop and TimeBackwards properties.
        Sometimes this is sensible (you want to allow control over them
        from the file), sometimes not (e.g. you set suitable values for them
        by code).

        Note that, independent of this, you can always change TimeLoop
        and TimeBackwards properties later,
        since these properties are writeable at any time.)

      @param(Smoothness Scales the number of scenes
        created per second. Values > 1 make better quality but also use more memory.
        If this parameter isn't given, we use global AnimationSmoothness
        (which is by default 1, but may be globally changed).)

      @groupBegin }
    procedure LoadFromFile(const URL: string;
      const AllowStdIn: boolean; const LoadTime: boolean;
      const Smoothness: Float);
    procedure LoadFromFile(const URL: string;
      const AllowStdIn: boolean; const LoadTime: boolean);
    { @groupEnd }

    { This releases all resources allocared by Load (or LoadFromFile).
      @link(Loaded) property changes to @false after calling this.

      It's safe to call this even if @link(Loaded) is already @false --- then
      this will do nothing. }
    procedure Close;

    property Loaded: boolean read FLoaded;

    { Is the RootNode in first scene owned by this TCastlePrecalculatedAnimation instance?
      If yes, it will be freed at closing the animation.
      Otherwise, you are responsible for freeing it yourself
      (but you cannot do this while animation is loaded, anyway). }
    property OwnsFirstRootNode: boolean
      read FOwnsFirstRootNode write SetOwnsFirstRootNode;

    { You can read anything from Scenes below. But you cannot set some
      things: don't set their scenes Attributes properties.
      Use only our @link(Attributes).

      The scenes here have TCastleSceneCore.Static set to @true, which means
      we assume you will not modify their VRML nodes graph (by TX3DField.Send
      and such). Note that this doesn't prevent you from enabling
      TCastleSceneCore.ProcessEvents on the first scene (TCastleSceneCore.ProcessEvents
      will be property handled regardless of TCastleSceneCore.Static value). }
    property Scenes[I: Integer]: TCastleScene read GetScenes;
    function ScenesCount: Integer;

    { Just a shortcut for Scenes[0]. }
    function FirstScene: TCastleScene;

    { Just a shortcut for Scenes[ScenesCount - 1]. }
    function LastScene: TCastleScene;

    { Prepare all scenes for rendering. Basically, this calls
      PrepareResources(...) for all Scenes.

      There's also a special memory (and prepare time) optimization used
      for prManifoldAndBorderEdges: we use the fact that animation scenes are
      "structurally equal", and so prepare and share one manifold edges
      information for all scenes.

      ProgressStep = @true is especially useful with this: we'll call
      Progress.Step then after preparing each scene.
      For portability, always check PrepareResourcesSteps, but for now this
      is just always equal ScenesCount. }
    procedure PrepareResources(Options: TPrepareResourcesOptions;
      ProgressStep: boolean; BaseLights: TAbstractLightInstancesList); override;
    function PrepareResourcesSteps: Cardinal; override;

    { Free resources for all scenes, it's useful if you know
      that you will not need some allocated resources anymore and you
      want to conserve memory use.

      See TCastleSceneCore.FreeResource documentation for a description of what
      are possible resources to free. }
    procedure FreeResources(Resources: TSceneFreeResources);

    { Close anything associated with current OpenGL context in this class.
      This calls GLContextClose on every Scenes[], and additionally may close
      some other internal things here. }
    procedure GLContextClose; override;

    { Just a shortcut for TimeEnd - TimeBegin. }
    function TimeDuration: Single;

    { This is TimeDuration * 2 if TimeBackwards, otherwise it's just
      TimeDuration. In other words, this is the time of the one "full"
      (forward + backward) animation. }
    function TimeDurationWithBack: Single;

    { First and last time that you passed to Load (or that were read
      from file by LoadFromFile).
      In other words, Times[0] and Times[High(Times)].
      @groupBegin }
    property TimeBegin: Single read FTimeBegin;
    property TimeEnd: Single read FTimeEnd;
    { @groupEnd }

    { Appropriate scene from @link(Scenes) based on given Time.
      If Time is between given TimeBegin and TimeEnd,
      then this will be appropriate scene in the middle.

      For Time outside the range TimeBegin .. TimeEnd
      behavior depends on TimeLoop and TimeBackwards properties:

      @unorderedList(
        @item(When not TimeLoop and not TimeBackwards then:

          If Time is < TimeBegin, always the first scene will
          be returned. If Time is > TimeEnd, always the last scene will
          be returned.

          So there will no real animation outside
          TimeBegin .. TimeEnd timeline.)

        @item(When not TimeLoop and TimeBackwards then:

          If Time is < TimeBegin, always the first scene will
          be returned. If Time is between TimeEnd and
          TimeEnd + TimeDuration, then the animation
          will be played backwards. When Time is > TimeEnd + TimeDuration,
          again always the first scene will be returned.

          So between TimeEnd and TimeEnd + TimeDuration
          animation will be played backwards, and
          there will no real animation outside
          TimeBegin .. TimeEnd + TimeDuration timeline.)

        @item(When TimeLoop and not TimeBackwards then:

          Outside TimeBegin .. TimeEnd, animation will cycle.
          This means that e.g. between TimeEnd and TimeEnd + TimeDuration
          animation will be played just like between TimeBegin and TimeEnd.)

        @item(When TimeLoop and TimeBackwardsm then:

          Outside TimeBegin .. TimeEnd, animation will cycle.
          Cycle between TimeEnd and TimeEnd + TimeDuration will
          go backwards. Cycle between TimeEnd + TimeDuration
          and TimeEnd + TimeDuration * 2 will again go forward.
          And so on.)
      )

      Overloaded version with explicit Loop parameter ignores the TimeLoop
      property. This way you can force looping (or force not looping),
      regardless of the TimeLoop property, so also regardless
      of loop setting in kanim file.

      @groupBegin }
    function Scene(const Time: Single): TCastleScene;
    function Scene(const Time: Single; const Loop: boolean): TCastleScene;
    { @groupEnd }

    { Appropriate scene from @link(Scenes) based on current @link(Time).
      This is just a shortcut for Scene(@link(Time)),
      useful if you track animation time in our @link(Time) property. }
    function CurrentScene: TCastleScene;

    { Attributes controlling rendering.
      See TSceneRenderingAttributes and TRenderingAttributes
      for documentation of properties.

      You can change properties of this
      object at any time, but beware that some changes may force
      time-consuming regeneration of some things (like OpenGL display lists)
      in the nearest Render of the scenes.
      So explicitly calling PrepareResources may be useful after
      changing these Attributes.

      Note that Attributes may be accessed and even changed when the scene
      is not loaded (e.g. before calling Load / LoadFromFile).
      Also, Attributes are preserved between various animations loaded. }
    function Attributes: TSceneRenderingAttributes;

    { The sum of bounding boxes of all animation frames.

      Result of this function is cached, which means that it usually returns
      very fast. But you have to call ChangedAll when you changed something
      inside Scenes[] using some direct Scenes[].RootNode operations,
      to force recalculation of this box. }
    function BoundingBox: TBox3D; override;

    { Call this before directly freeing some VRML nodes in animation scenes. }
    procedure BeforeNodesFree;

    { Call this when you changed something
      inside Scenes[] using some direct Scenes[].RootNode operations.
      This calls TCastleScene.ChangedAll on all Scenes[]
      and invalidates some cached things inside this class. }
    procedure ChangedAll;

    { Returns some textual info about this animation.
      Similar to TCastleScene.Info. }
    function Info(
      ATriangleVerticesCounts,
      ABoundingBox,
      AManifoldAndBorderEdges: boolean): string;

    { Handling key and mouse events.

      We pass key and mouse events only if there's exactly one scene
      (ScenesCount = 1), as there's no sensible way of activating
      VRML/X3D events when TCastlePrecalculatedAnimation contains
      more than one scene.
      (Precalculated animation of this class, and interactive
      animation by TCastleSceneCore.ProcessEvents do not mix sensibly.)

      So when ScenesCount = 1, we simply pass key and mouse events to
      the only Scene[0]. Be sure to turn on @code(Scene[0].ProcessEvents := true)
      if you want to make actual use of it.

      @groupBegin }
    function Press(const Event: TInputPressRelease): boolean; override;
    function Release(const Event: TInputPressRelease): boolean; override;
    { @groupEnd }

    procedure Update(const SecondsPassed: Single; var RemoveMe: TRemoveType); override;

    { Initial world time, set by the ResetTimeAtLoad call.
      This can be useful for showing user
      time like @code("Animation Time: LoadTime + %f") on status bar.

      0 means that starting @link(Time) was TimeBegin of the animation
      (0.0 in case of normal VRML files, usually 0.0 in case of Kanim).
      Note that even when TimeBegin <> 0 (for Kanim), we still set
      TimeAtLoad to 0, this is nicer to show to user.

      Other value means that we used current real time as time origin,
      following VRML/X3D specification.
      See also [http://castle-engine.sourceforge.net/x3d_time_origin_considered_uncomfortable.php] }
    property TimeAtLoad: TFloatTime read FTimeAtLoad;

    { Current time of the animation. Although you do not have to use it:
      you can always acccess any point in time of the animation by @link(Scene).
      But sometimes tracking the current time here is most natural
      and comfortable.

      When we have exactly one scene in Scenes, our methods (ResetTime,
      ResetTimeAtLoad and Update) will synchronize Scenes[0].Time
      always to the same value as our own @link(Time).
      This makes time-dependent nodes (like TimeSensor,
      MovieTexture etc.) inside this scene work Ok. }
    property Time: TFloatTime read FTime;

    { Set @link(Time) to initial value after loading a world. }
    procedure ResetTimeAtLoad(const ForceTimeOrigin: boolean = false);

    { Set @link(Time) to arbitrary value. }
    procedure ResetTime(const NewValue: TFloatTime);

    procedure Render(const Frustum: TFrustum; const Params: TRenderParams); override;
    procedure RenderShadowVolume(
      ShadowVolumeRenderer: TBaseShadowVolumeRenderer;
      const ParentTransformIsIdentity: boolean;
      const ParentTransform: TMatrix4Single); override;

    procedure UpdateGeneratedTextures(
      const RenderFunc: TRenderFromViewFunction;
      const ProjectionNear, ProjectionFar: Single;
      const OriginalViewportX, OriginalViewportY: LongInt;
      const OriginalViewportWidth, OriginalViewportHeight: Cardinal); override;
    procedure VisibleChangeNotification(const Changes: TVisibleChanges); override;
    function Dragging: boolean; override;

    property Cache: TGLRendererContextCache read FCache;

    { Turn this on to treat specially the case when a single scene (Scenes.Count = 1)
      is loaded: we will set this scene's Static = @false.
      This allows you to enable VRML/X3D events and dynamically change the scene
      in this very special case.
      The normal behavior, when we load many scenes (or when this property is @false),
      is to set all children scenes Static = @true.

      Practically, this is useful only for tools like view3dscene, that want
      to have full VRML/X3D events when possible, and at the same time they want
      to load everything as TCastlePrecalculatedAnimation, for ease of coding.

      To put it simply, just don't use this in normal programs -- it's a hack.

      Although Static can be later changed, but changing it (after loading) to @false
      is expensive (needs ChangedAll, that also recalculates shape tree, forces
      shape octree and other recalculations). That's why this property is needed,
      it sets Static correctly before loading the contents. }
    property TryFirstSceneDynamic: boolean
      read FTryFirstSceneDynamic write FTryFirstSceneDynamic default false;
  published
    { Is the animation time playing, and how fast.

      For exact meaning of our TimePlaying, TimePlayingSpeed, see
      TCastleSceneCore.TimePlaying, TCastleSceneCore.TimePlayingSpeed.
      Like in TCastleSceneCore, these are realized by our @link(Update) method,
      so Time is automatically increased in @link(Update) which is called
      automatically if you added this to some TCastleWindowCustom.Controls or
      TCastleControlCustom.Controls.

      Note that Scenes[0].TimePlaying, Scenes[0].TimePlayingSpeed do not matter
      when you're operating on the TCastlePrecalculatedAnimation level.
      They will not affect our @link(Time), or even Scenes[0].Time,
      and they will not be synchronized with our values.

      @groupBegin }
    property TimePlaying: boolean read FTimePlaying write FTimePlaying default true;
    property TimePlayingSpeed: Single read FTimePlayingSpeed write FTimePlayingSpeed default 1.0;
    { @groupEnd }

    { See @link(Scene) for precise description what this property does. }
    property TimeLoop: boolean read FTimeLoop write FTimeLoop default true;

    { See @link(Scene) for precise description what this property does. }
    property TimeBackwards: boolean
      read FTimeBackwards write FTimeBackwards default false;

    { Should collision checking check also last animation frame.

      Regardless of this value, we always check collision with the
      first animation frame (FirstScene), of course only when
      FirstScene.OctreeCollisions is initialized, and only if
      @link(GetCollides) (which includes @link(GetExists)).

      When CollisionUseLastScene is @true, we will also check collision
      with the last animation frame's octree, i.e. LastScene.OctreeCollisions.
      (Of course, only if it's initialized, e.g. by adding
      ssDynamicCollisions to the LastScene.Spatial property.)
      So when CollisionUseLastScene, collision checking sees the animation
      as a sum of first and last frames geometry.
      CollisionUseLastScene
      is useful if the object is moving, but the move is very slight,
      so that the sum of first and last scenes geometry is good enough
      approximation of the whole geometry at any point of the animation.

      Although it seems like a totally dumb way to check for collisions,
      it's suitable for many purposes (see e.g. uses on "castle hall" level),
      it's simple and not memory-consuming, and you don't have to take
      any action when animation frame changes (because @link(Time) changes
      don't change the colliding geometry, so the animation is static from
      the point of view of collision checking routines).

      TODO: In the future other collision methods may be available.
      First of all, checking with sum of all bounding boxes, or with particular
      scene time box, should be available. }
    property CollisionUseLastScene: boolean
      read FCollisionUseLastScene
      write FCollisionUseLastScene default false;

    { At loading, process the animation to support shadow maps.
      See TCastleSceneCore.ShadowMaps and related properties for documentation.
      @groupBegin }
    property ShadowMaps: boolean read FShadowMaps write SetShadowMaps default true;
    property ShadowMapsDefaultSize: Cardinal
      read FShadowMapsDefaultSize write SetShadowMapsDefaultSize
      default TCastleSceneCore.DefaultShadowMapsDefaultSize;
    { @groupEnd }

    property InitialViewpointIndex: Cardinal
      read FInitialViewpointIndex write FInitialViewpointIndex;

    property InitialViewpointName: string
      read FInitialViewpointName write FInitialViewpointName;
  end;

  TCastlePrecalculatedAnimationList = specialize TFPGObjectList<TCastlePrecalculatedAnimation>;

const
  DefaultAnimationSmoothness = 1.0;
var
  { Default Smoothness value for TCastlePrecalculatedAnimation.LoadFromFile.
    This allows to globally control the precalculated animations quality.
    Saved as user preference to Config (if your program will call Config.Load
    and Config.Save, see CastleConfig). }
  AnimationSmoothness: Single = DefaultAnimationSmoothness;

procedure Register;

implementation

uses Math, X3DFields, CastleProgress, X3DLoad, CastleLog, DateUtils,
  CastleShapes, CastleConfig;

procedure Register;
begin
  RegisterComponents('Castle', [TCastlePrecalculatedAnimation]);
end;

{ TAnimationScene ------------------------------------------------------ }

type
  TAnimationScene = class(TCastleScene)
  private
    FParentAnimation: TCastlePrecalculatedAnimation;
  public
    constructor CreateForAnimation(
      ARootNode: TX3DRootNode; AOwnsRootNode: boolean;
      ACustomRenderer: TGLRenderer;
      AParentAnimation: TCastlePrecalculatedAnimation;
      AStatic: boolean);
    property ParentAnimation: TCastlePrecalculatedAnimation read FParentAnimation;
    procedure DoGeometryChanged(const Change: TGeometryChange;
      LocalGeometryShape: TShape); override;
    procedure VisibleChangeHere(const Changes: TVisibleChanges); override;
    procedure CursorChange; override;
    function Shared: TCastleScene; override;
  end;

constructor TAnimationScene.CreateForAnimation(
  ARootNode: TX3DRootNode; AOwnsRootNode: boolean;
  ACustomRenderer: TGLRenderer;
  AParentAnimation: TCastlePrecalculatedAnimation;
  AStatic: boolean);
begin
  { ParentAnimation is used by DoGeometryChanged, which is virtual and
    *may* be called by ChangedAll, which *may* called by inherited constructor.
    So ParentAnimation must be set even before inherited constructor. }
  FParentAnimation := AParentAnimation;

  inherited CreateCustomRenderer(nil, ACustomRenderer);

  ShadowMaps := FParentAnimation.ShadowMaps;
  ShadowMapsDefaultSize := FParentAnimation.ShadowMapsDefaultSize;
  InitialViewpointIndex := FParentAnimation.InitialViewpointIndex;
  InitialViewpointName := FParentAnimation.InitialViewpointName;

  Static := AStatic;

  Load(ARootNode, AOwnsRootNode);
end;

function TAnimationScene.Shared: TCastleScene;
begin
  Result := FParentAnimation.FirstScene;
end;

procedure TAnimationScene.DoGeometryChanged(const Change: TGeometryChange;
  LocalGeometryShape: TShape);
begin
  inherited;
  ParentAnimation.ValidBoundingBox := false;
end;

procedure TAnimationScene.VisibleChangeHere(const Changes: TVisibleChanges);
begin
  inherited;
  ParentAnimation.VisibleChangeHere(Changes);
end;

procedure TAnimationScene.CursorChange;
begin
  inherited;

  { Maybe in the future we will update here our own cursor, for now: no need.
    See T3DList.ListCursorChange implementation comments. }

  ParentAnimation.CursorChange;
end;

{ EModelsStructureDifferent -------------------------------------------------- }

type
  EModelsStructureDifferent = class(Exception)
    constructor CreateFmt(const S: string; const Args: array of const);
  end;

constructor EModelsStructureDifferent.CreateFmt(const S: string;
  const Args: array of const);
begin
  inherited CreateFmt('Models are structurally different: ' + S, Args);
end;

{ TCastlePrecalculatedAnimation ------------------------------------------------------------ }

{ About Create and CreateCustomCache relationship:

  Note that Create cannot call CreateCustomCache and depend that
  CreateCustomCache calls "inherited Create". This wouldn't be nice
  for descendants: If some TCastlePrecalculatedAnimation descendant would override "Create"
  to do his initialization, and we would create this descendant by
  CreateCustomCache --- we would miss executing descendant's constructor code.

  So only our Create may call "inherited Create".
  CreateCustomCache should always call just "Create" (virtual). }

constructor TCastlePrecalculatedAnimation.Create(AOwner: TComponent);
begin
  inherited Create(AOwner);

  if Cache = nil then
    FCache := GLContextCache;

  Renderer := TGLRenderer.Create(TSceneRenderingAttributes, Cache);

  FTimeLoop := true;
  FTimeBackwards := false;
  FTimePlaying := true;
  FTimePlayingSpeed := 1.0;
  FShadowMaps := true;
  FShadowMapsDefaultSize := TCastleSceneCore.DefaultShadowMapsDefaultSize;
end;

constructor TCastlePrecalculatedAnimation.CreateCustomCache(AOwner: TComponent;
  ACache: TGLRendererContextCache);
begin
  FCache := ACache;
  Create(AOwner);
end;

destructor TCastlePrecalculatedAnimation.Destroy;
begin
  Close;
  FreeAndNil(Renderer);
  FCache := nil; // just to be safe
  inherited;
end;

procedure TCastlePrecalculatedAnimation.LoadCore(
  GetRootNodeWithTime: TGetRootNodeWithTime;
  RootNodesCount: Cardinal;
  AOwnsFirstRootNode: boolean;
  ScenesPerTime: Cardinal;
  const EqualityEpsilon: Single);

  { This will check that Model1 and Model2 are exactly equal,
    or that at least interpolating (see VRMLModelLerp) is possible.

    If models are structurally different (which means that even
    interpolating between Model1 and Model2 is not possible),
    it will raise EModelsStructureDifferent. }
  procedure CheckVRMLModelsStructurallyEqual(Model1, Model2: TX3DNode);

    procedure CheckSFNodesStructurallyEqual(Field1, Field2: TSFNode);
    begin
      if (Field1.Value <> nil) and (Field2.Value <> nil) then
      begin
        CheckVRMLModelsStructurallyEqual(Field1.Value, Field2.Value);
      end else
      if not ((Field1.Value = nil) and (Field2.Value = nil)) then
        raise EModelsStructureDifferent.CreateFmt('Field "%s" of type SFNode ' +
          'is once NULL and once not-NULL', [Field1.Name]);
    end;

    procedure CheckMFNodesStructurallyEqual(Field1, Field2: TMFNode);
    var
      I: Integer;
    begin
      if Field1.Items.Count <> Field2.Items.Count then
        raise EModelsStructureDifferent.CreateFmt(
          'Different number of children in MFNode fields: "%d" and "%d"',
          [Model1.VRML1ChildrenCount, Model2.VRML1ChildrenCount]);

      for I := 0 to Field1.Items.Count - 1 do
        CheckVRMLModelsStructurallyEqual(Field1[I], Field2[I]);
    end;

  var
    I: Integer;
  begin
    { Yes, Model1 and Model2 must have *exactly* the same classes. }
    if Model1.ClassType <> Model2.ClassType then
      raise EModelsStructureDifferent.CreateFmt(
        'Different nodes classes: "%s" and "%s"',
        [Model1.ClassName, Model2.ClassName]);

    { Make sure that *Inline content is loaded now. }
    if Model1 is TInlineNode then
    begin
      TInlineNode(Model1).LoadInlined(false);
      TInlineNode(Model2).LoadInlined(false);
    end;

    if Model1.NodeName <> Model2.NodeName then
      raise EModelsStructureDifferent.CreateFmt(
        'Different names of nodes: "%s" and "%s"',
        [Model1.NodeName, Model2.NodeName]);

    { We are interested whether Model1.BaseUrl and Model2.BaseUrl will
      give different results when using them to resolve relative URLs.
      Simply comparing them is not good --- they may contain filenames
      at the end. Stripping these filenames with ExtractURIPath
      is dirty. So we just test CombineURI with a test name. }
    if Model1.PathFromBaseUrl('test') <> Model2.PathFromBaseUrl('test') then
      raise EModelsStructureDifferent.CreateFmt(
        'BaseUrl of nodes different (will resolve relative URLs to different things): "%s" and "%s"',
        [Model1.BaseUrl, Model2.BaseUrl]);

    if Model1.VRML1ChildrenCount <> Model2.VRML1ChildrenCount then
      raise EModelsStructureDifferent.CreateFmt(
        'Different number of children in nodes: "%d" and "%d"',
        [Model1.VRML1ChildrenCount, Model2.VRML1ChildrenCount]);

    for I := 0 to Model1.VRML1ChildrenCount - 1 do
      CheckVRMLModelsStructurallyEqual(Model1.VRML1Children[I], Model2.VRML1Children[I]);

    { Yes, the situation below can happen. *Usually* when we know
      that Model1 and Model2 are equal classes then we know that
      they have the same number of fields of the same type.
      However, for TX3DUnknownNode, it's not that easy. Two different instances
      of TX3DUnknownNode class may have completely different fields,
      so we must safeguard against this. }
    if Model1.Fields.Count <> Model2.Fields.Count then
      raise EModelsStructureDifferent.CreateFmt(
        'Different number of fields in nodes: "%d" and "%d"',
        [Model1.Fields.Count, Model2.Fields.Count]);

    for I := 0 to Model1.Fields.Count - 1 do
    begin
      if Model1.Fields[I].ClassType <> Model2.Fields[I].ClassType then
        raise EModelsStructureDifferent.CreateFmt(
          'Different type of field number %d in nodes: "%s" and "%s"',
          [I, Model1.Fields[I].ClassName, Model2.Fields[I].ClassName]);

      if Model1.Fields[I] is TSFNode then
        CheckSFNodesStructurallyEqual(
          TSFNode(Model1.Fields[I]), TSFNode(Model2.Fields[I])) else
      if Model1.Fields[I] is TMFNode then
        CheckMFNodesStructurallyEqual(
          TMFNode(Model1.Fields[I]), TMFNode(Model2.Fields[I])) else
      if Model1.Fields[I].CanAssignLerp then
      begin
        if Model1.Fields[I] is TX3DMultField then
        begin
          try
            (Model1.Fields[I] as TX3DMultField).CheckCountEqual
              (Model2.Fields[I] as TX3DMultField);
          except
            (* Translate EX3DMultFieldDifferentCount exception
               (may be raised by TX3DMultField.CheckCountEqual above)
               to EModelsStructureDifferent. *)
            on E: EX3DMultFieldDifferentCount do
              raise EModelsStructureDifferent.CreateFmt('%s', [E.Message]);
          end;
        end;
        { Else we have single-value field that can lerp.
          No need to check anything in this case,
          it's ready to go (that is, to lerp). }
      end else
      begin
        { Check fields for equality.

          Some special fields like TInlineNode.FdUrl do not
          have to be equal, as they don't have any role for the
          "real" meaning of the model. I mean, if TInlineNode.Inlined
          contents (loaded from pointed file) have the same structure,
          then we're happy. And it's handy to allow this --- see e.g.
          examples/models/gus_1_final.wrl and
          examples/models/gus_2_final.wrl trick. }

        if not (
           ( (Model1 is TInlineNode)            and (Model1.Fields[I].Name = 'url') ) or
           Model1.Fields[I].Equals(Model2.Fields[I], EqualityEpsilon)
           ) then
          raise EModelsStructureDifferent.CreateFmt(
            'Fields "%s" (class "%s") are not equal',
            [Model1.Fields[I].Name, Model1.Fields[I].ClassName]);
      end;
    end;
  end;

  { This will merge equal children of Model1 and Model2,
    and check that Model1 and Model2 are exactly equal.

    It assumes that models are structurally equal, i.e. that you
    already did run CheckVRMLModelsStructurallyEqual over them.

    It works recursively: first it checks for every children
    are they equal. For each pair that is equal, it replaces
    given children in Model2 with appropriate children of Model1.
    At the end, if every children pair was equal and additionally
    if all fields are equal, then it returns true.

    Such copying of references is useful, because then we simply copy given
    node's reference instead of duplicating this object.
    This way Model1 and Model2 and all models interpolated along the way
    can share the same object reference. This is very good, because:

    1. If nodes are equal then creating new object each
       time would mean that I create a lot of objects with exactly the
       same contents. So memory is wasted, without any good reason.

    2. For nodes like ImageTexture, this is good because then the image
       is loaded from the file only once. This means that memory is saved,
       once again. This also means that in case when texture file doesn't
       exist, user gets only 1 warning/error message (instead of getting
       warning/error message for each duplicated TImageTextureNode instance).

    3. Also for nodes like ImageTexture, this means that if we use the same
       GLRenderer to render every model of the animation,
       then GLRenderer will recognize this and given texture
       will be loaded only once for OpenGL. So loading time and
       memory are saved *once again*  (otherwise OpenGL would allocate
       internal copy of texture for each duplicated node, once again
       wasting a lot of memory).

       Although 2. and 3. are actually somewhat void right now,
       as we have a more general cache that caches texture resources
       even across different nodes right now (the only need is to have
       equal URLs).

    4. And later the Shape cache of TGLRenderer can speed
       up loading time and conserve memory use, if it sees the same
       reference to given GeometryNode twice. }
  function VRMLModelsMerge(Model1, Model2: TX3DNode): boolean;

    function SFNodesMerge(Field1, Field2: TSFNode): boolean;
    begin
      Result := true;

      { Equality was already checked by CheckVRMLModelsStructurallyEqual,
        so now if one SFNode value is not nil, we know that the other
        one is not nil too. }
      if Field1.Value <> nil then
      begin
        if VRMLModelsMerge(Field1.Value, Field2.Value) then
          Field1.Value := Field2.Value else
          Result := false;
      end;
    end;

    function MFNodesMerge(Field1, Field2: TMFNode): boolean;
    var
      I: Integer;
    begin
      Result := true;

      { Note that we already know that Counts are equals,
        checked already by CheckVRMLModelsStructurallyEqual. }
      Assert(Field1.Items.Count = Field2.Items.Count);
      for I := 0 to Field1.Items.Count - 1 do
      begin
        if VRMLModelsMerge(Field1[I], Field2[I]) then
        begin
          { Think of this as
              Field1[I] := Field2[I]
            but I can't call this directly, I must use Field1.Replace
            to not mess reference counts. }
          Field1.Replace(I, Field2[I]);
        end else
          Result := false;
      end;
    end;

  var
    I: Integer;
  begin
    Result := true;

    { Note that this loop will iterate over every Children,
      even if somewhere along the way we will already set Result to false.
      Even if we already know that Result is false, we stil want to
      merge Model1 and Model2 children as much as we can. }
    for I := 0 to Model1.VRML1ChildrenCount - 1 do
    begin
      if VRMLModelsMerge(Model1.VRML1Children[I], Model2.VRML1Children[I]) then
      begin
        { Tests: Writeln('merged child ', I, ' of class ',
          Model1.VRML1Children[I].NodeTypeName); }
        Model1.VRML1Children[I] := Model2.VRML1Children[I];
      end else
        Result := false;
    end;

    if not Result then Exit;

    for I := 0 to Model1.Fields.Count - 1 do
    begin
      if Model1.Fields[I] is TSFNode then
      begin
        if not SFNodesMerge(TSFNode(Model1.Fields[I]),
                            TSFNode(Model2.Fields[I])) then
          Result := false;
      end else
      if Model1.Fields[I] is TMFNode then
      begin
        if not MFNodesMerge(TMFNode(Model1.Fields[I]),
                            TMFNode(Model2.Fields[I])) then
          Result := false;
      end else
      if Model1.Fields[I].CanAssignLerp then
      begin
        if not Model1.Fields[I].Equals(Model2.Fields[I], EqualityEpsilon) then
          Result := false;
      end;

      { Other fields were already checked by CheckVRMLModelsStructurallyEqual }
    end;
  end;

  { Linear interpolation between Model1 and Model2.
    A = 0 means Model1, A = 1 means Model2, A between 0 and 1 is lerp
    between Model1 and Model2.

    If Model1 and Model2 are the same object (the same references),
    then this will return just Model1. This way it keeps memory optimization
    described by VRMLModelsMerge. This is also true if both Model1 and Model2
    are nil: then you can safely call this and it will return also nil. }
  function VRMLModelLerp(const A: Single; Model1, Model2: TX3DNode): TX3DNode;

    procedure SFNodeLerp(Target, Field1, Field2: TSFNode);
    begin
      Target.Value := VRMLModelLerp(A, Field1.Value, Field2.Value);
    end;

    procedure MFNodeLerp(Target, Field1, Field2: TMFNode);
    var
      I: Integer;
    begin
      for I := 0 to Field1.Items.Count - 1 do
        Target.Add(VRMLModelLerp(A, Field1[I], Field2[I]));
    end;

  var
    I: Integer;
  begin
    if Model1 = Model2 then
      Exit(Model1);

    Result := TX3DNodeClass(Model1.ClassType).Create(Model1.NodeName,
      Model1.BaseUrl);
    try
      { We already loaded all inlines (in CheckVRMLModelsStructurallyEqual).
        We have to mark it now, by setting Loaded := true field as necessary
        inside inline nodes --- otherwise, they could be loaded again
        (adding content to already existing nodes, making content loaded
        more than once). }
      if Result is TInlineNode then
      begin
        TInlineNode(Result).LoadedInlineDirectly;
      end;

      { TODO: the code below doesn't deal efficiently with the situation when single
        TX3DNode is used as a child many times in one of the nodes.
        (through VRML "USE" keyword). Code below will then unnecessarily
        create copies of such things (wasting construction time and memory),
        instead of reusing the same object reference. }
      for I := 0 to Model1.VRML1ChildrenCount - 1 do
        Result.VRML1ChildAdd(VRMLModelLerp(A, Model1.VRML1Children[I], Model2.VRML1Children[I]));

      { TODO: for TX3DUnknownNode, we should fill here Result.Fields.
        Also for TX3DPrototypeNode. }

      for I := 0 to Model1.Fields.Count - 1 do
      begin
        if Model1.Fields[I] is TSFNode then
        begin
          SFNodeLerp(
            (Result.Fields[I] as TSFNode),
            (Model1.Fields[I] as TSFNode),
            (Model2.Fields[I] as TSFNode));
        end else
        if Model1.Fields[I] is TMFNode then
        begin
          MFNodeLerp(
            (Result.Fields[I] as TMFNode),
            (Model1.Fields[I] as TMFNode),
            (Model2.Fields[I] as TMFNode));
        end else
        if Model1.Fields[I].CanAssignLerp then
        begin
          Result.Fields[I].AssignLerp(A, Model1.Fields[I], Model2.Fields[I]);
        end else
        begin
          { These fields cannot be interpolated.
            So just copy to Result.Fields[I]. }
          Result.Fields[I].Assign(Model1.Fields[I]);
        end;
      end;
    except
      FreeAndNil(Result);
      raise;
    end;
  end;

var
  SceneStatic: boolean;

  function CreateOneScene(Node: TX3DRootNode;
    OwnsRootNode: boolean): TAnimationScene;
  begin
    Result := TAnimationScene.CreateForAnimation(
      Node, OwnsRootNode, Renderer, Self, SceneStatic);
  end;

var
  I: Integer;
  StructurallyEqual, RootNodesEqual: boolean;
  LastSceneIndex: Integer;
  LastSceneRootNode, NewRootNode: TX3DRootNode;
  LastTime, NewTime: Single;
  SceneIndex: Integer;
begin
  Close;

  FOwnsFirstRootNode := AOwnsFirstRootNode;

  { We want all the scenes to be dynamic only when
    (TryFirstSceneDynamic and (FScenes.Count = 1)).
    We don't know yet FScenes.Count, but FScenes.Count = 1 is quite special:
    it only (if and only if) occurs if RootNodesCount = 1. }
  SceneStatic := not (TryFirstSceneDynamic and (RootNodesCount = 1));

  FScenes := TCastleSceneList.Create(false);

  { calculate FScenes contents now }

  { RootNodes[0] goes to FScenes[0], that's easy }
  GetRootNodeWithTime(0, NewRootNode, NewTime);

  FScenes.Count := 1;
  FScenes[0] := CreateOneScene(NewRootNode, OwnsFirstRootNode);
  LastSceneIndex := 0;
  LastTime := NewTime;
  LastSceneRootNode := NewRootNode;

  { calculate TimeBegin at this point }
  FTimeBegin := NewTime;

  for I := 1 to RootNodesCount - 1 do
  begin
    { Now add RootNodes[I] }
    GetRootNodeWithTime(I, NewRootNode, NewTime);

    StructurallyEqual := false;

    try
      CheckVRMLModelsStructurallyEqual(LastSceneRootNode, NewRootNode);
      StructurallyEqual := true;
    except
      on E: EModelsStructureDifferent do
      begin
        if Log then
          WritelnLog('PrecalculatedAnimation', Format(
            'Nodes %d and %d structurally different, so animation will not be smoothed between them: ',
            [I - 1, I]) + E.Message);
      end;
    end;

    FScenes.Count := FScenes.Count +
      Max(1, Round((NewTime - LastTime) * ScenesPerTime));

    if StructurallyEqual then
    begin
      { Try to merge it with LastSceneRootNode.
        Then initialize FScenes[LastSceneIndex + 1 to FScenes.Count - 1]. }
      RootNodesEqual := VRMLModelsMerge(NewRootNode, LastSceneRootNode);
      if RootNodesEqual then
      begin
        { In this case I don't waste memory, and I'm simply reusing
          LastSceneRootNode. Actually, I'm just copying FScenes[LastSceneIndex].
          This way I have a series of the same instances of TCastleScene
          along the way. When freeing FScenes, we will be smart and
          avoid deallocating the same pointer twice. }
        FreeAndNil(NewRootNode);
        for SceneIndex := LastSceneIndex + 1 to FScenes.Count - 1 do
          FScenes[SceneIndex] := FScenes[LastSceneIndex];
      end else
      begin
        for SceneIndex := LastSceneIndex + 1 to FScenes.Count - 2 do
          FScenes[SceneIndex] := CreateOneScene(VRMLModelLerp(
            MapRange(SceneIndex, LastSceneIndex, FScenes.Count - 1, 0.0, 1.0),
            LastSceneRootNode, NewRootNode) as TX3DRootNode, true);
        FScenes[FScenes.Count - 1] := CreateOneScene(NewRootNode, true);
        LastSceneRootNode := NewRootNode;
      end;
    end else
    begin
      { We cannot interpolate between last and new node.
        So just duplicate last node until FScenes.Count - 2,
        and at FScenes.Last insert new node. }
      for SceneIndex := LastSceneIndex + 1 to FScenes.Count - 2 do
        FScenes[SceneIndex] := FScenes[LastSceneIndex];
      FScenes[FScenes.Count - 1] := CreateOneScene(NewRootNode, true);
      LastSceneRootNode := NewRootNode;
    end;

    LastTime := NewTime;
    LastSceneIndex := FScenes.Count - 1;
  end;

  { calculate TimeEnd at this point }
  FTimeEnd := NewTime;

  FLoaded := true;
end;

procedure TCastlePrecalculatedAnimation.Load_GetRootNodeWithTime(const Index: Cardinal;
  out RootNode: TX3DRootNode; out Time: Single);
begin
  RootNode := Load_RootNodes[Index] as TX3DRootNode;
  Time := Load_Times[Index];
end;

procedure TCastlePrecalculatedAnimation.Load(
  RootNodes: TX3DNodeList;
  AOwnsFirstRootNode: boolean;
  ATimes: TSingleList;
  ScenesPerTime: Cardinal;
  const EqualityEpsilon: Single);
begin
  Assert(RootNodes.Count = ATimes.Count);
  Load_RootNodes := RootNodes;
  Load_Times := ATimes;

  LoadCore(@Load_GetRootNodeWithTime, RootNodes.Count,
    AOwnsFirstRootNode, ScenesPerTime, EqualityEpsilon);
end;

procedure TCastlePrecalculatedAnimation.LoadFromEvents_GetRootNodeWithTime(
  const Index: Cardinal;
  out RootNode: TX3DRootNode; out Time: Single);
begin
  Time := LoadFromEvents_TimeBegin;
  if LoadFromEvents_ScenesPerTime <> 0 then
    Time += Index / LoadFromEvents_ScenesPerTime;

  if Index = 0 then
    LoadFromEvents_Scene.ResetTime(Time) else
    LoadFromEvents_Scene.SetTime(Time);

  RootNode := LoadFromEvents_Scene.RootNode.DeepCopy as TX3DRootNode;
end;

procedure TCastlePrecalculatedAnimation.LoadFromEvents_GetRootNodeWithTime_Progress(
  const Index: Cardinal;
  out RootNode: TX3DRootNode; out Time: Single);
begin
  LoadFromEvents_GetRootNodeWithTime(Index, RootNode, Time);
  Progress.Step;
end;

procedure TCastlePrecalculatedAnimation.LoadFromEvents(
  RootNode: TX3DRootNode;
  AOwnsRootNode: boolean;
  const ATimeBegin, ATimeEnd: Single;
  ScenesPerTime: Cardinal;
  const EqualityEpsilon: Single;
  const ProgressTitle: string);
var
  Count: Cardinal;
begin
  LoadFromEvents_ScenesPerTime := ScenesPerTime;
  LoadFromEvents_TimeBegin := ATimeBegin;
  LoadFromEvents_Scene := TCastleSceneCore.Create(nil);
  try
    LoadFromEvents_Scene.Load(RootNode, AOwnsRootNode);

    Count := Max(1, Round((ATimeEnd - ATimeBegin) * ScenesPerTime));

    LoadFromEvents_Scene.ProcessEvents := true;

    if ProgressTitle <> '' then
    begin
      Progress.Init(Count, ProgressTitle);
      try
        LoadCore(@LoadFromEvents_GetRootNodeWithTime_Progress, Count,
          true, 0, EqualityEpsilon);
      finally
        Progress.Fini;
      end;
    end else
    begin
      LoadCore(@LoadFromEvents_GetRootNodeWithTime, Count,
        true, 0, EqualityEpsilon);
    end;

    { Although LoadCore sets FTimeEnd already, it may be a little
      smaller than ATimeEnd if ScenesPerTime is very small.
      Last scene generated by LoadFromEvents_GetRootNodeWithTime
      will not necessarily "hit" exactly TimeEnd.
      In particular, when ScenesPerTime = 0, LoadCore will just set
      FTimeEnd to TimeBegin...

      Since we guarantee in the interface that FTimeEnd will be exactly
      equal to ATimeEnd after LoadFromEvents, we fix it here. }

    FTimeEnd := ATimeEnd;
  finally FreeAndNil(LoadFromEvents_Scene) end;
end;

procedure TCastlePrecalculatedAnimation.LoadStatic(
  RootNode: TX3DNode;
  AOwnsRootNode: boolean);
var
  RootNodes: TX3DNodeList;
  ATimes: TSingleList;
begin
  RootNodes := TX3DNodeList.Create(false);
  try
    ATimes := TSingleList.Create;
    try
      RootNodes.Add(RootNode);
      ATimes.Add(0);
      Load(RootNodes, AOwnsRootNode, ATimes, 1, 0.0);
    finally FreeAndNil(ATimes) end;
  finally FreeAndNil(RootNodes) end;
end;

procedure TCastlePrecalculatedAnimation.LoadFromFile(const URL: string;
  const AllowStdIn, LoadTime: boolean; const Smoothness: Float);
var
  Times: TSingleList;
  RootNodes: TX3DNodeList;
  ScenesPerTime: Cardinal;
  EqualityEpsilon: Single;
  NewTimeLoop, NewTimeBackwards: boolean;
begin
  Times := TSingleList.Create;
  RootNodes := TX3DNodeList.Create(false);
  try
    Load3DSequence(URL, AllowStdIn,
      RootNodes, Times, ScenesPerTime, EqualityEpsilon,
      NewTimeLoop, NewTimeBackwards);

    ScenesPerTime := Round(ScenesPerTime * Smoothness);

    Load(RootNodes, true, Times, ScenesPerTime, EqualityEpsilon);

    if LoadTime then
    begin
      TimeLoop := NewTimeLoop;
      TimeBackwards := NewTimeBackwards;
    end;
  finally
    FreeAndNil(Times);
    FreeAndNil(RootNodes);
  end;
end;

procedure TCastlePrecalculatedAnimation.LoadFromFile(const URL: string;
  const AllowStdIn: boolean; const LoadTime: boolean);
begin
  LoadFromFile(URL, AllowStdIn, LoadTime, AnimationSmoothness);
end;

procedure TCastlePrecalculatedAnimation.Close;
var
  I: Integer;
begin
  { This is called from destructor, so this must always check whether
    things are <> nil before trying to free them. }

  GLContextClose;

  if FScenes <> nil then
  begin
    { Although FScenes.Count should always be > 0 when FScenes allocated,
      this is a destructor so we must handle various abnormal situations
      if we exit with exception. }
    if FScenes.Count <> 0 then
    begin
      { Now we must note that we may have a sequences of the same scenes
        on FScenes. So we must deallocate smartly, to avoid deallocating
        the same pointer more than once. }
      for I := 0 to FScenes.Count - 2 do
      begin
        if FScenes[I] = FScenes[I+1] then
          FScenes[I] := nil { set to nil, just for safety } else
          FPGObjectList_FreeAndNilItem(FScenes, I);
      end;
      FPGObjectList_FreeAndNilItem(FScenes, FScenes.Count - 1);
    end;

    FreeAndNil(FScenes);
  end;

  ValidBoundingBox := false;

  FLoaded := false;
end;

function TCastlePrecalculatedAnimation.GetScenes(I: Integer): TCastleScene;
begin
  Result := FScenes[I];
end;

function TCastlePrecalculatedAnimation.ScenesCount: Integer;
begin
  if Loaded then
    Result := FScenes.Count else
    Result := 0;
end;

function TCastlePrecalculatedAnimation.FirstScene: TCastleScene;
begin
  Result := FScenes.First;
end;

function TCastlePrecalculatedAnimation.LastScene: TCastleScene;
begin
  Result := FScenes.Last;
end;

procedure TCastlePrecalculatedAnimation.PrepareResources(Options: TPrepareResourcesOptions;
  ProgressStep: boolean; BaseLights: TAbstractLightInstancesList);
var
  I: Integer;
  SceneOptions: TPrepareResourcesOptions;
begin
  if not Loaded then Exit;

  for I := 0 to FScenes.Count - 1 do
  begin
    { For I <> 0, we don't want to pass prManifoldAndBorderEdges to scenes. }
    SceneOptions := Options;
    if I <> 0 then
      Exclude(SceneOptions, prManifoldAndBorderEdges);

    FScenes[I].PrepareResources(SceneOptions, false, BaseLights);

    { TODO: this isn't so simple, since not all scenes have to
      be structurally equal anymore. }
    if (prManifoldAndBorderEdges in Options) and (I <> 0) then
      FScenes[I].ShareManifoldAndBorderEdges(
        FScenes[0].ManifoldEdges, FScenes[0].BorderEdges);

    if ProgressStep then
      Progress.Step;
  end;
end;

function TCastlePrecalculatedAnimation.PrepareResourcesSteps: Cardinal;
begin
  Result := ScenesCount;
end;

procedure TCastlePrecalculatedAnimation.FreeResources(Resources: TSceneFreeResources);
var
  I: Integer;
begin
  for I := 0 to FScenes.Count - 1 do
    FScenes[I].FreeResources(Resources);
end;

procedure TCastlePrecalculatedAnimation.GLContextClose;
{ Note that this is called from destructor, so we must be extra careful
  here and check is everything <> nil before freeing it. }
begin
  if FScenes <> nil then
    FScenes.GLContextClose;

  if Renderer <> nil then
    Renderer.UnprepareAll;
end;

function TCastlePrecalculatedAnimation.TimeDuration: Single;
begin
  Result := TimeEnd - TimeBegin;
end;

function TCastlePrecalculatedAnimation.TimeDurationWithBack: Single;
begin
  Result := TimeDuration;
  if TimeBackwards then
    Result *= 2;
end;

function TCastlePrecalculatedAnimation.Scene(const Time: Single): TCastleScene;
begin
  Result := Scene(Time, TimeLoop);
end;

function TCastlePrecalculatedAnimation.Scene(const Time: Single;
  const Loop: boolean): TCastleScene;
var
  SceneNumber: Integer;
  DivResult: SmallInt;
  ModResult: Word;
begin
  if FScenes.Count = 1 then
  begin
    { In this case TimeBegin = TimeEnd, so it's better to not perform
      any MapRange(Time, TimeBegin, TimeEnd, ...) calculation here
      and just treat this as a special case. }
    SceneNumber := 0;
  end else
  begin
    { I use FScenes.Count, not FScenes.Count - 1 as the highest range value.
      This is critical. On the short range (not looping), it may seem
      that FScenes.Count - 1 is more appropriate, since the last scene
      corresponds exactly to TimeEnd. But that's not good for looping:
      in effect float range TimeDuration would contain one scene less,
      and so when looking at large Time values, the scenes are slightly shifted
      within time.

      This causes problems when code relies on the meaning of some time
      values. E.g. if TimeBegin = 0, you expect that Time = k * TimeEnd,
      for any k, will result in the LastScene generated (assuming
      backwards is @true). This is needed for tricks like smooth animations
      concatenation, see "the rift" in RiftCreatures unit.

      When using FScenes.Count - 1, we would break this, as scenes are shifted
      by one in each range. }
    SceneNumber := Floor(MapRange(Time, TimeBegin, TimeEnd, 0, FScenes.Count));

    DivUnsignedMod(SceneNumber, FScenes.Count, DivResult, ModResult);

    if Loop then
    begin
      if TimeBackwards and Odd(DivResult) then
        SceneNumber := FScenes.Count - 1 - ModResult else
        SceneNumber := ModResult;
    end else
    begin
      if TimeBackwards then
      begin
        if (DivResult < 0) or (DivResult > 1) then
          SceneNumber := 0 else
        if DivResult = 1 then
          SceneNumber := FScenes.Count - 1 - ModResult;
          { else DivResult = 0, so SceneNumber is already correct }
      end else
      begin
        if DivResult < 0 then
          SceneNumber := 0 else
        if DivResult > 0 then
          SceneNumber := FScenes.Count - 1;
      end;
    end;
  end;

  Result := FScenes[SceneNumber];
end;

function TCastlePrecalculatedAnimation.Attributes: TSceneRenderingAttributes;
begin
  Result := TSceneRenderingAttributes(Renderer.Attributes);
end;

function TCastlePrecalculatedAnimation.BoundingBox: TBox3D;

  procedure ValidateBoundingBox;
  var
    I: Integer;
  begin
    FBoundingBox := FScenes[0].BoundingBox;
    for I := 1 to FScenes.Count - 1 do
      FBoundingBox.Add(FScenes[I].BoundingBox);
    ValidBoundingBox := true;
  end;

begin
  if Loaded and GetExists then
  begin
    if not ValidBoundingBox then
      ValidateBoundingBox;
    Result := FBoundingBox;
  end else
    Result := EmptyBox3D;
end;

procedure TCastlePrecalculatedAnimation.BeforeNodesFree;
var
  I: Integer;
begin
  for I := 0 to FScenes.Count - 1 do
    FScenes[I].BeforeNodesFree;
end;

procedure TCastlePrecalculatedAnimation.ChangedAll;
var
  I: Integer;
begin
  for I := 0 to FScenes.Count - 1 do
    FScenes[I].ChangedAll;
  ValidBoundingBox := false;
end;

function TCastlePrecalculatedAnimation.InfoBoundingBox: string;
var
  BBox: TBox3D;
begin
  BBox := BoundingBox;
  Result := 'Bounding box (of the whole animation) : ' + BBox.ToNiceStr;
  if not BBox.IsEmpty then
  begin
    Result += ', average size : ' + FloatToNiceStr(BBox.AverageSize);
  end;
  Result += NL;
end;

function TCastlePrecalculatedAnimation.Info(
  ATriangleVerticesCounts,
  ABoundingBox,
  AManifoldAndBorderEdges: boolean): string;
begin
  Result := '';

  if ATriangleVerticesCounts then
  begin
    Result += FirstScene.InfoTriangleVerticesCounts;
  end;

  if ABoundingBox then
  begin
    if Result <> '' then Result += NL;
    { We do not call FirstScene.InfoBoundingBox here, instead we want
      to get full bounding box of the animation. }
    Result += InfoBoundingBox;
  end;

  if AManifoldAndBorderEdges then
  begin
    if Result <> '' then Result += NL;
    Result += FirstScene.InfoManifoldAndBorderEdges;
  end;
end;

procedure TCastlePrecalculatedAnimation.SetOwnsFirstRootNode(const Value: boolean);
var
  I: Integer;
begin
  if Value <> FOwnsFirstRootNode then
  begin
    FOwnsFirstRootNode := Value;
    if FScenes <> nil then
    begin
      Assert(FScenes.Count > 0, 'When the Scenes <> nil, anim is loaded so should always have at least one scene');

      { OwnsFirstRootNode corresponds to FScenes[0].OwnsRootNode.
        But note that it's allowed to have duplicates of scenes
        in one consecutive range of FScenes. So we have to iterate over
        the first FScenes (while they are equal to FScenes[0]). }

      for I := 0 to FScenes.Count - 1 do
      begin
        if FScenes[I] = FScenes[0] then
          FScenes[I].OwnsRootNode := Value else
          Break;
      end;
    end;
  end;
end;

function TCastlePrecalculatedAnimation.Press(const Event: TInputPressRelease): boolean;
begin
  if ScenesCount = 1 then
    Result := Scenes[0].Press(Event) else
    Result := false;
end;

function TCastlePrecalculatedAnimation.Release(const Event: TInputPressRelease): boolean;
begin
  if ScenesCount = 1 then
    Result := Scenes[0].Release(Event) else
    Result := false;
end;

procedure TCastlePrecalculatedAnimation.ResetTimeAtLoad(const ForceTimeOrigin: boolean = false);

  function TimeOriginAtLoad: boolean;
  var
    N: TNavigationInfoNode;
  begin
    Result := false;

    if Loaded then
    begin
      N := Scenes[0].NavigationInfoStack.Top;
      if (N <> nil) and
         (N is TKambiNavigationInfoNode) then
        Result := TKambiNavigationInfoNode(N).FdTimeOriginAtLoad.Value;
    end;
  end;

begin
  if (ScenesCount > 1) or ForceTimeOrigin or TimeOriginAtLoad then
  begin
    FTimeAtLoad := 0.0;
    ResetTime(TimeBegin);
  end else
  begin
    FTimeAtLoad := DateTimeToUnix(Now);
    ResetTime(TimeAtLoad);
  end;
end;

procedure TCastlePrecalculatedAnimation.ResetTime(const NewValue: TFloatTime);
begin
  FTime := NewValue;

  { Ignored when SceneAnimation.ScenesCount <> 1, as scenes' ProcessEvents
    is always false then and Time wouldn't have much sense anyway. }
  if ScenesCount = 1 then
    Scenes[0].ResetTime(NewValue);
end;

procedure TCastlePrecalculatedAnimation.Update(const SecondsPassed: Single; var RemoveMe: TRemoveType);
var
  OldTime: TFloatTime;
begin
  inherited;

  { Ignore Update calls when SecondsPassed is precisely zero
    (this may happen, and is good, see TFramesPerSecond.ZeroNextSecondsPassed).
    In this case, time increase will be zero so the whole code
    will not do anything anyway. }

  if Loaded and TimePlaying and (SecondsPassed <> 0) then
  begin
    OldTime := FTime;
    FTime += TimePlayingSpeed * SecondsPassed;

    { When ScenesCount = 1, it's sensible for single scene to receive
      events, to increase it's time. Note that TCastleSceneCore.SetTime
      will signal when redisplay will be needed (something visible changed),
      we don't have to worry about it.

      We call Scenes[0].SetTime direcly, instead of calling Scenes[0].Update.
      This way we do not have to worry to set scene's initial time, TimePlaying,
      TimePlayingSpeed to our values. }
    if ScenesCount = 1 then
      Scenes[0].SetTime(Time);

    { Call VisibleChangeHere only if the displayed animation frame actually changed.
      This way, we avoid wasting CPU cycles if the loaded scene is actually
      still, or if the animation stopped running. }
    if (Scene(OldTime) <> Scene(Time)) then
      VisibleChangeHere([vcVisibleGeometry, vcVisibleNonGeometry]);
  end;
end;

function TCastlePrecalculatedAnimation.CurrentScene: TCastleScene;
begin
  Result := Scene(Time);
end;

procedure TCastlePrecalculatedAnimation.Render(const Frustum: TFrustum; const Params: TRenderParams);
begin
  if Loaded and GetExists then
    CurrentScene.Render(Frustum, Params);
end;

procedure TCastlePrecalculatedAnimation.RenderShadowVolume(
  ShadowVolumeRenderer: TBaseShadowVolumeRenderer;
  const ParentTransformIsIdentity: boolean;
  const ParentTransform: TMatrix4Single);
begin
  if Loaded and GetExists and CastShadowVolumes then
    CurrentScene.RenderShadowVolume(ShadowVolumeRenderer,
      ParentTransformIsIdentity, ParentTransform);
end;

{ We have to typecast TAnimationScene to get access to it's protected methods.
  Instead of macros, this could be solved by making TAnimationScene an internal
  class of TCastlePrecalculatedAnimation, but only for new FPC versions. }
{$define FirstAnimScene := TAnimationScene(FirstScene)}
{$define LastAnimScene := TAnimationScene(LastScene)}

function TCastlePrecalculatedAnimation.HeightCollision(
  const Position, GravityUp: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
  out AboveHeight: Single; out AboveGround: P3DTriangle): boolean;

  procedure MakeScene(Scene: TAnimationScene);
  var
    NewResult: boolean;
    NewAboveHeight: Single;
    NewAboveGround: PTriangle;
  begin
    NewResult := Scene.HeightCollision(
      Position, GravityUp, TrianglesToIgnoreFunc, NewAboveHeight, NewAboveGround);

    if NewAboveHeight < AboveHeight then
    begin
      Result := NewResult;
      AboveHeight := NewAboveHeight;
      AboveGround := NewAboveGround;
    end;
  end;

begin
  Result := false;
  AboveHeight := MaxSingle;
  AboveGround := nil;

  if Loaded and GetCollides then
  begin
    MakeScene(FirstAnimScene);
    if CollisionUseLastScene then
      MakeScene(LastAnimScene);
  end;
end;

function TCastlePrecalculatedAnimation.MoveCollision(
  const OldPos, ProposedNewPos: TVector3Single; out NewPos: TVector3Single;
  const IsRadius: boolean; const Radius: Single;
  const OldBox, NewBox: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  if Loaded and GetCollides then
  begin
    Result := FirstAnimScene.MoveCollision(OldPos, ProposedNewPos, NewPos,
      IsRadius, Radius, OldBox, NewBox, TrianglesToIgnoreFunc);

    { On the LastScene use MoveCollision without wall sliding.
      Reason: see T3DList.MoveCollision implementation. }

    if Result and CollisionUseLastScene then
    begin
      Result := LastAnimScene.MoveCollision(OldPos, NewPos,
        IsRadius, Radius, OldBox, NewBox, TrianglesToIgnoreFunc);
    end;
  end else
  begin
    Result := true;
    NewPos := ProposedNewPos;
  end;
end;

function TCastlePrecalculatedAnimation.MoveCollision(
  const OldPos, NewPos: TVector3Single;
  const IsRadius: boolean; const Radius: Single;
  const OldBox, NewBox: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  Result := (not Loaded) or (not GetCollides) or
    (FirstAnimScene.MoveCollision(OldPos, NewPos,
      IsRadius, Radius, OldBox, NewBox, TrianglesToIgnoreFunc) and
       ( (not CollisionUseLastScene) or
         LastAnimScene.MoveCollision(OldPos, NewPos,
           IsRadius, Radius, OldBox, NewBox, TrianglesToIgnoreFunc) ));
end;

function TCastlePrecalculatedAnimation.SegmentCollision(const Pos1, Pos2: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc;
  const ALineOfSight: boolean): boolean;
begin
  Result := Loaded and
    (GetCollides or (ALineOfSight and GetExists)) and
    ( FirstAnimScene.SegmentCollision(Pos1, Pos2, TrianglesToIgnoreFunc, ALineOfSight) or
      (CollisionUseLastScene and
        (LastAnimScene.SegmentCollision(Pos1, Pos2, TrianglesToIgnoreFunc, ALineOfSight)))
    );
end;

function TCastlePrecalculatedAnimation.SphereCollision(
  const Pos: TVector3Single; const Radius: Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  Result := Loaded and GetCollides and
    ( FirstAnimScene.SphereCollision(Pos, Radius, TrianglesToIgnoreFunc) or
      (CollisionUseLastScene and
        (LastAnimScene.SphereCollision(Pos, Radius, TrianglesToIgnoreFunc)))
    );
end;

function TCastlePrecalculatedAnimation.BoxCollision(
  const Box: TBox3D;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): boolean;
begin
  Result := Loaded and GetCollides and
    ( FirstAnimScene.BoxCollision(Box, TrianglesToIgnoreFunc) or
      (CollisionUseLastScene and
        (LastAnimScene.BoxCollision(Box, TrianglesToIgnoreFunc)))
    );
end;

function TCastlePrecalculatedAnimation.RayCollision(
  const RayOrigin, RayDirection: TVector3Single;
  const TrianglesToIgnoreFunc: T3DTriangleIgnoreFunc): TRayCollision;
var
  NewResult: TRayCollision;
  NewNode, PreviousNode: PRayCollisionNode;
begin
  Result := nil;

  if Loaded and GetExists then
  begin
    Result := FirstAnimScene.RayCollision(RayOrigin, RayDirection, TrianglesToIgnoreFunc);

    if CollisionUseLastScene then
    begin
      { try the same thing on LastScene }
      NewResult := LastAnimScene.RayCollision(RayOrigin, RayDirection, TrianglesToIgnoreFunc);

      if NewResult <> nil then
      begin
        if (Result = nil) or (NewResult.Distance < Result.Distance) then
        begin
          SysUtils.FreeAndNil(Result);
          Result := NewResult;
        end else
          FreeAndNil(NewResult);
      end;
    end;

    if Result <> nil then
    begin
      NewNode := Result.Add;
      PreviousNode := @(Result.List^[Result.Count - 2]);
      NewNode^.Item := Self;
      NewNode^.Point := PreviousNode^.Point;
      NewNode^.Triangle := nil;
      NewNode^.RayOrigin := PreviousNode^.RayOrigin;
      NewNode^.RayDirection := PreviousNode^.RayDirection;
    end;
  end;
end;

procedure TCastlePrecalculatedAnimation.UpdateGeneratedTextures(
  const RenderFunc: TRenderFromViewFunction;
  const ProjectionNear, ProjectionFar: Single;
  const OriginalViewportX, OriginalViewportY: LongInt;
  const OriginalViewportWidth, OriginalViewportHeight: Cardinal);
begin
  inherited;
  if Loaded then
    CurrentScene.UpdateGeneratedTextures(
      RenderFunc, ProjectionNear, ProjectionFar,
      OriginalViewportX, OriginalViewportY,
      OriginalViewportWidth, OriginalViewportHeight);
end;

procedure TCastlePrecalculatedAnimation.VisibleChangeNotification(const Changes: TVisibleChanges);
begin
  inherited;
  if Loaded then
    CurrentScene.VisibleChangeNotification(Changes);
end;

function TCastlePrecalculatedAnimation.Dragging: boolean;
begin
  Result := inherited;
  if Result then Exit;

  if Loaded then
    Result := CurrentScene.Dragging;
end;

procedure TCastlePrecalculatedAnimation.SetShadowMaps(const Value: boolean);
var
  I: Integer;
begin
  if Value <> FShadowMaps then
  begin
    FShadowMaps := Value;
    if FScenes <> nil then
    begin
      for I := 0 to FScenes.Count - 1 do
        FScenes[I].ShadowMaps := Value;
    end;
  end;
end;

procedure TCastlePrecalculatedAnimation.SetShadowMapsDefaultSize(const Value: Cardinal);
var
  I: Integer;
begin
  if Value <> FShadowMapsDefaultSize then
  begin
    FShadowMapsDefaultSize := Value;
    if FScenes <> nil then
    begin
      for I := 0 to FScenes.Count - 1 do
        FScenes[I].ShadowMapsDefaultSize := Value;
    end;
  end;
end;

type
  TConfigOptions = class
    class procedure LoadFromConfig(const Config: TCastleConfig);
    class procedure SaveToConfig(const Config: TCastleConfig);
  end;

class procedure TConfigOptions.LoadFromConfig(const Config: TCastleConfig);
begin
  AnimationSmoothness := Config.GetFloat(
    'video_options/animation_smoothness', DefaultAnimationSmoothness);
end;

class procedure TConfigOptions.SaveToConfig(const Config: TCastleConfig);
begin
  Config.SetDeleteFloat(
    'video_options/animation_smoothness',
    AnimationSmoothness, DefaultAnimationSmoothness);
end;

initialization
  Config.OnLoad.Add(@TConfigOptions(nil).LoadFromConfig);
  Config.OnSave.Add(@TConfigOptions(nil).SaveToConfig);
end.