/usr/src/castle-game-engine-4.1.1/x3d/castleraytracer.pas is in castle-game-engine-src 4.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 | {
Copyright 2003-2013 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Rendering 3D models by ray-tracing (TClassicRayTracer, TPathTracer). }
unit CastleRayTracer;
{$I castleconf.inc}
{ TODO:
- for classic raytracer do shadow cache
- for classic raytracer use various space filling curves
- now that FPC inline is stable and cross-unit, use it to inline
various things from CastleVectors. Check speed.
}
{ Define PATHTR_USES_SHADOW_CACHE to make path tracing use shadow cache.
Speed gain is small (sometimes it's even a little worse with
shadow cache (see /win/3dmodels/rayhunter-demos/raporty/shadow-cache)),
but in general it's a good idea. For appropriate scenes, speed gain
is more than 110%. }
{$define PATHTR_USES_SHADOW_CACHE}
interface
uses CastleVectors, CastleImages, CastleRays, CastleUtils, Classes,
X3DTriangles, CastleTriangleOctree, X3DNodes, CastleSpaceFillingCurves, CastleTriangles;
type
{ }
TPixelsMadeNotifierFunc = procedure(PixelsMadeCount: Cardinal; Data: Pointer);
TRayTracerKind = (rtkClassic, rtkPathTracer);
TRayTracer = class
protected
procedure AppendStats(const Stats: TStrings; const RenderingTime: Single); virtual;
public
{ Scene to render.
Must be set before calling @link(Execute). }
Octree: TBaseTrianglesOctree;
{ Image where the ray-tracer result will be stored.
Must be set before calling @link(Execute).
We will not resize given here Image. Instead we will use it's
current size --- so you just have to set Image size as appropriate
before calling this method.
For every pixel, we calculate it's color and store it by
TCastleImage.SetColorRGB method. So make sure SetColorRGB is implemented
for your image class (it's implemented in all 3 classes
TRGBImage, TRGBAlphaImage, TRGBFloatImage, so usually just
don't worry about that). We don't modify alpha channel of the image.
Using TRGBFloatImage class is advised if you want the full color
information. Otherwise color precision is lost beyond 8 bits, and values
above 1.0 are clamped. }
Image: TCastleImage;
{ Camera view.
CamDirection and CamUp do not have to be normalized --- we will correct
them here if needed.
CamUp will be automatically corrected to be orthogonal to
CamDirection if necessary, you only make sure it's not parallel
to CamDirection. }
CamPosition, CamDirection, CamUp: TVector3Single;
{ Camera projection properties.
See TCastleSceneManager.PerspectiveView for specification.
@groupBegin }
PerspectiveView: boolean;
PerspectiveViewAngles: TVector2Single;
OrthoViewDimensions: TVector4Single;
{ @groupEnd }
SceneBGColor: TVector3Single;
{ Callback notified (if assigned) about writing each image pixel.
This way you can display somewhere, or store to file, partially
generated image. This callback gets information (in PixelsMadeCount)
about how many pixels were generated (this includes also pixels skipped
in case FirstPixel > 0).
The pixels are written in the order of TSwapScanCurve for
TClassicRayTracer, and in order dependent on TPathTracer.SFCurveClass
for TPathTracer. When shadow cache will be implemented to TClassicRayTracer,
then configurable SFCurveClass may be done also for TClassicRayTracer.
Remember that pixels not done yet have the same content as they
had when you @link(Execute) method started. In other words,
if you set PixelsMadeNotifier <> nil, then often it's
desirable to initialize Image content (e.g. to all SceneBGColor)
before calling @link(Execute). Otherwise at the time of @link(Execute)
call, the pixels not done yet will have undefined colors. }
PixelsMadeNotifier: TPixelsMadeNotifierFunc;
PixelsMadeNotifierData: Pointer;
{ Initial pixel to start rendering from. By setting this to something > 0,
you can (re-)start rendering from the middle. Useful to finish
the job of a previous terminated ray-tracer process.
Must be in [0 .. Image.Width * Image.Height] range.
Setting to @code(Image.Width * Image.Height) makes the ray-tracer
do nothing. }
FirstPixel: Cardinal;
{ Do ray-tracing, writing a ray-traced image into the @link(Image). }
procedure Execute; virtual; abstract;
{ Do ray-tracing, like @link(Execute),
additionally gathering some statistics.
The statistics will be added to the given string list. }
procedure ExecuteStats(const Stats: TStrings);
end;
{ Classic Whitted-style ray-tracer.
See [http://castle-engine.sourceforge.net/vrml_engine_doc/output/xsl/html/section.classic_ray_tracer.html]
for documentation.
Make sure that VRML2Lights in states are properly initialized if you
plan to render VRML 2.0 nodes. TCastleSceneCore and descendants do
this for you automatically. }
TClassicRayTracer = class(TRayTracer)
protected
procedure AppendStats(const Stats: TStrings; const RenderingTime: Single); override;
public
{ Limit for recursion depth. 0 means that only primary rays will be cast,
1 means that primary rays and 1 ray into mirror / transmitted / shadow,
and so on. }
InitialDepth: Cardinal;
{ Fog to render. Set FogNode <> @nil to render a fog,
following VRML 2.0/X3D lighting equations.
FogNode.TransformScale is used. }
FogNode: TFogNode;
{ Lights shining on everything, like a headlight. }
BaseLights: TLightInstancesList;
procedure Execute; override;
end;
{ Path tracer. See
[http://castle-engine.sourceforge.net/vrml_engine_doc/output/xsl/html/section.path_tracer.html]
for documentation. }
TPathTracer = class(TRayTracer)
private
CollectedLightItems: TFPList;
procedure CollectLightItems(const Triangle: PTriangle);
protected
procedure AppendStats(const Stats: TStrings; const RenderingTime: Single); override;
public
constructor Create;
procedure Execute; override;
public
{ MinDepth and RRoulContinue together determine the path length.
The path has at least MinDepth length, and then Russian roulette
is used.
See [http://castle-engine.sourceforge.net/rayhunter.php]
documentation about "<recursion-depth>" and @--r-roul-continue
for suggestions about how to use these parameters.
See also [http://castle-engine.sourceforge.net/raytr_gallery.php]
for some experiments with these values.
RRoulContinue must be in 0..1 range.
You can give RRoulContinue = 0 if you don't want to use
Russian roulette at all (works OK because our comparison
@code(Random < RRoulContinue) uses "<", not "<=").
Note that this causes bias (result is darker than it should be).
Only RRoulContinue > 0 removes bias (the expected result is the correct
one).
Small RRoulContinue values cause a lot of noise.
Large RRoulContinue values cause long rendering.
MinDepth must be >= 0. You can use MinDepth = 0 to
disable "minimal path length", and use Russian roulette always (noisy).
@groupBegin }
MinDepth: Integer;
RRoulContinue: Single;
{ @groupEnd }
{ How many paths to use. Both must be > 0.
PrimarySamplesCount tells how many paths are used for primary ray,
and is really useful only for anti-aliasing. You can set this to
a few. Values above ~10 are useless, they cause much longer rendering
without really improving the result. You can set this to 1 if you
don't need anti-aliasing.
NonPrimarySamplesCount is the number of paths caused by each hit
of a primary ray. This is the main quality control for the path-tracer,
more paths mean that colors are gathered from more random samples,
which means that final color is more accurate. In total you have
pixels count * PrimarySamplesCount * NonPrimarySamplesCount,
so beware when increasing this: you really have a lot paths. }
PrimarySamplesCount, NonPrimarySamplesCount: Cardinal;
{ How many samples are used to calculate @italic(direct)
illumination at every path point. These are rays sent into
random points of random light sources, to test if given light
shines here.
Set this to 0 to have a really naive path-tracing, that wanders
randomly hoping to hit light source by chance. This will usually
need an enormous amount of PrimarySamplesCount * NonPrimarySamplesCount
to given any sensible results.
Set this to 1 or more for a normal path-tracer. }
DirectIllumSamplesCount: Cardinal;
{ Order of pixels filled. In theory, something like THilbertCurve
or TPeanoCurve could speed up rendering (because shadow cache is more
utilized) compared to TSwapScanCurve. But in practice, right now
this doesn't give any noticeable benefit. }
SFCurveClass: TSpaceFillingCurveClass;
end;
implementation
uses SysUtils, CastleSphereSampling, CastleTimeUtils;
{ RayDirection calculations ----------------------------------------------------- }
{ Calculate the transmitted ray created by hitting a ray
- with direction NormRayDirection (normalized ray direction is expected here)
- from material with angle of refraction EtaFrom
- transmitted into the material with angle of refraction EtaTo
- hit occurs on the plane with normal vector (i.e. normalized) PlaneNormal }
function TryTransmittedRayDirection(
out TransmittedRayDirection: TVector3Single;
const NormRayDirection: TVector3Single;
const PlaneNormal: TVector4Single;
const EtaFrom, EtaTo: Single): boolean;
{ Written based on Foley, page 627 }
var
EtaTransmission, RayIDotNormal, ToBeSqrRooted: Single;
RayI: TVector3Single;
{ This is the Normal pointing in the direction from where the RayDirection came
(i.e. in the opposite of RayDirection,
i.e. -RayDirection (note the "-") and Normal must point to the same side
of plane with PlaneNormal) }
Normal: TVector3Single;
begin
Normal := PlaneDirNotInDirection(PlaneNormal, NormRayDirection);
RayI := -NormRayDirection;
RayIDotNormal := RayI ** Normal;
{ EtaTransmission is the ratio between angles of refraction of materials
that change when the transmitted ray enters to the other side
of the plane. }
EtaTransmission := EtaFrom / EtaTo;
ToBeSqrRooted := 1 - Sqr(EtaTransmission) * (1 - Sqr(RayIDotNormal));
Result := ToBeSqrRooted >= 0;
if Result then
TransmittedRayDirection :=
(Normal * (EtaTransmission * RayIDotNormal - Sqrt(ToBeSqrRooted)))
- (RayI * EtaTransmission);
end;
{ Calculate the perfect reflected vector.
Arguments NormRayDirection and PlaneNormal like for TryTransmittedRayDirection. }
function ReflectedRayDirection(
const NormRayDirection: TVector3Single;
const PlaneNormal: TVector4Single): TVector3Single;
var
Normal, NormNegatedRayDirection: TVector3Single;
begin
{ Calculate Normal like in TryTransmittedRayDirection. }
Normal := PlaneDirNotInDirection(PlaneNormal, NormRayDirection);
NormNegatedRayDirection := -NormRayDirection;
{ We calculate ray as mirror ray to NormNegatedRayDirection.
Calculation is just like in Foley (page 601, section (14.16)). }
Result := (Normal * 2 * (Normal ** NormNegatedRayDirection))
- NormNegatedRayDirection;
end;
{ TRayTracer ----------------------------------------------------------------- }
procedure TRayTracer.AppendStats(const Stats: TStrings; const RenderingTime: Single);
begin
Stats.Append(Format('Rendering done in %f seconds.', [RenderingTime]));
Stats.Append(Format('%d simple collision tests done (one ray tested with one triangle).',
[TriangleCollisionTestsCounter]));
end;
procedure TRayTracer.ExecuteStats(const Stats: TStrings);
var
TimerBegin: TProcessTimerResult;
RenderingTime: Single;
begin
TimerBegin := ProcessTimerNow;
TriangleCollisionTestsCounter := 0;
Execute;
RenderingTime := ProcessTimerDiff(ProcessTimerNow, TimerBegin) /
ProcessTimersPerSec;
AppendStats(Stats, RenderingTime);
end;
{ TClassicRayTracer ---------------------------------------------------------- }
procedure TClassicRayTracer.Execute;
var
FogType: TFogTypeOrNone;
{ Traces the ray with given Depth.
Returns @false if the ray didn't hit anything, otherwise
returns @true and sets Color. }
function Trace(const RayOrigin, RayDirection: TVector3Single; const Depth: Cardinal;
const TriangleToIgnore: PTriangle; IgnoreMarginAtStart: boolean):
TVector3Single;
var
Intersection: TVector3Single;
IntersectNode: PTriangle;
MaterialMirror, MaterialTransparency: Single;
procedure ModifyColorByTransmittedRay;
var
TransmittedColor, TransmittedRayVec: TVector3Single;
EtaFrom, EtaTo: Single;
const
EtaConst = 1.3;
begin
{ Make transmitted ray if Transparency > 0 and there
is no total internal reflection
[http://en.wikipedia.org/wiki/Total_internal_reflection]. }
if MaterialTransparency > 0 then
begin
{ TODO: we should get an information from our model here
(from Octree IntersectNode item). But we don't have it for now.
So for now we just always assume that the first transmission
has Eta = EtaConst and the next one has 1/EtaConst
and the next one has again EtaConst etc. }
if Odd(InitialDepth - Depth) then
begin EtaFrom := 1; EtaTo := EtaConst end else
begin EtaFrom := EtaConst; EtaTo := 1 end;
if TryTransmittedRayDirection(
TransmittedRayVec, Normalized(RayDirection),
IntersectNode^.World.Plane, EtaFrom, EtaTo) then
begin
TransmittedColor := Trace(Intersection, TransmittedRayVec,
Depth - 1, IntersectNode, true);
Result := Result * (1 - MaterialTransparency) +
TransmittedColor * MaterialTransparency;
end;
end;
end;
procedure ModifyColorByReflectedRay;
var
ReflRayDirection, ReflColor: TVector3Single;
begin
if MaterialMirror > 0 then
begin
ReflRayDirection := ReflectedRayDirection(Normalized(RayDirection),
IntersectNode^.World.Plane);
ReflColor := Trace(Intersection, ReflRayDirection, Depth - 1,
IntersectNode, true);
Result := Result * (1 - MaterialMirror) + ReflColor * MaterialMirror;
end;
end;
function LightNotBlocked(const Light: TLightInstance): boolean;
begin
{ Does the light get to the current surface ?
Note that we treat partially transparent objects here
as not casting a shadow.
This is better that not doing anything (partially transparent objects
making normal "blocking" shadows looks bad), but it's not really correct,
since in reality partially transparent objects just bend
(or rather translate, if you consider a thin partially transparent object
like a glass that doesn't intersect any other objects)
the ray so it can get to the light.
We also take into account here that things with
Appearance.shadowCaster = FALSE do not block light.
We also take into account that the light may be on the opposide
side of the plane than from where RayDirection came.
In such case the light shines on IntersectNode, but from the opposite
side, so we will not add it here. }
Result := Octree.LightNotBlocked(Light,
Intersection, IntersectNode^.World.Normal,
-RayDirection, IntersectNode, true);
end;
var
i: integer;
M1: TMaterialNode_1;
M2: TMaterialNode;
Lights: TLightInstancesList;
begin
IntersectNode := Octree.RayCollision(Intersection, RayOrigin, RayDirection, true,
TriangleToIgnore, IgnoreMarginAtStart, nil);
if IntersectNode = nil then Exit(SceneBGColor);
{ calculate material properties, taking into account VRML 1.0 and 2.0
material. }
if IntersectNode^.State.ShapeNode <> nil then
begin
{ VRML 2.0 }
M2 := IntersectNode^.State.ShapeNode.Material;
if M2 <> nil then
begin
MaterialMirror := M2.FdMirror.Value;
MaterialTransparency := M2.FdTransparency.Value;
end else
begin
MaterialMirror := DefaultMaterialMirror;
MaterialTransparency := DefaultMaterialTransparency;
end;
end else
begin
{ VRML 1.0 }
M1 := IntersectNode^.State.LastNodes.Material;
MaterialMirror := M1.Mirror(0);
MaterialTransparency := M1.Transparency(0);
end;
Result := IntersectNode^.State.Emission(InitialDepth <> 0);
with IntersectNode^ do
begin
if Depth > 0 then
begin
Lights := State.Lights;
if Lights <> nil then
for i := 0 to Lights.Count - 1 do
if LightNotBlocked(Lights.L[i]) then
Result += Lights.L[i].Contribution(Intersection,
IntersectNode^.World.Plane, IntersectNode^.State, CamPosition);
{ Add BaseLights contribution, just like other lights.
Note for LightNotBlocked testing: theoretically, just using
LightNotBlocked always (no matter Depth/InitialDepth) should
be fully correct. But:
1. For Depth = InitialDepth, we know that headlight is not blocked
(since a camera sees a point, so headlight on camera also sees it).
Avoiding shadow ray test in this case is an optimization.
2. For directional headlights, this somewhat workarounds a problem
with our shadow rays. LightNotBlocked treats directional
lights as coming from infinity. While directional headlight
doesn't come from infinity: it comes from camera position.
For example, imagine a player with directional headlight standing
inside a closed cube (or any closed labirynth). LightNotBlocked
would make the headlight not visible (as it's blocked from all
sides by the cube), since LightNotBlocked doesn't know
that light source is standing inside the cube...
To fix this fully correctly, we should invent new light type,
like "directional, but not from infinity, but from given plane",
and modify LightNotBlocked accordingly.
For now, treating Depth = InitialDepth as special case, fixes
the problem at least for primary rays: directional light always
reaches them.
The above reasoning is nice as long as BaseLights only contain
the headlight. Which is true in the current uses. }
for I := 0 to BaseLights.Count - 1 do
if (Depth = InitialDepth) or
LightNotBlocked(BaseLights.L[I]) then
Result += BaseLights.L[I].Contribution(Intersection,
IntersectNode^.World.Plane, IntersectNode^.State, CamPosition);
{ Calculate recursively reflected and transmitted rays.
Note that the order of calls (first reflected or first transmitted ?)
is important --- as they may scale our Result (not only add
to it). }
ModifyColorByReflectedRay;
ModifyColorByTransmittedRay;
end;
end;
{ Fog calculation should be done on every
depth of ray-tracing, not only once (i.e. for primary rays).
Reasoning: imagine that you look through a glass window
(and you're really close to this window, so that fog doesn't
affect the window glass noticeably) and through this window
you see something distant, like a forest. The forest is distant
so fog setting should affect it. Obviously even though the window
glass wasn't affected much by the fog, you will see a forest
covered by the fog. So each recursive call of Trace should bring
a color affected by the fog. }
FogNode.ApplyFog(Result, CamPosition, Intersection, FogType);
end;
var
RaysWindow: TRaysWindow;
procedure DoPixel(const x, y: Cardinal);
var
RayOrigin, RayDirection: TVector3Single;
begin
RaysWindow.PrimaryRay(x, y, Image.Width, Image.Height, RayOrigin, RayDirection);
Image.SetColorRGB(x, y, Trace(RayOrigin, RayDirection, InitialDepth, nil, false));
end;
var
PixCoord: TVector2Cardinal;
SFCurve: TSpaceFillingCurve;
begin
FogType := FogNode.FogTypeOrNone;
RaysWindow := nil;
SFCurve := nil;
try
RaysWindow := TRaysWindow.CreateDescendant(CamPosition,
Normalized(CamDirection), Normalized(CamUp),
PerspectiveView, PerspectiveViewAngles, OrthoViewDimensions);
{ Using any other kind of space filling curve doesn't have any
noticeable impact right now for classic ray tracer, since
classic ray tracer doesn't use shadow cache or any other similar technique
that benefits from processing similar cases in one block.
In the future this make come to use.
Right now, using SFCurve just makes implementing FirstPixel
and PixelsMadeNotifier easier. }
SFCurve := TSwapScanCurve.Create(Image.Width, Image.Height);
SFCurve.SkipPixels(FirstPixel);
{ generate image pixels }
if Assigned(PixelsMadeNotifier) then
begin
while not SFCurve.EndOfPixels do
begin
PixCoord := SFCurve.NextPixel;
DoPixel(PixCoord[0], PixCoord[1]);
PixelsMadeNotifier(SFCurve.PixelsDone, PixelsMadeNotifierData);
end;
end else
begin
while not SFCurve.EndOfPixels do
begin
PixCoord := SFCurve.NextPixel;
DoPixel(PixCoord[0], PixCoord[1]);
end;
end;
finally
RaysWindow.Free;
SFCurve.Free;
end;
end;
procedure TClassicRayTracer.AppendStats(const Stats: TStrings; const RenderingTime: Single);
var
PrimaryRaysCount: Cardinal;
begin
inherited;
PrimaryRaysCount := Image.Width * Image.Height - FirstPixel;
Stats.Append(Format('Image size is %d x %d pixels (first %d pixels skipped) which gives %d primary rays.',
[Image.Width, Image.Height, FirstPixel, PrimaryRaysCount]));
Stats.Append(Format('%f primary rays done per second.',
[PrimaryRaysCount / RenderingTime]));
Stats.Append(Format('%f simple collision tests done per one primary ray.',
[TriangleCollisionTestsCounter / PrimaryRaysCount ]));
end;
{ TPathTracer -------------------------------------------------------------- }
constructor TPathTracer.Create;
begin
inherited;
SFCurveClass := TSwapScanCurve;
end;
function EmissiveColor(const Item: TTriangle): TVector3Single;
var
M: TMaterialNode;
begin
if Item.State.ShapeNode <> nil then
begin
{ VRML >= 2.0 }
M := Item.State.ShapeNode.Material;
if M <> nil then
Result := M.FdEmissiveColor.Value else
Result := ZeroVector3Single;
end else
begin
{ VRML 1.0 }
Result := Item.State.LastNodes.Material.EmissiveColor3Single(0);
end;
end;
function IsLightSource(const Item: TTriangle): boolean;
begin
Result := VectorLenSqr(EmissiveColor(Item)) > Sqr(SingleEqualityEpsilon);
end;
procedure TPathTracer.CollectLightItems(const Triangle: PTriangle);
begin
if IsLightSource(Triangle^) then
CollectedLightItems.Add(Triangle);
end;
{ Some notes about path tracer implementation :
- Meaning of TraceOnlyIndirect parameter for Trace():
When (DirectIllumSamplesCount <> 0) then rendering equation at each point
is splitted into
L_out = L_emission + IntegralOverHemisphere( L_direct + L_indirect ),
where
L_indirect = L_emission + IntegralOverHemisphere( L_direct + L_indirect ),
and L_indirect must hit something that is *not* a light source.
Which means that L_emission is always here = (0, 0, 0) so we have
L_indirect = IntegralOverHemisphere( L_direct + L_indirect ),
Which means that when we do recursive calls to Trace to calculate
L_indirect we *do not want to hit light source* since then
L_direct would be calculated twice.
In other words,
- for primary rays we pass TraceOnIndirect = false
since we calculate L_out and we want L_emission (which makes sense anyway,
since when you look directly at the light source you obviously see it's
light).
- for non-primary rays, i.e. in Trace recursive call from Trace itself,
we pass TraceOnIndirect = true. (Well, unless DirectIllumSamplesCount = 0,
in which case we just always make normal rendering equation
and we want to always calculate L_emission;
So TraceOnlyIndirect is actually DirectIllumSamplesCount <> 0).
Tests confirm that this is right. Without this (if we would remove
the check
"if TraceOnlyIndirect and IsLightSource(IntersectNode) then ...")
we get a lot more noise on our image.
Trace call with TraceOnlyIndirect = true that hits into a light source
returns just black color.
- Note that MinDepth and Depth (Trace parameters) are *signed* integers.
Depth can be negative, for each recursive call we pass Depth = Depth - 1.
When Depth <= 0 then roussian roulette will be used.
MinDepth is also signed becasue of that, since it's a starting Depth value.
}
procedure TPathTracer.Execute;
var
{ In LightItems we have pointers to Octree.Triangles[] pointing
to the items with emission color > 0. In other words, light sources. }
LightItems: TFPList;
{$ifdef PATHTR_USES_SHADOW_CACHE}
{ For each light in LightItems[I], ShadowCache[I] gives the pointer
(somewhere into Octree.Triangles[]) of the last object that blocked this
light source (or nil if no such object was yet found during
this path tracer execution).
This index is updated and used in IsLightShadowed.
The idea of "shadow cache" comes from RGK, crystalized in "Graphic Gems II". }
ShadowCache: TFPList;
{$endif}
{ TODO: comments below are in Polish. }
const
{ LightEmissionArea definiuje co znacza wlasciwosci .Emission zrodel swiatla.
Kolor emission swiatla bedzie oczywiscie skalowany przez kat brylowy jaki
ma zrodlo swiatla dla oswietlanego punktu. Skalowanie to bedzie robione tak
ze jezeli swiatlo bedzie zajmowalo kat brylowy LightEmissionArea
(w steradianach) to kolor swiatla dodany do DirectIllumination bedzie wynosil
doklanie Emission swiatla. Jesli kat brylowy bedzie a razy wiekszy (mniejszy)
niz LightEmissionArea to kolor jaki bedzie mial byc dodany do Direct Illumination
bedzie wynosil a*LightEmissionArea.
Oczywiscie ten kolor bedzie dalej skalowany, przez BRDFa i inne rzeczy,
wiec to nie oznacza ze dokladnie taki kolor a*Emission zostanie zwrocony
przez DirectIllumination. Ale taka bedzie "podstawa" tego koloru.
Mowiac nieco formalnie, LightEmissionArea okresla w jakich jednostkach
mamy zapisane Emission swiatla w modelu.
Wartosc ponizej dobralem eksperymentalnie chcac zeby cornell-box renderowane
z path wygladalo tak samo jak rendering na stronie www.cornell-box'a.
Dopasowywalem ten parametr tak dlugo az rysunki path (z rosyjska ruletka,
bo ona nie wprowadza biasu) mialy "na oko" podobna jasnosc co tamtejszy
box.jpg. }
LightEmissionArea = 1/30;
function IsLightShadowed(const Item: PTriangle;
const ItemPoint: TVector3Single;
const LightSourceIndiceIndex: Integer;
LightSourcePoint: TVector3Single): boolean;
{ ta funkcja liczy shadow ray (a w zasadzie segment). Zwraca true jezeli
pomiedzy punktem ItemPoint a LightSourcePoint jest jakis element
o transparency = 1. Wpp. zwraca false.
LightSourceIndiceIndex to indeks to tablicy LightItems[].
Item to pointer to given item (somewhere in Octree.Triangles[]). }
{ TODO: transparent objects should scale light color instead of just
letting it pass }
var
OctreeIgnorer: TOctreeIgnoreForShadowRaysAndOneItem;
Shadower: PTriangle;
{$ifdef PATHTR_USES_SHADOW_CACHE}
CachedShadower: PTriangle;
{$endif}
begin
{$ifdef PATHTR_USES_SHADOW_CACHE}
{ sprobuj wziac wynik z ShadowCache }
CachedShadower := ShadowCache.Items[LightSourceIndiceIndex];
if (CachedShadower <> nil) and
(CachedShadower <> Item) then
begin
Inc(TriangleCollisionTestsCounter);
if IsTriangleSegmentCollision(CachedShadower^.World.Triangle,
CachedShadower^.World.Plane, ItemPoint, LightSourcePoint) then
Exit(true);
{ powyzej zapominamy o marginesie epsilonowym wokol ItemPoint i
LightSourcePoint (jezeli tam jest przeciecie to powinno byc uznawane
za niewazne). Zreszta ponizej zapominamy o marginesie wokol
LightSourcePoint. W moim kodzie te marginesy epsilonowe nie sa tak
wazne (tylko dla nieprawidlowych modeli, dla prawidlowych modeli
wystarcza ItemIndexToIgnore i OctreeIgnorer) wiec olewam tutaj te
niedorobki. }
end;
{$endif}
{ oblicz przeciecie uzywajac Octree }
OctreeIgnorer := TOctreeIgnoreForShadowRaysAndOneItem.Create(
LightItems.Items[LightSourceIndiceIndex]);
try
Shadower := Octree.SegmentCollision(ItemPoint, LightSourcePoint, false,
Item, true, @OctreeIgnorer.IgnoreItem);
Result := Shadower <> nil;
{$ifdef PATHTR_USES_SHADOW_CACHE}
ShadowCache.Items[LightSourceIndiceIndex] := Shadower;
{$endif}
finally OctreeIgnorer.Free end;
end;
function Trace(const RayOrigin, RayDirection: TVector3Single;
const Depth: Integer; const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean; const TraceOnlyIndirect: boolean)
: TVector3Single;
{ sledzi promien z zadana glebokoscia. Zwraca Black (0, 0, 0) jesli
promien w nic nie trafia, wpp. zwraca wyliczony kolor. }
var
Intersection: TVector3Single;
IntersectNode: PTriangle;
MaterialInfo: TX3DMaterialInfoAbstract; { = IntersectNode.MaterialInfo }
IntersectNormalInRayDir: TVector3Single;
function TraceNonEmissivePart: TVector3Single;
function TryCalculateTransmittedSpecularRayDirection(
var TracedDir: TVector3Single;
var PdfValue: Single): boolean;
var
TransmittedRayDirection: TVector3Single;
EtaFrom, EtaTo: Single;
const
EtaConst = 1.3; { TODO: tu tez uzywam EtaConst, jak w Classic }
begin
if Odd(MinDepth-Depth) then
begin EtaFrom := 1; EtaTo := EtaConst end else
begin EtaFrom := EtaConst; EtaTo := 1 end;
Result := TryTransmittedRayDirection(TransmittedRayDirection,
Normalized(RayDirection),
IntersectNode^.World.Plane, EtaFrom, EtaTo);
if Result then
TracedDir := PhiThetaToXYZ(
RandomHemispherePointCosThetaExp(
Round(MaterialInfo.TransSpecularExp),
PdfValue),
TransmittedRayDirection);
end;
function DirectIllumination: TVector3Single;
{ ta funkcja liczy DirectIllumination dla naszego Intersection.
Implementacja : uzywamy sformulowania (101) z GlobalIllumCompendium :
for i = 0..DirectIllumSamplesCount-1 do
uniformly losuj LightItemIndex sposrod 0..LightIndices.Count-1.
uniformly (wzgledem pola powierzchni trojkata wylosowanego swiatla)
losuj punkt na swietle jako SampleLightPoint.
if (SampleLightPoint widoczny z Intersection) then
result += PolePowierzchni(LightItem) * LightEmission * BRDF *
GeometryFunction
Na koncu result *= LightIndices.Count / DirectIllumSamplesCount.
Mozna powiedziec ze instrukcja
result += PolePowierzchni(LightItem) * LightEmission * BRDF *
GeometryFunction
jest mniej wiecej rownowazne
result += LightEmission * BRDF * cos(LightDirNorm, IntersectNormalInRayDir)
* solid-angle-swiatla
(taka jest rola PolePowierzchni(LightItem) i czesci GeometryFunction -
one po prostu licza solid angle; no, de facto pewne bardzo dobre przyblizenie
solid angle)
W rezultacie result = sredni kolor ze swiatla razy srednia powierzchnia
swiatla * ilosc swiatel = wlasnie direct illumination, uwzgledniajace
ze rozne swiatla maja rozna powierzchnie i swieca z rozna intensywnoscia.
}
{ TODO: better approach : (102), czyli losuj punkt na zrodle swiatla
ze wzgledu na jego solid angle.
TODO: jeszcze lepiej : (103), czyli losuj swiatlo w taki sposob ze
swiatla o wiekszej powierzchni (a wlasciwie, o wiekszym kacie
brylowym) i/lub o wiekszej intensywnosci beda wybierane czesciej. }
var
LightSource: PTriangle;
LightSourceIndiceIndex: Integer; { indeks do LightIndices[] }
SampleLightPoint: TVector3Single;
DirectColor, LightDirNorm, NegatedLightDirNorm: TVector3Single;
i: integer;
begin
Result := ZeroVector3Single;
{ trzeba ustrzec sie tu przed LightsItems.Count = 0 (zeby moc pozniej
spokojnie robic Random(LightsItems.Count) i przed
DirectIllumSamplesCount = 0 (zeby moc pozniej spokojnie podzielic przez
DirectIllumSamplesCount). }
if (LightItems.Count = 0) or (DirectIllumSamplesCount = 0) then Exit;
for i := 0 to DirectIllumSamplesCount - 1 do
begin
{ calculate LightSourceIndiceIndex, LightSourceIndex, LightSource }
LightSourceIndiceIndex := Random(LightItems.Count);
LightSource := LightItems.Items[LightSourceIndiceIndex];
if LightSource = IntersectNode then Continue;
{ calculate SampleLightPoint.
Lepiej pozniej sprawdz ze SampleLightPoint jest
rozny od Intersection (poniewaz SampleLightPoint jest losowy to na
nieprawidlowo skonstruowanym modelu wszystko moze sie zdarzyc...) }
SampleLightPoint := SampleTrianglePoint(LightSource^.World.Triangle);
if VectorsEqual(SampleLightPoint, Intersection) then Continue;
{ calculate LigtDirNorm (nieznormalizowane).
Jezeli LigtDirNorm wychodzi z innej strony
IntersectionNode.TriangleNormPlane niz IntersectNormalInRayDir
to znaczy ze swiatlo jest po przeciwnej stronie plane - wiec
swiatlo nie oswietla naszego pixela. }
LightDirNorm := SampleLightPoint - Intersection;
if not VectorsSamePlaneDirections(LightDirNorm, IntersectNormalInRayDir,
IntersectNode^.World.Plane) then Continue;
{ sprawdz IsLightShadowed, czyli zrob shadow ray }
if IsLightShadowed(IntersectNode, Intersection,
LightSourceIndiceIndex, SampleLightPoint) then Continue;
{ calculate DirectColor = kolor emission swiatla }
DirectColor := EmissiveColor(LightSource^);
{ wymnoz przez naszego "niby-BRDFa" czyli po prostu przez kolor Diffuse
materialu }
DirectColor *= MaterialInfo.DiffuseColor;
{ calculate LightDirNorm (znormalizowane), NegatedLightDirNorm }
NormalizeTo1st(LightDirNorm);
NegatedLightDirNorm := -LightDirNorm;
{ Wymnoz DirectColor
1) przez GeometryFunction czyli
cos(LightDirNorm, IntersectNormalInRayDir)
* cos(-LightDirNorm, LightSource.World.Normal) /
PointsDistanceSqr(SampleLightPoint, Intersection).
Cosinusy naturalnie licz uzywajac dot product.
2) przez TriangleArea
Mozna zauwazyc ze czlon
TriangleArea *
cos(-LightDirNorm, LightSource.World.Normal) /
PointsDistanceSqr(SampleLightPoint, Intersection)
liczy po prostu solid angle swiatla with respect to Intersection
(no, mowiac scisle pewne bardzo dobre przyblizenie tego solid angle).
Moze byc tutaj pouczajace zobaczyc jak to dziala gdy usuniemy mnozenie
przez cos(-LightDirNorm, LightSource.World.Normal)
(swiatlo bedzie wtedy jasniej swiecilo jakby "w bok"),
pouczajace moze tez byc usuniecie dzielenia przez
PointsDistanceSqr(SampleLightPoint, Intersection) i jednoczesnie
mnozenia przez TriangleArea (te dwie rzeczy "wspolpracuja ze soba",
tzn. wazny jest tu wlasnie ich iloraz, dlatego usuwanie tylko
jednej z tych wartosci nie ma sensu).
Elegancko byloby tutaj pomnozyc jeszcze przez
1/LightEmissionArea. Ale poniewaz LightEmissionArea = const wiec
przenioslem mnozenie przez LightEmissionArea na sam koniec tej
funkcji.}
DirectColor *=
(LightDirNorm ** IntersectNormalInRayDir) *
(NegatedLightDirNorm **
PlaneDirInDirection(LightSource^.World.Plane,
NegatedLightDirNorm)) *
LightSource^.World.Area /
PointsDistanceSqr(SampleLightPoint, Intersection);
Result += DirectColor;
end;
{ dopiero tu przemnoz przez 1/LightEmissionArea.
Podziel tez przez ilosc probek i pomnoz przez ilosc swiatel -
- w rezultacie spraw zeby wynik przyblizal sume wkladu direct illumination
wszystkich swiatel. }
Result *= LightItems.Count /
(LightEmissionArea * DirectIllumSamplesCount);
end;
type
{ kolory Transmittive/Reflective Diffuse/Specular }
TColorKind = (ckRS, ckRD, ckTS, ckTD);
var
Colors: array[TColorKind]of TVector3Single;
Weights: array[TColorKind]of Single;
WeightsSum: Single;
RandomCK: Single;
PdfValue: Single;
TracedCol, TracedDir: TVector3Single;
ck: TColorKind;
begin
Result := ZeroVector3Single;
{ caly result jaki tu wyliczymy dostaniemy dzieki wygranej w rosyjskiej
ruletce jezeli Depth <= 0. (Trzeba o tym pamietac i pozniej podzielic
przez RROulContinue.) }
if (Depth > 0) or (Random < RRoulContinue) then
begin
{ krok sciezki to importance sampling zgodnie z Modified Phong BRDF,
patrz GlobalIllumComp (66), diffuse samplujemy z gestoscia cos(),
specular z gestoscia cos()^N_EXP.
W rezultacie po otrzymaniu wyniku Trace diffuse nie dziele juz wyniku
przez cosinus() (a powinienem, bo to jest importance sampling) ani
nie mnoze go przez cosinus() (a powinienem, bo w calce BRDF'a jest
ten cosinus - diffuse oznacza zbieranie ze wszystkich kierunkow swiatla
rownomiernie ale pod mniejszym katem na powierzchnie pada mniej promieni,
dlatego w diffuse mamy cosinus). Wszystko dlatego ze te cosinusy sie
skracaja.
Podobnie dla specular - mam nadzieje ! TODO: Specular jeszcze
nie jest zbyt dobrze przetestowane...
W rezultacie kompletnie ignoruje PdfValue (otrzymywane w wyniku
RandomUnitHemispeherePoint) i BRDF'a - po prostu akurat taki rozklad PDF'ow
odpowiada DOKLADNIE temu jak wpada swiatlo. }
{ calculate Colors[] }
Colors[ckRS] := MaterialInfo.ReflSpecular;
Colors[ckRD] := MaterialInfo.ReflDiffuse;
Colors[ckTS] := MaterialInfo.TransSpecular;
Colors[ckTD] := MaterialInfo.TransDiffuse;
{ calculate Weights[] and WeightSum }
WeightsSum := 0;
for ck := Low(ck) to High(ck) do
begin
Weights[ck] := Colors[ck][0] +
Colors[ck][1] +
Colors[ck][2];
WeightsSum += Weights[ck];
end;
{ wylosuj jedno z ck : wylosuj zmienna RandomCK z przedzialu 0..WeightsSum
a potem zbadaj do ktorego z przedzialow Weights[] wpada. Calculate ck. }
RandomCK := Random * WeightsSum;
ck := Low(ck);
while ck < High(ck) do
begin
if RandomCK < Weights[ck] then break;
RandomCK -= Weights[ck];
Inc(ck);
end;
{ notka : nie, ponizej nie mozna zamienic na test WeightsSum >
SingleEqualityEpsilon. Nawet gdy to zachodzi ciagle moze sie okazac
ze WeightsSum jest wprawdzie duzo wieksze od zera ale samo
Weights[ck] jest mikroskopijnie male (i po prostu mielismy duzo
szczescia w losowaniu; path tracer robi tyle sciezek, tyle pixeli
itd. ze nietrudno tutaj "przez przypadek" wylosowac mikroskopijnie
mala wartosc). }
if Weights[ck] > SingleEqualityEpsilon then
begin
{ calculate IntersectNormalInRayDir - Normal at intersection in direction RayOrigin }
IntersectNormalInRayDir := PlaneDirNotInDirection(
IntersectNode^.World.Plane, RayDirection);
{ calculate TracedDir i PdfValue samplujac odpowiednio polsfere
(na podstawie ck). W przypadku TS moze wystapic calk. odbicie wewn.
i wtedy konczymy sciezke. }
case ck of
ckTD: TracedDir := PhiThetaToXYZ(
RandomHemispherePointCosTheta(PdfValue),
-IntersectNormalInRayDir);
ckTS: if not TryCalculateTransmittedSpecularRayDirection(
TracedDir, PdfValue) then Exit;
ckRD: TracedDir := PhiThetaToXYZ(
RandomHemispherePointCosTheta(PdfValue),
IntersectNormalInRayDir);
ckRS: TracedDir := PhiThetaToXYZ(
RandomHemispherePointCosThetaExp(
Round(MaterialInfo.ReflSpecularExp),
PdfValue),
ReflectedRayDirection(Normalized(RayDirection),
IntersectNode^.World.Plane));
end;
{ wywolaj rekurencyjnie Trace(), a wiec idz sciezka dalej }
TracedCol := Trace(Intersection, TracedDir, Depth - 1,
IntersectNode, true, DirectIllumSamplesCount <> 0);
{ przetworz TracedCol : wymnoz przez Colors[ck], podziel przez szanse
jego wyboru sposrod czterech Colors[], czyli przez
Weights[ck]/WeightsSum (bo to w koncu jest importance sampling)
(czyli pomnoz przez WeightsSum/Weights[ck], wiemy ze mianownik jest
> SingleEqualityEpsilon, sprawdzilismy to juz wczesniej). }
TracedCol *= Colors[ck];
TracedCol *= WeightsSum / Weights[ck];
Result += TracedCol;
end;
{ dodaj DirectIllumination }
Result += DirectIllumination;
{ Jezeli weszlismy tu dzieki rosyjskiej ruletce (a wiec jezeli Depth <= 0)
to skaluj Result zeby zapisany tu estymator byl unbiased. }
if Depth <= 0 then Result *= 1/RRoulContinue;
end;
end;
var
i: Integer;
NonEmissiveColor: TVector3Single;
begin
IntersectNode := Octree.RayCollision(Intersection, RayOrigin, RayDirection, true,
TriangleToIgnore, IgnoreMarginAtStart, nil);
if IntersectNode = nil then Exit(SceneBGColor);
if TraceOnlyIndirect and IsLightSource(IntersectNode^) then
begin
Result := ZeroVector3Single;
Exit;
end;
MaterialInfo := IntersectNode^.MaterialInfo;
try
{ de facto jezeli TraceOnlyIndirect to ponizsza linijka na pewno dodaje
do result (0, 0, 0). Ale nie widze w tej chwili jak z tego wyciagnac
jakas specjalna optymalizacje.
We use below EmissiveColor(), not MaterialInfo.EmissiveColor,
because this is done even when MaterialInfo is nil. }
Result := EmissiveColor(IntersectNode^);
if MaterialInfo <> nil then
begin
{ jezeli MinDepth = Depth to znaczy ze nasz Trace zwraca kolor dla primary ray.
Wiec rozgaleziamy sie tutaj na NonPrimarySamplesCount, czyli dzialamy
jakbysmy byly stochastycznym ray tracerem ktory rozgalezia sie
na wiele promieni w punkcie rekursji.
Wpp. idziemy sciezka czyli dzialamy jakbysmy byly path tracerem czyli
nie rozgaleziamy sie na wiele promieni. }
if MinDepth = Depth then
begin
NonEmissiveColor := ZeroVector3Single;
for i := 0 to NonPrimarySamplesCount-1 do
NonEmissiveColor += TraceNonEmissivePart;
NonEmissiveColor *= 1 / NonPrimarySamplesCount;
Result += NonEmissiveColor;
end else
Result += TraceNonEmissivePart;
end;
finally FreeAndNil(MaterialInfo) end;
end;
var
RaysWindow: TRaysWindow;
procedure DoPixel(const x, y: Cardinal);
var
PixColor, PrimaryRayOrigin, PrimaryRayDirection: TVector3Single;
SampleNum: Integer;
begin
{ generuj pixel x, y. calculate PixColor }
if PrimarySamplesCount = 1 then
begin
{ gdy PrimarySamplesCount = 1 to wysylamy jeden promien pierwotny
i ten promien NIE jest losowany na rzutni w zakresie pixela
x, y ale przechodzi dokladnie przez srodek pixela x, y. }
RaysWindow.PrimaryRay(x, y, Image.Width, Image.Height, PrimaryRayOrigin, PrimaryRayDirection);
PixColor := Trace(PrimaryRayOrigin, PrimaryRayDirection, MinDepth, nil, false, false);
end else
begin
PixColor := ZeroVector3Single;
for SampleNum := 0 to PrimarySamplesCount - 1 do
begin
RaysWindow.PrimaryRay(
x + Random - 0.5, y + Random - 0.5,
Image.Width, Image.Height, PrimaryRayOrigin, PrimaryRayDirection);
PixColor += Trace(PrimaryRayOrigin, PrimaryRayDirection, MinDepth, nil, false, false);
end;
PixColor *= 1 / PrimarySamplesCount;
end;
{ zapisz PixColor do Image }
Image.SetColorRGB(x, y, PixColor);
end;
var
PixCoord: TVector2Cardinal;
SFCurve: TSpaceFillingCurve;
begin
{ check parameters (path tracing i tak trwa bardzo dlugo wiec mozemy sobie
pozwolic zeby na poczatku tej procedury wykonac kilka testow, nawet gdy
kompilujemy sie w wersji RELEASE) }
Check(PrimarySamplesCount > 0, 'PrimarySamplesCount for PathTracer must be greater than 0');
Check(NonPrimarySamplesCount > 0, 'NonPrimarySamplesCount for PathTracer must be greater than 0');
Clamp(RRoulContinue, Single(0.0), Single(1.0));
{ zainicjuj na nil'e, zeby moc napisac proste try..finally }
LightItems := nil;
{$ifdef PATHTR_USES_SHADOW_CACHE} ShadowCache := nil; {$endif}
RaysWindow := nil;
SFCurve := nil;
try
{ calculate LightItems }
LightItems := TFPList.Create;
LightItems.Capacity := Octree.TrianglesCount div 4;
CollectedLightItems := LightItems;
Octree.EnumerateTriangles(@CollectLightItems);
{$ifdef PATHTR_USES_SHADOW_CACHE}
{ calculate ShadowCache }
ShadowCache := TFPList.Create;
ShadowCache.Count := LightItems.Count;
{ Setting TFPList.Count already makes sure that new pointers are nil }
{$endif}
{ calculate RaysWindow }
RaysWindow := TRaysWindow.CreateDescendant(CamPosition,
Normalized(CamDirection), Normalized(CamUp),
PerspectiveView, PerspectiveViewAngles, OrthoViewDimensions);
{ calculate SFCurve }
SFCurve := SFCurveClass.Create(Image.Width, Image.Height);
SFCurve.SkipPixels(FirstPixel);
{ generuj pixle obrazka }
if Assigned(PixelsMadeNotifier) then
begin
while not SFCurve.EndOfPixels do
begin
PixCoord := SFCurve.NextPixel;
DoPixel(PixCoord[0], PixCoord[1]);
PixelsMadeNotifier(SFCurve.PixelsDone, PixelsMadeNotifierData);
end;
end else
begin
while not SFCurve.EndOfPixels do
begin
PixCoord := SFCurve.NextPixel;
DoPixel(PixCoord[0], PixCoord[1]);
end;
end;
finally
SFCurve.Free;
RaysWindow.Free;
{$ifdef PATHTR_USES_SHADOW_CACHE} ShadowCache.Free; {$endif}
LightItems.Free;
end;
end;
procedure TPathTracer.AppendStats(const Stats: TStrings; const RenderingTime: Single);
var
PathsCount: Cardinal;
begin
inherited;
PathsCount := (Image.Width * Image.Height - FirstPixel) *
PrimarySamplesCount * NonPrimarySamplesCount;
Stats.Append(Format('Image size is %d x %d pixels (first %d pixels skipped) and we use %d (primary) x %d (non-primary) samples per pixel which gives %d paths.',
[Image.Width, Image.Height, FirstPixel,
PrimarySamplesCount, NonPrimarySamplesCount, PathsCount]));
Stats.Append(Format('%f paths done per second.',
[PathsCount / RenderingTime]));
Stats.Append(Format('%f simple collision tests done per one path.',
[TriangleCollisionTestsCounter / PathsCount ]));
end;
end.
|