/usr/src/castle-game-engine-4.1.1/opengl/castlecurves.pas is in castle-game-engine-src 4.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 | {
Copyright 2004-2013 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ 3D curves (TCurve and basic descendants). }
unit CastleCurves;
interface
uses CastleVectors, CastleBoxes, CastleUtils, CastleScript,
CastleClassUtils, Classes, Castle3D, CastleFrustum, FGL;
type
{ 3D curve, a set of points defined by a continous function @link(Point)
for arguments within [TBegin, TEnd].
Note that some descendants return only an approximate BoundingBox result,
it may be too small or too large sometimes.
(Maybe at some time I'll make this more rigorous, as some code may require
that it's a proper bounding box, maybe too large but never too small.) }
TCurve = class(T3D)
private
FTBegin, FTEnd: Float;
FDefaultSegments: Cardinal;
public
{ The valid range of curve function argument. Must be TBegin <= TEnd.
@groupBegin }
property TBegin: Float read FTBegin;
property TEnd: Float read FTEnd;
{ @groupEnd }
{ Curve function, for each parameter value determine the 3D point.
This determines the actual shape of the curve. }
function Point(const t: Float): TVector3Single; virtual; abstract;
{ Curve function to work with rendered line segments begin/end points.
This is simply a more specialized version of @link(Point),
it scales the argument such that you get Point(TBegin) for I = 0
and you get Point(TEnd) for I = Segments. }
function PointOfSegment(i, Segments: Cardinal): TVector3Single;
{ Render curve by dividing it into a given number of line segments.
So actually @italic(every) curve will be rendered as a set of straight lines.
You should just give some large number for Segments to have something
that will be really smooth.
OpenGL commands:
@orderedList(
@item(This method calls glBegin(GL_LINE_STRIP);)
@item(Then it calls glVertexv(PointOfSegment(i, Segments))
for i in [0; Segments]
(yes, this means that it calls glVertex Segments+1 times).)
@item(Then this method calls glEnd.)
) }
procedure Render(Segments: Cardinal);
{ Default number of segments, used when rendering by T3D interface
(that is, @code(Render(Frustum, TransparentGroup...)) method.) }
property DefaultSegments: Cardinal
read FDefaultSegments write FDefaultSegments default 10;
procedure Render(const Frustum: TFrustum;
const Params: TRenderParams); override;
constructor Create(const ATBegin, ATEnd: Float); reintroduce;
end;
TCurveList = specialize TFPGObjectList<TCurve>;
{ Curve defined by explicitly giving functions for
Point(t) = x(t), y(t), z(t) as CastleScript expressions. }
TCasScriptCurve = class(TCurve)
protected
FTVariable: TCasScriptFloat;
FXFunction, FYFunction, FZFunction: TCasScriptExpression;
FBoundingBox: TBox3D;
public
function Point(const t: Float): TVector3Single; override;
{ XFunction, YFunction, ZFunction are functions based on variable 't'.
@groupBegin }
property XFunction: TCasScriptExpression read FXFunction;
property YFunction: TCasScriptExpression read FYFunction;
property ZFunction: TCasScriptExpression read FZFunction;
{ @groupEnd }
{ This is the variable controlling 't' value, embedded also in
XFunction, YFunction, ZFunction. }
property TVariable: TCasScriptFloat read FTVariable;
{ Simple bounding box. It is simply
a BoundingBox of Point(i, SegmentsForBoundingBox)
for i in [0 .. SegmentsForBoundingBox].
Subclasses may override this to calculate something more accurate. }
function BoundingBox: TBox3D; override;
{ XFunction, YFunction, ZFunction references are copied here,
and will be freed in destructor (so don't Free them yourself). }
constructor Create(const ATBegin, ATEnd: Float;
AXFunction, AYFunction, AZFunction: TCasScriptExpression;
ATVariable: TCasScriptFloat;
ASegmentsForBoundingBox: Cardinal = 100);
destructor Destroy; override;
end;
{ A basic abstract class for curves determined my some set of ControlPoints.
Note: it is @italic(not) defined in this class any correspondence between
values of T (argument for Point function) and ControlPoints. }
TControlPointsCurve = class(TCurve)
private
FBoundingBox: TBox3D;
protected
{ Using these function you can control how Convex Hull (for RenderConvexHull)
is calculated: CreateConvexHullPoints should return points that must be
in convex hull (we will run ConvexHull function on those points),
DestroyConvexHullPoints should finalize them.
This way you can create new object in CreateConvexHullPoints and free it in
DestroyConvexHullPoints, but you can also give in CreateConvexHullPoints
reference to some already existing object and do nothing in
DestroyConvexHullPoints. (we will not modify object given as
CreateConvexHullPoints in any way)
Default implementation in this class returns ControlPoints as
CreateConvexHullPoints. (and does nothing in DestroyConvexHullPoints) }
function CreateConvexHullPoints: TVector3SingleList; virtual;
procedure DestroyConvexHullPoints(Points: TVector3SingleList); virtual;
public
ControlPoints: TVector3SingleList;
{ glBegin(GL_POINTS) + glVertex fo each ControlPoints[i] + glEnd. }
procedure RenderControlPoints;
{ This class provides implementation for BoundingBox: it is simply
a BoundingBox of ControlPoints. Subclasses may (but don't have to)
override this to calculate better (more accurate) BoundingBox. }
function BoundingBox: TBox3D; override;
{ Always after changing ControlPoints and before calling Point,
BoundingBox (and anything that calls them, e.g. Render calls Point)
call this method. It recalculates necessary things.
ControlPoints.Count must be >= 2.
When overriding: always call inherited first. }
procedure UpdateControlPoints; virtual;
{ Nice class name, with spaces, starts with a capital letter.
Much better than ClassName. Especially under FPC 1.0.x where
ClassName is always uppercased. }
class function NiceClassName: string; virtual; abstract;
{ do glBegin(GL_POLYGON), glVertex(v)..., glEnd,
where glVertex are points of Convex Hull of ControlPoints
(ignoring Z-coord of ControlPoints). }
procedure RenderConvexHull;
{ Constructor.
This is virtual because it's called by CreateDivideCasScriptCurve.
It's also useful in many places in curves.lpr. }
constructor Create(const ATBegin, ATEnd: Float); virtual;
{ Calculates ControlPoints taking Point(i, ControlPointsCount-1)
for i in [0 .. ControlPointsCount-1] from CasScriptCurve.
TBegin and TEnd are copied from CasScriptCurve. }
constructor CreateDivideCasScriptCurve(CasScriptCurve: TCasScriptCurve;
ControlPointsCount: Cardinal);
destructor Destroy; override;
end;
TControlPointsCurveClass = class of TControlPointsCurve;
TControlPointsCurveList = specialize TFPGObjectList<TControlPointsCurve>;
{ Curve that passes exactly through it's ControlPoints.x
I.e. for each ControlPoint[i] there exists some value Ti
that Point(Ti) = ControlPoint[i] and
TBegin = T0 <= .. Ti-1 <= Ti <= Ti+1 ... <= Tn = TEnd
(i.e. Point(TBegin) = ControlPoints[0],
Point(TEnd) = ControlPoints[n]
and all Ti are ordered,
n = ControlPoints.High) }
TInterpolatedCurve = class(TControlPointsCurve)
{ This can be overriden in subclasses.
In this class this provides the most common implementation:
equally (uniformly) spaced Ti values. }
function ControlPointT(i: Integer): Float; virtual;
end;
{ Curve defined as [Lx(t), Ly(t), Lz(t)] where
L?(t) are Lagrange's interpolation polynomials.
Lx(t) crosses points (ti, xi) (i = 0..ControlPoints.Count-1)
where ti = TBegin + i/(ControlPoints.Count-1) * (TEnd-TBegin)
and xi = ControlPoints[i, 0].
Similarly for Ly and Lz.
Later note: in fact, you can override ControlPointT to define
function "ti" as you like. }
TLagrangeInterpolatedCurve = class(TInterpolatedCurve)
private
{ Values for Newton's polynomial form of Lx, Ly and Lz.
Will be calculated in UpdateControlPoints. }
Newton: array[0..2]of TFloatList;
public
procedure UpdateControlPoints; override;
function Point(const t: Float): TVector3Single; override;
class function NiceClassName: string; override;
constructor Create(const ATBegin, ATEnd: Float); override;
destructor Destroy; override;
end;
{ Natural cubic spline (1D).
May be periodic or not. }
TNaturalCubicSpline = class
private
FMinX, FMaxX: Float;
FOwnsX, FOwnsY: boolean;
FPeriodic: boolean;
FX, FY: TFloatList;
M: TFloatList;
public
property MinX: Float read FMinX;
property MaxX: Float read FMaxX;
property Periodic: boolean read FPeriodic;
{ Constructs natural cubic spline such that for every i in [0; X.Count-1]
s(X[i]) = Y[i]. Must be X.Count = Y.Count.
X must be already sorted.
MinX = X[0], MaxX = X[X.Count-1].
Warning: we will copy references to X and Y ! So make sure that these
objects are available for the life of this object.
We will free in destructor X if OwnsX and free Y if OwnsY. }
constructor Create(X, Y: TFloatList; AOwnsX, AOwnsY, APeriodic: boolean);
destructor Destroy; override;
{ Evaluate value of natural cubic spline at x.
Must be MinX <= x <= MaxX. }
function Evaluate(x: Float): Float;
end;
{ 3D curve defined by three 1D natural cubic splines.
Works just like TLagrangeInterpolatedCurve, only the interpolation
is different now. }
TNaturalCubicSplineCurve_Abstract = class(TInterpolatedCurve)
protected
{ Is the curve closed. May depend on ControlPoints,
it will be recalculated in UpdateControlPoints. }
function Closed: boolean; virtual; abstract;
private
{ Created/Freed in UpdateControlPoints, Freed in Destroy }
Spline: array[0..2]of TNaturalCubicSpline;
public
procedure UpdateControlPoints; override;
function Point(const t: Float): TVector3Single; override;
constructor Create(const ATBegin, ATEnd: Float); override;
destructor Destroy; override;
end;
{ 3D curve defined by three 1D natural cubic splines, automatically
closed if first and last points match. This is the most often suitable
non-abstract implementation of TNaturalCubicSplineCurve_Abstract. }
TNaturalCubicSplineCurve = class(TNaturalCubicSplineCurve_Abstract)
protected
function Closed: boolean; override;
public
class function NiceClassName: string; override;
end;
{ 3D curve defined by three 1D natural cubic splines, always treated as closed. }
TNaturalCubicSplineCurveAlwaysClosed = class(TNaturalCubicSplineCurve_Abstract)
protected
function Closed: boolean; override;
public
class function NiceClassName: string; override;
end;
{ 3D curve defined by three 1D natural cubic splines, never treated as closed. }
TNaturalCubicSplineCurveNeverClosed = class(TNaturalCubicSplineCurve_Abstract)
protected
function Closed: boolean; override;
public
class function NiceClassName: string; override;
end;
{ Rational Bezier curve (Bezier curve with weights).
Note: for Bezier Curve ControlPoints.Count MAY be 1.
(For TControlPointsCurve it must be >= 2) }
TRationalBezierCurve = class(TControlPointsCurve)
public
{ Splits this curve using Casteljau algorithm.
Under B1 and B2 returns two new, freshly created, bezier curves,
such that if you concatenate them - they will create this curve.
Proportion is something from (0; 1).
B1 will be equal to Self for T in TBegin .. TMiddle,
B2 will be equal to Self for T in TMiddle .. TEnd,
where TMiddle = TBegin + Proportion * (TEnd - TBegin).
B1.ControlPoints.Count = B2.ControlPoints.Count =
Self.ControlPoints.Count. }
procedure Split(const Proportion: Float; var B1, B2: TRationalBezierCurve);
function Point(const t: Float): TVector3Single; override;
class function NiceClassName: string; override;
public
{ Curve weights.
Must always be Weights.Count = ControlPoints.Count.
After changing Weights you also have to call UpdateControlPoints.}
Weights: TFloatList;
procedure UpdateControlPoints; override;
constructor Create(const ATBegin, ATEnd: Float); override;
destructor Destroy; override;
end;
TRationalBezierCurveList = specialize TFPGObjectList<TRationalBezierCurve>;
{ Smooth interpolated curve, each segment (ControlPoints[i]..ControlPoints[i+1])
is converted to a rational Bezier curve (with 4 control points)
when rendering.
You can also explicitly convert it to a list of bezier curves using
ToRationalBezierCurves.
Here too ControlPoints.Count MAY be 1.
(For TControlPointsCurve it must be >= 2) }
TSmoothInterpolatedCurve = class(TInterpolatedCurve)
private
BezierCurves: TRationalBezierCurveList;
ConvexHullPoints: TVector3SingleList;
protected
function CreateConvexHullPoints: TVector3SingleList; override;
procedure DestroyConvexHullPoints(Points: TVector3SingleList); override;
public
function Point(const t: Float): TVector3Single; override;
{ convert this to a list of TRationalBezierCurve.
From each line segment ControlPoint[i] ... ControlPoint[i+1]
you get one TRationalBezierCurve with 4 control points,
where ControlPoint[0] and ControlPoint[3] are taken from
ours ControlPoint[i] ... ControlPoint[i+1] and the middle
ControlPoint[1], ControlPoint[2] are calculated so that all those
bezier curves join smoothly.
All Weights are set to 1.0 (so actually these are all normal
Bezier curves; but I'm treating normal Bezier curves as Rational
Bezier curves everywhere here) }
function ToRationalBezierCurves(ResultOwnsCurves: boolean): TRationalBezierCurveList;
procedure UpdateControlPoints; override;
class function NiceClassName: string; override;
constructor Create(const ATBegin, ATEnd: Float); override;
destructor Destroy; override;
end;
implementation
uses SysUtils, GL, GLU, CastleConvexHull, CastleGLUtils;
{ TCurve ------------------------------------------------------------ }
function TCurve.PointOfSegment(i, Segments: Cardinal): TVector3Single;
begin
Result := Point(TBegin + (i/Segments) * (TEnd-TBegin));
end;
procedure TCurve.Render(Segments: Cardinal);
var i: Integer;
begin
glBegin(GL_LINE_STRIP);
for i := 0 to Segments do glVertexv(PointOfSegment(i, Segments));
glEnd;
end;
procedure TCurve.Render(const Frustum: TFrustum;
const Params: TRenderParams);
begin
if GetExists and (not Params.Transparent) and Params.ShadowVolumesReceivers then
begin
if not Params.RenderTransformIdentity then
begin
glPushMatrix;
glMultMatrix(Params.RenderTransform);
end;
Render(DefaultSegments);
if not Params.RenderTransformIdentity then
glPopMatrix;
end;
end;
constructor TCurve.Create(const ATBegin, ATEnd: Float);
begin
inherited Create(nil);
FTBegin := ATBegin;
FTEnd := ATEnd;
FDefaultSegments := 10;
end;
{ TCasScriptCurve ------------------------------------------------------------ }
function TCasScriptCurve.Point(const t: Float): TVector3Single;
begin
TVariable.Value := t;
Result[0] := (XFunction.Execute as TCasScriptFloat).Value;
Result[1] := (YFunction.Execute as TCasScriptFloat).Value;
Result[2] := (ZFunction.Execute as TCasScriptFloat).Value;
{test: Writeln('Point at t = ',FloatToNiceStr(Single(t)), ' is (',
VectorToNiceStr(Result), ')');}
end;
function TCasScriptCurve.BoundingBox: TBox3D;
begin
Result := FBoundingBox;
end;
constructor TCasScriptCurve.Create(const ATBegin, ATEnd: Float;
AXFunction, AYFunction, AZFunction: TCasScriptExpression;
ATVariable: TCasScriptFloat;
ASegmentsForBoundingBox: Cardinal);
var i, k: Integer;
P: TVector3Single;
begin
inherited Create(ATBegin, ATEnd);
FXFunction := AXFunction;
FYFunction := AYFunction;
FZFunction := AZFunction;
FTVariable := ATVariable;
{ calculate FBoundingBox }
P := PointOfSegment(0, ASegmentsForBoundingBox); { = Point(TBegin) }
FBoundingBox.Data[0] := P;
FBoundingBox.Data[1] := P;
for i := 1 to ASegmentsForBoundingBox do
begin
P := PointOfSegment(i, ASegmentsForBoundingBox);
for k := 0 to 2 do
begin
FBoundingBox.Data[0, k] := Min(FBoundingBox.Data[0, k], P[k]);
FBoundingBox.Data[1, k] := Max(FBoundingBox.Data[1, k], P[k]);
end;
end;
end;
destructor TCasScriptCurve.Destroy;
begin
FXFunction.FreeByParentExpression;
FYFunction.FreeByParentExpression;
FZFunction.FreeByParentExpression;
inherited;
end;
{ TControlPointsCurve ------------------------------------------------ }
procedure TControlPointsCurve.RenderControlPoints;
var i: Integer;
begin
glBegin(GL_POINTS);
for i := 0 to ControlPoints.Count-1 do glVertexv(ControlPoints.L[i]);
glEnd;
end;
function TControlPointsCurve.BoundingBox: TBox3D;
begin
Result := FBoundingBox;
end;
procedure TControlPointsCurve.UpdateControlPoints;
begin
FBoundingBox := CalculateBoundingBox(PVector3Single(ControlPoints.List),
ControlPoints.Count, 0);
end;
function TControlPointsCurve.CreateConvexHullPoints: TVector3SingleList;
begin
Result := ControlPoints;
end;
procedure TControlPointsCurve.DestroyConvexHullPoints(Points: TVector3SingleList);
begin
end;
procedure TControlPointsCurve.RenderConvexHull;
var CHPoints: TVector3SingleList;
CH: TIntegerList;
i: Integer;
begin
CHPoints := CreateConvexHullPoints;
try
CH := ConvexHull(CHPoints);
try
glBegin(GL_POLYGON);
try
for i := 0 to CH.Count-1 do
glVertexv(CHPoints.L[CH[i]]);
finally glEnd end;
finally CH.Free end;
finally DestroyConvexHullPoints(CHPoints) end;
end;
constructor TControlPointsCurve.Create(const ATBegin, ATEnd: Float);
begin
inherited Create(ATBegin, ATEnd);
ControlPoints := TVector3SingleList.Create;
{ DON'T call UpdateControlPoints from here - UpdateControlPoints is virtual !
So we set FBoundingBox by hand. }
FBoundingBox := EmptyBox3D;
end;
constructor TControlPointsCurve.CreateDivideCasScriptCurve(
CasScriptCurve: TCasScriptCurve; ControlPointsCount: Cardinal);
var i: Integer;
begin
Create(CasScriptCurve.TBegin, CasScriptCurve.TEnd);
ControlPoints.Count := ControlPointsCount;
for i := 0 to ControlPointsCount-1 do
ControlPoints.L[i] := CasScriptCurve.PointOfSegment(i, ControlPointsCount-1);
UpdateControlPoints;
end;
destructor TControlPointsCurve.Destroy;
begin
FreeAndNil(ControlPoints);
inherited;
end;
{ TInterpolatedCurve ----------------------------------------------- }
function TInterpolatedCurve.ControlPointT(i: Integer): Float;
begin
Result := TBegin + (i/(ControlPoints.Count-1)) * (TEnd-TBegin);
end;
{ TLagrangeInterpolatedCurve ----------------------------------------------- }
procedure TLagrangeInterpolatedCurve.UpdateControlPoints;
var i, j, k, l: Integer;
begin
inherited;
for i := 0 to 2 do
begin
Newton[i].Count := ControlPoints.Count;
for j := 0 to ControlPoints.Count-1 do
Newton[i].L[j] := ControlPoints.L[j, i];
{ licz kolumny tablicy ilorazow roznicowych in place, overriding Newton[i] }
for k := 1 to ControlPoints.Count-1 do
{ licz k-ta kolumne }
for l := ControlPoints.Count-1 downto k do
{ licz l-ty iloraz roznicowy w k-tej kolumnie }
Newton[i].L[l]:=
(Newton[i].L[l] - Newton[i].L[l-1]) /
(ControlPointT(l) - ControlPointT(l-k));
end;
end;
function TLagrangeInterpolatedCurve.Point(const t: Float): TVector3Single;
var i, k: Integer;
f: Float;
begin
for i := 0 to 2 do
begin
{ Oblicz F przy pomocy uogolnionego schematu Hornera z Li(t).
Wspolczynniki b_k sa w tablicy Newton[i].L[k],
wartosci t_k sa w ControlPointT(k). }
F := Newton[i].L[ControlPoints.Count-1];
for k := ControlPoints.Count-2 downto 0 do
F := F*(t-ControlPointT(k)) + Newton[i].L[k];
{ Dopiero teraz przepisz F do Result[i]. Dzieki temu obliczenia wykonujemy
na Floatach. Tak, to naprawde pomaga -- widac ze kiedy uzywamy tego to
musimy miec wiecej ControlPoints zeby dostac Floating Point Overflow. }
Result[i] := F;
end;
end;
class function TLagrangeInterpolatedCurve.NiceClassName: string;
begin
Result := 'Lagrange interpolated curve';
end;
constructor TLagrangeInterpolatedCurve.Create(const ATBegin, ATEnd: Float);
var i: Integer;
begin
inherited Create(ATBegin, ATEnd);
for i := 0 to 2 do Newton[i] := TFloatList.Create;
end;
destructor TLagrangeInterpolatedCurve.Destroy;
var i: Integer;
begin
for i := 0 to 2 do FreeAndNil(Newton[i]);
inherited;
end;
{ TNaturalCubicSpline -------------------------------------------------------- }
constructor TNaturalCubicSpline.Create(X, Y: TFloatList;
AOwnsX, AOwnsY, APeriodic: boolean);
{ Based on SLE (== Stanislaw Lewanowicz) notes on ii.uni.wroc.pl lecture. }
var
{ n = X.High. Integer, not Cardinal, to avoid some overflows in n-2. }
n: Integer;
{ [Not]PeriodicDK licza wspolczynnik d_k. k jest na pewno w [1; n-1] }
function PeriodicDK(k: Integer): Float;
var h_k: Float;
h_k1: Float;
begin
h_k := X[k] - X[k-1];
h_k1 := X[k+1] - X[k];
Result := ( 6 / (h_k + h_k1) ) *
( (Y[k+1] - Y[k]) / h_k1 -
(Y[k] - Y[k-1]) / h_k
);
end;
{ special version, works like PeriodicDK(n) should work
(but does not, PeriodicDK works only for k < n.) }
function PeriodicDN: Float;
var h_n: Float;
h_n1: Float;
begin
h_n := X[n] - X[n-1];
h_n1 := X[1] - X[0];
Result := ( 6 / (h_n + h_n1) ) *
( (Y[1] - Y[n]) / h_n1 -
(Y[n] - Y[n-1]) / h_n
);
end;
function IlorazRoznicowy(const Start, Koniec: Cardinal): Float;
{ liczenie pojedynczego ilorazu roznicowego wzorem rekurencyjnym.
Poniewaz do algorytmu bedziemy potrzebowali tylko ilorazow stopnia 3
(lub mniej) i to tylko na chwile - wiec taka implementacja
(zamiast zabawa w tablice) bedzie prostsza i wystarczajaca. }
begin
if Start = Koniec then
Result := Y[Start] else
Result := (IlorazRoznicowy(Start + 1, Koniec) -
IlorazRoznicowy(Start, Koniec - 1))
/ (X[Koniec] - X[Start]);
end;
function NotPeriodicDK(k: Integer): Float;
begin
Result := 6 * IlorazRoznicowy(k-1, k+1);
end;
var u, q, s, t, v: TFloatList;
hk, dk, pk, delta_k, delta_n, h_n, h_n1: Float;
k: Integer;
begin
inherited Create;
Assert(X.Count = Y.Count);
FMinX := X.First;
FMaxX := X.Last;
FOwnsX := AOwnsX;
FOwnsY := AOwnsY;
FX := X;
FY := Y;
FPeriodic := APeriodic;
{ prepare to calculate M }
n := X.Count - 1;
M := TFloatList.Create;
M.Count := n+1;
{ Algorytm obliczania wartosci M[0..n] z notatek SLE, te same oznaczenia.
Sa tutaj polaczone algorytmy na Periodic i not Perdiodic, zeby mozliwie
nie duplikowac kodu (i uniknac pomylek z copy&paste).
Tracimy przez to troche czasu (wielokrotne testy "if Periodic ..."),
ale kod jest prostszy i bardziej elegancki.
Notka: W notatkach SLE dla Periodic = true w jednym miejscu uzyto
M[n+1] ale tak naprawde nie musimy go liczyc ani uzywac. }
u := nil;
q := nil;
s := nil;
try
u := TFloatList.Create; U.Count := N;
q := TFloatList.Create; Q.Count := N;
if Periodic then begin s := TFloatList.Create; S.Count := N; end;
{ calculate u[0], q[0], s[0] }
u[0] := 0;
q[0] := 0;
if Periodic then s[0] := 1;
for k := 1 to n - 1 do
begin
{ calculate u[k], q[k], s[k] }
hk := X[k] - X[k-1];
{ delta[k] = h[k] / (h[k] + h[k+1])
= h[k] / (X[k] - X[k-1] + X[k+1] - X[k])
= h[k] / (X[k+1] - X[k-1])
}
delta_k := hk / (X[k+1] - X[k-1]);
pk := delta_k * q[k-1] + 2;
q[k]:=(delta_k - 1) / pk;
if Periodic then s[k] := - delta_k * s[k-1] / pk;
if Periodic then
dk := PeriodicDK(k) else
dk := NotPeriodicDK(k);
u[k]:=(dk - delta_k * u[k-1]) / pk;
end;
{ teraz wyliczamy wartosci M[0..n] }
if Periodic then
begin
t := nil;
v := nil;
try
t := TFloatList.Create; T.Count := N + 1;
v := TFloatList.Create; V.Count := N + 1;
t[n] := 1;
v[n] := 0;
{ z notatek SLE wynika ze t[0], v[0] nie sa potrzebne (i k moze robic
"downto 1" zamiast "downto 0") ale t[0], v[0] MOGA byc potrzebne:
przy obliczaniu M[n] dla n = 1. }
for k := n-1 downto 0 do
begin
t[k] := q[k] * t[k+1] + s[k];
v[k] := q[k] * v[k+1] + u[k];
end;
h_n := X[n] - X[n-1];
h_n1 := X[1] - X[0];
delta_n := h_n / (h_n + h_n1);
M[n] := (PeriodicDN - (1-delta_n) * v[1] - delta_n * v[n-1]) /
(2 + (1-delta_n) * t[1] + delta_n * t[n-1]);
M[0] := M[n];
for k := n-1 downto 1 do M[k] := v[k] + t[k] * M[n];
finally
t.Free;
v.Free;
end;
end else
begin
{ zawsze M[0] = M[n] = 0, zeby latwo bylo zapisac obliczenia w Evaluate }
M[0] := 0;
M[n] := 0;
M[n-1] := u[n-1];
for k := n-2 downto 1 do M[k] := u[k] + q[k] * M[k+1];
end;
finally
u.Free;
q.Free;
s.Free;
end;
end;
destructor TNaturalCubicSpline.Destroy;
begin
if FOwnsX then FX.Free;
if FOwnsY then FY.Free;
M.Free;
inherited;
end;
function TNaturalCubicSpline.Evaluate(x: Float): Float;
function Power3rd(const a: Float): Float;
begin
Result := a * a * a;
end;
var k, KMin, KMax, KMiddle: Cardinal;
hk: Float;
begin
Clamp(x, MinX, MaxX);
{ calculate k: W ktorym przedziale x[k-1]..x[k] jest argument ?
TODO: nalezoloby pomyslec o wykorzystaniu faktu
ze czesto wiadomo iz wezly x[i] sa rownoodlegle. }
KMin := 1;
KMax := FX.Count - 1;
repeat
KMiddle:=(KMin + KMax) div 2;
{ jak jest ulozony x w stosunku do przedzialu FX[KMiddle-1]..FX[KMiddle] ? }
if x < FX[KMiddle-1] then KMax := KMiddle-1 else
if x > FX[KMiddle] then KMin := KMiddle+1 else
begin
KMin := KMiddle; { set only KMin, KMax is meaningless from now }
break;
end;
until KMin = KMax;
k := KMin;
Assert(Between(x, FX[k-1], FX[k]));
{ obliczenia uzywaja tych samych symboli co w notatkach SLE }
{ teraz obliczam wartosc s(x) gdzie s to postac funkcji sklejanej
na przedziale FX[k-1]..FX[k] }
hk := FX[k] - FX[k-1];
Result := ( ( M[k-1] * Power3rd(FX[k] - x) + M[k] * Power3rd(x - FX[k-1]) )/6 +
( FY[k-1] - M[k-1]*Sqr(hk)/6 )*(FX[k] - x) +
( FY[k] - M[k ]*Sqr(hk)/6 )*(x - FX[k-1])
) / hk;
end;
{ TNaturalCubicSplineCurve_Abstract ------------------------------------------- }
procedure TNaturalCubicSplineCurve_Abstract.UpdateControlPoints;
var i, j: Integer;
SplineX, SplineY: TFloatList;
begin
inherited;
{ calculate SplineX.
Spline[0] and Spline[1] and Spline[2] will share the same reference to X.
Only Spline[2] will own SplineX. (Spline[2] will be always Freed as the
last one, so it's safest to set OwnsX in Spline[2]) }
SplineX := TFloatList.Create;
SplineX.Count := ControlPoints.Count;
for i := 0 to ControlPoints.Count-1 do SplineX[i] := ControlPointT(i);
for i := 0 to 2 do
begin
FreeAndNil(Spline[i]);
{ calculate SplineY }
SplineY := TFloatList.Create;
SplineY.Count := ControlPoints.Count;
for j := 0 to ControlPoints.Count-1 do SplineY[j] := ControlPoints.L[j, i];
Spline[i] := TNaturalCubicSpline.Create(SplineX, SplineY, i = 2, true,
Closed);
end;
end;
function TNaturalCubicSplineCurve_Abstract.Point(const t: Float): TVector3Single;
var i: Integer;
begin
for i := 0 to 2 do Result[i] := Spline[i].Evaluate(t);
end;
constructor TNaturalCubicSplineCurve_Abstract.Create(const ATBegin, ATEnd: Float);
begin
inherited Create(ATBegin, ATEnd);
end;
destructor TNaturalCubicSplineCurve_Abstract.Destroy;
var i: Integer;
begin
for i := 0 to 2 do FreeAndNil(Spline[i]);
inherited;
end;
{ TNaturalCubicSplineCurve -------------------------------------------------- }
class function TNaturalCubicSplineCurve.NiceClassName: string;
begin
Result := 'Natural cubic spline curve';
end;
function TNaturalCubicSplineCurve.Closed: boolean;
begin
Result := VectorsEqual(ControlPoints.First,
ControlPoints.Last);
end;
{ TNaturalCubicSplineCurveAlwaysClosed -------------------------------------- }
class function TNaturalCubicSplineCurveAlwaysClosed.NiceClassName: string;
begin
Result := 'Natural cubic spline curve (closed)';
end;
function TNaturalCubicSplineCurveAlwaysClosed.Closed: boolean;
begin
Result := true;
end;
{ TNaturalCubicSplineCurveNeverClosed ---------------------------------------- }
class function TNaturalCubicSplineCurveNeverClosed.NiceClassName: string;
begin
Result := 'Natural cubic spline curve (not closed)';
end;
function TNaturalCubicSplineCurveNeverClosed.Closed: boolean;
begin
Result := false;
end;
{ TRationalBezierCurve ----------------------------------------------- }
{$define DE_CASTELJAU_DECLARE:=
var
W: TVector3SingleList;
Wgh: TFloatList;
i, k, n, j: Integer;}
{ This initializes W and Wgh (0-th step of de Casteljau algorithm).
It uses ControlPoints, Weights. }
{$define DE_CASTELJAU_BEGIN:=
n := ControlPoints.Count - 1;
W := nil;
Wgh := nil;
try
// using nice FPC memory manager should make this memory allocating
// (in each call to Point) painless. So I don't care about optimizing
// this by moving W to private class-scope.
W := TVector3SingleList.Create;
W.Assign(ControlPoints);
Wgh := TFloatList.Create;
Wgh.Assign(Weights);
}
{ This caculates in W and Wgh k-th step of de Casteljau algorithm.
This assumes that W and Wgh already contain (k-1)-th step.
Uses u as the target point position (in [0; 1]) }
{$define DE_CASTELJAU_STEP:=
begin
for i := 0 to n - k do
begin
for j := 0 to 2 do
W.L[i][j]:=(1-u) * Wgh[i ] * W.L[i ][j] +
u * Wgh[i+1] * W.L[i+1][j];
Wgh.L[i]:=(1-u) * Wgh[i] + u * Wgh[i+1];
for j := 0 to 2 do
W.L[i][j] /= Wgh.L[i];
end;
end;}
{ This frees W and Wgh. }
{$define DE_CASTELJAU_END:=
finally
Wgh.Free;
W.Free;
end;}
procedure TRationalBezierCurve.Split(const Proportion: Float; var B1, B2: TRationalBezierCurve);
var TMiddle, u: Float;
DE_CASTELJAU_DECLARE
begin
TMiddle := TBegin + Proportion * (TEnd - TBegin);
B1 := TRationalBezierCurve.Create(TBegin, TMiddle);
B2 := TRationalBezierCurve.Create(TMiddle, TEnd);
B1.ControlPoints.Count := ControlPoints.Count;
B2.ControlPoints.Count := ControlPoints.Count;
B1.Weights.Count := Weights.Count;
B2.Weights.Count := Weights.Count;
{ now we do Casteljau algorithm, similiar to what we do in Point.
But this time our purpose is to update B1.ControlPoints/Weights and
B2.ControlPoints/Weights. }
u := Proportion;
DE_CASTELJAU_BEGIN
B1.ControlPoints.L[0] := ControlPoints.L[0];
B1.Weights .L[0] := Wgh .L[0];
B2.ControlPoints.L[n] := ControlPoints.L[n];
B2.Weights .L[n] := Wgh .L[n];
for k := 1 to n do
begin
DE_CASTELJAU_STEP
B1.ControlPoints.L[k] := W .L[0];
B1.Weights .L[k] := Wgh.L[0];
B2.ControlPoints.L[n-k] := W .L[n-k];
B2.Weights .L[n-k] := Wgh.L[n-k];
end;
DE_CASTELJAU_END
end;
function TRationalBezierCurve.Point(const t: Float): TVector3Single;
var
u: Float;
DE_CASTELJAU_DECLARE
begin
{ u := t normalized to [0; 1] }
u := (t - TBegin) / (TEnd - TBegin);
DE_CASTELJAU_BEGIN
for k := 1 to n do DE_CASTELJAU_STEP
Result := W.L[0];
DE_CASTELJAU_END
end;
class function TRationalBezierCurve.NiceClassName: string;
begin
Result := 'Rational Bezier curve';
end;
procedure TRationalBezierCurve.UpdateControlPoints;
begin
inherited;
Assert(Weights.Count = ControlPoints.Count);
end;
constructor TRationalBezierCurve.Create(const ATBegin, ATEnd: Float);
begin
inherited;
Weights := TFloatList.Create;
Weights.Count := ControlPoints.Count;
end;
destructor TRationalBezierCurve.Destroy;
begin
Weights.Free;
inherited;
end;
{ TSmoothInterpolatedCurve ------------------------------------------------------------ }
function TSmoothInterpolatedCurve.CreateConvexHullPoints: TVector3SingleList;
begin
Result := ConvexHullPoints;
end;
procedure TSmoothInterpolatedCurve.DestroyConvexHullPoints(Points: TVector3SingleList);
begin
end;
function TSmoothInterpolatedCurve.Point(const t: Float): TVector3Single;
var
i: Integer;
begin
if ControlPoints.Count = 1 then
Exit(ControlPoints.L[0]);
for i := 0 to BezierCurves.Count-1 do
if t <= BezierCurves[i].TEnd then Break;
Result := BezierCurves[i].Point(t);
end;
function TSmoothInterpolatedCurve.ToRationalBezierCurves(ResultOwnsCurves: boolean): TRationalBezierCurveList;
var
S: TVector3SingleList;
function MiddlePoint(i, Sign: Integer): TVector3Single;
begin
Result := ControlPoints.L[i];
VectorAddTo1st(Result,
VectorScale(S.L[i], Sign * (ControlPointT(i) - ControlPointT(i-1)) / 3));
end;
var
C: TVector3SingleList;
i: Integer;
NewCurve: TRationalBezierCurve;
begin
Result := TRationalBezierCurveList.Create(ResultOwnsCurves);
try
if ControlPoints.Count <= 1 then Exit;
if ControlPoints.Count = 2 then
begin
{ Normal calcualtions (based on SLE mmgk notes) cannot be done when
ControlPoints.Count = 2:
C.Count would be 1, S.Count would be 2,
S[0] would be calculated based on C[0] and S[1],
S[1] would be calculated based on C[0] and S[0].
So I can't calculate S[0] and S[1] using given equations when
ControlPoints.Count = 2. So I must implement a special case for
ControlPoints.Count = 2. }
NewCurve := TRationalBezierCurve.Create(ControlPointT(0), ControlPointT(1));
NewCurve.ControlPoints.Add(ControlPoints.L[0]);
NewCurve.ControlPoints.Add(Lerp(1/3, ControlPoints.L[0], ControlPoints.L[1]));
NewCurve.ControlPoints.Add(Lerp(2/3, ControlPoints.L[0], ControlPoints.L[1]));
NewCurve.ControlPoints.Add(ControlPoints.L[1]);
NewCurve.Weights.AddArray([1.0, 1.0, 1.0, 1.0]);
NewCurve.UpdateControlPoints;
Result.Add(NewCurve);
Exit;
end;
{ based on SLE mmgk notes, "Krzywe Beziera" page 4 }
C := nil;
S := nil;
try
C := TVector3SingleList.Create;
C.Count := ControlPoints.Count-1;
{ calculate C values }
for i := 0 to C.Count-1 do
begin
C.L[i] := VectorSubtract(ControlPoints.L[i+1], ControlPoints.L[i]);
VectorScaleTo1st(C.L[i],
1/(ControlPointT(i+1) - ControlPointT(i)));
end;
S := TVector3SingleList.Create;
S.Count := ControlPoints.Count;
{ calculate S values }
for i := 1 to S.Count-2 do
S.L[i] := Lerp( (ControlPointT(i+1) - ControlPointT(i))/
(ControlPointT(i+1) - ControlPointT(i-1)),
C.L[i-1], C.L[i]);
S.L[0 ] := VectorSubtract(VectorScale(C.L[0 ], 2), S.L[1 ]);
S.L[S.Count-1] := VectorSubtract(VectorScale(C.L[S.Count-2], 2), S.L[S.Count-2]);
for i := 1 to ControlPoints.Count-1 do
begin
NewCurve := TRationalBezierCurve.Create(ControlPointT(i-1), ControlPointT(i));
NewCurve.ControlPoints.Add(ControlPoints.L[i-1]);
NewCurve.ControlPoints.Add(MiddlePoint(i-1, +1));
NewCurve.ControlPoints.Add(MiddlePoint(i , -1));
NewCurve.ControlPoints.Add(ControlPoints.L[i]);
NewCurve.Weights.AddArray([1.0, 1.0, 1.0, 1.0]);
NewCurve.UpdateControlPoints;
Result.Add(NewCurve);
end;
finally
C.Free;
S.Free;
end;
except Result.Free; raise end;
end;
class function TSmoothInterpolatedCurve.NiceClassName: string;
begin
Result := 'Smooth Interpolated curve';
end;
procedure TSmoothInterpolatedCurve.UpdateControlPoints;
var
i: Integer;
begin
inherited;
FreeAndNil(BezierCurves);
BezierCurves := ToRationalBezierCurves(true);
ConvexHullPoints.Clear;
ConvexHullPoints.AddList(ControlPoints);
for i := 0 to BezierCurves.Count-1 do
begin
ConvexHullPoints.Add(BezierCurves[i].ControlPoints.L[1]);
ConvexHullPoints.Add(BezierCurves[i].ControlPoints.L[2]);
end;
end;
constructor TSmoothInterpolatedCurve.Create(const ATBegin, ATEnd: Float);
begin
inherited;
ConvexHullPoints := TVector3SingleList.Create;
end;
destructor TSmoothInterpolatedCurve.Destroy;
begin
FreeAndNil(BezierCurves);
FreeAndNil(ConvexHullPoints);
inherited;
end;
end.
|