This file is indexed.

/usr/src/castle-game-engine-4.1.1/images/castleimages.pas is in castle-game-engine-src 4.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
{
  Copyright 2001-2013 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

(*Loading, saving, and processing of 2D (and 3D) images (TCastleImage and descendants).
  Storing images in the memory, loading and saving them from/to files in various
  formats, resizing, converting to grayscale, copying and merging,
  many other image operations --- it's all here.

  The most important class here is @link(TCastleImage).
  It represents an image as a simple uncompressed array of pixels.
  Descendants of TCastleImage define what exactly is a "pixel".
  We have 8-bit color images
  (@link(TRGBAlphaImage), @link(TRGBImage),
  @link(TGrayscaleAlphaImage) and @link(TGrayscaleImage)).
  We also have an image with floating-point precision and range:
  @link(TRGBFloatImage).
  You are free to create more descendants of TCastleImage in your own units
  if you want to encode the pixel differently.

  When reading and writing image files, we understand various image
  formats. See TImageFormat documentation for a current list of supported
  formats, with comments specific to particular formats.
  The basic loading and saving procedures and LoadImage and SaveImage.

  Example usage of this unit:

@longCode(#
  var
    Image: TCastleImage;
  begin
    Image := LoadImage('image.png', []);
    { scale the image to be 2x smaller }
    Image.Resize(Image.Width div 2, Image.Height div 2);
    SaveImage(Image, 'newimage.png');
  end;
#)

  This unit is of course not dependent on OpenGL or any other rendering
  library. See CastleGLImages for OpenGL image operations (for textures and others).
*)

unit CastleImages;

{
  TODO:
  - implement more impressive resizing filters, at least simple
    linear like gluScaleImage
}

{$include castleconf.inc}
{$include pngconf.inc}
{$modeswitch nestedprocvars}{$H+}

interface

uses SysUtils, Classes, Math, CastleUtils, CastleVectors,
  CastlePng, CastleFileFilters, CastleClassUtils, CastleColors,
  FGL, FPImage, FPReadPCX, FPReadGIF, FPReadPSD, FPReadTGA, FPReadTiff, FPReadXPM,
  FPReadJPEG, FPWriteJPEG, FPReadPNM;

type
  { See TCastleImage.AlphaChannel. }
  TAlphaChannel = (acNone, acSimpleYesNo, acFullRange);

const
  { Default parameters for TEncodedImage.AlphaChannel,
    decide how to detect textures alpha channel. }
  DefaultAlphaTolerance = 5;
  DefaultAlphaWrongPixelsTolerance = 0.01;

{ Colors ------------------------------------------------------------ }

{ Check if the two RGB colors are equal, ignoring small differences.
  All three color components may differ by at most Tolerance.
  When Tolerance is 0, this is a normal (exact) comparison. }
function EqualRGB(const Color1, Color2: TVector3Byte; Tolerance: Byte): boolean;

{ TCastleImage --------------------------------------------------------------- }

type
  { Raised by @link(TCastleImage.MakeExtracted) when coordinates on image
    are wrong.
    Possibly I will use it in more routines in the future. }
  EImagePosOutOfRange = class(Exception);

  EImageLerpError = class(Exception);
  EImageLerpInvalidClasses = class(EImageLerpError);
  EImageLerpDifferentSizes = class(EImageLerpError);

  { Abstract class for an image with unspecified, possibly compressed,
    memory format. The idea is that both uncompressed images (TCastleImage)
    and compressed images (TS3TCImage) are derived from this class. }
  TEncodedImage = class
  private
    FWidth, FHeight, FDepth: Cardinal;
  protected
    { Operate on this by Get/Realloc/FreeMem.
      It's always freed and nil'ed in destructor. }
    FRawPixels: Pointer;
  public
    destructor Destroy; override;

    property Width: Cardinal read FWidth;
    property Height: Cardinal read FHeight;
    property Depth: Cardinal read FDepth;

    property RawPixels: Pointer read FRawPixels;

    { Is an image empty.

      @true means that RawPixels = @nil,
      and Width * Height * Depth = 0
      (so either Width = 0 or Height = 0 or Depth = 0).

      @false means that RawPixels <> nil and Width * Height * Depth <> 0
      (so all Width > 0 and Height > 0 and Depth > 0, since they are
      Cardinal (unsigned) always). }
    function IsEmpty: boolean;

    { Does an image have an alpha channel.

      You may also be interested in the AlphaChannel.
      AlphaChannel answers always atNone if HasAlpha = false,
      and always acSimpleYesNo or acFullRange if HasAlpha = true.
      But AlphaChannel may perform longer analysis of pixels
      (to differ between acSimpleYesNo and acFullRange), while this
      function always executes ultra-fast (as it's constant for each
      TCastleImage descendant).

      @italic(Descendants implementors notes:) in this class, TCastleImage,
      this returns @false. Override to return @true for images with
      alpha channel. }
    function HasAlpha: boolean; virtual;

    { @abstract(Check does an image have an alpha channel,
      and if yes analyze alpha channel: is it a single yes-no (only full
      or none values), or does it have alpha values in between?)

      This is quite useful for automatic detection how alpha textures
      should be displayed: for simple yes/no alpha, OpenGL alpha_test
      is a simple solution. For full range alpha, OpenGL blending should
      be used. Blending is a little problematic, since it requires
      special rendering order, since it doesn't cooperate nicely with
      Z-buffer. That's why we try to detect simple yes/no alpha textures,
      so that we're able to use simpler alpha test for them.

      This method analyzes every pixel. It's alpha is considered "simple"
      if it's <= AlphaTolerance, or >= 255 - AlphaTolerance.
      So for the default AlphaTolerance, "simple" alpha means only exactly
      0 or 255 (maximum Byte values).
      The method returns true if the ratio of non-simple pixels is
      WrongPixelsTolerance. For example, default WrongPixelsTolerance = 0
      means that every pixel must have "simple" alpha channel.
      Greated WrongPixelsTolerance values may allow some tolerance,
      for example WrongPixelsTolerance = 0.01 allows 1 percent of pixels
      to fail the "simple alpha" test and the image can still be considered
      "simple yes/no alpha channel".

      In summary, default Tolerance values are 0, so exactly all pixels
      must have exactly full or exactly none alpha. Increasing
      tolerance values (for example, AlphaTolerance = 5
      and WrongPixelsTolerance = 0.01 may be good start --- still conservative
      enough, and tolerate small deviations) allows you to accept
      more images as simple yes/no alpha. Of course too large tolerance
      values have no sense --- AlphaTolerance >= 128, or WrongPixelsTolerance >= 1.0
      will cause all images to be accepted as "simple yes/no alpha".

      @italic(Descendants implementors notes:) in this class, this simply
      always returns atNone. For descendants that have alpha channel,
      implement it, honouring AlphaTolerance and WrongPixelsTolerance as
      described. }
    function AlphaChannel(
      const AlphaTolerance: Byte = DefaultAlphaTolerance;
      const WrongPixelsTolerance: Single = DefaultAlphaWrongPixelsTolerance):
      TAlphaChannel; virtual;
  end;

  TResizeInterpolation = (riNearest, riBilinear);

  { An abstract class representing image as a simple array of pixels.
    RawPixels is a pointer to Width * Height * Depth of pixels.

    What exactly is a "pixel" is undefined in this class. Each descendant
    of TCastleImage defines it's own pixel encoding and interpretation.
    The only requirement is that all pixels have the same size (PixelSize).
    For example, for TRGBImage a "pixel" is a TVector3Byte type
    representing a (red, green, blue) color value.

    When Depth > 1, the image is actually a 3D (not just 2D!) image.
    We call the particular 2D layers then "slices".
    Although some TCastleImage methods (and functions in other units, like CastleGLImages)
    still operate only on the 1st "slice", that is the 2D image on Depth = 0
    --- be careful. But many methods correctly take the depth into consideration.

    Pixels in RawPixels are ordered in slices, each slice is ordered in rows,
    in each row pixels are specified
    from left to right, rows are specified starting from lower row to upper.
    This means that you can think of RawPixels as

@longCode(#
  ^(packed array[0..Depth - 1, 0..Height - 1, 0..Width - 1] of TPixel)
#)

    Assuming the above definition, RawPixels^[z, y, x]
    is color of pixel at position z, x, y.

    Note that specifying rows from lower to upper follows an OpenGL standard,
    this makes using this unit with OpenGL straightforward.

    Don't ever operate on RawPixels pointer directly --- allocating, reallocating,
    freeing memory pointed to by RawPixels is handled inside this class.
    You must only worry to always free created TCastleImage instances
    (like with any class).

    Note that the only valid states of instances of this class
    are when (Width * Height * Depth > 0 and RawPixels <> nil) or
    (Width * Height * Depth = 0 and RawPixels = nil). Otherwise the fundamental
    assumption that RawPixels is a pointer to Width * Height * Depth pixels would
    be broken (as nil pointer cannot point to anything, and on the other
    side it's rather useless to have a pointer to 0 bytes (since you
    can never dereference it anyway) even if theoretically every PtrInt
    value can be treated as valid pointer to 0 bytes).

    Note about coordinates:

    @orderedList(
      @item(All X, Y, Z coordinates of pixels are 0-based
        (X in range 0..Width-1, and Y in 0..Height-1, and Z in 0..Depth-1).)

      @item(If documentation for some method does not specify otherwise,
        correctness of coordinates is *not* checked in method,
        which can lead to various errors at runtime if you will pass
        incorrect coordinates to given routine.)
    )
  }
  TCastleImage = class(TEncodedImage)
  private
    procedure NotImplemented(const AMethodName: string);
  protected
    { Check that both images have the same sizes and Second image class
      descends from First image class. If not, raise appropriate ELerpXxx
      exceptions.

      Some implementation of TRGBImage.LerpWith may require
      other checks (since LerpWith may be sometimes allowed between unequal
      classes), so this doesn't have to be used by all TRGBImage.LerpWith
      implementations (although it's comfortable for simple implementations). }
    procedure LerpSimpleCheckConditions(SecondImage: TCastleImage);
  public
    { Constructor without parameters creates image with Width = Height = Depth = 0
      and RawPixels = nil, so IsEmpty will return @true.

      Both constructors must be virtual, this allows to implement things
      like TCastleImage.MakeCopy. }
    constructor Create; overload; virtual;
    constructor Create(
      const AWidth, AHeight: Cardinal;
      const ADepth: Cardinal = 1); overload; virtual;

    { This is equivalent to SetSize(0, 0, 0).
      It sets Width = Height = 0 and RawPixels = nil. }
    procedure Empty;

    { Change Width and Height to given AWidth, AHeight.
      RawPixels is changed to point to the new memory.
      Previous image contents are lost. (use one of the other methods,
      like @link(Resize), if you want to change image size preserving
      it's contents) }
    procedure SetSize(
      const AWidth, AHeight: Cardinal;
      const ADepth: Cardinal = 1);

    { Size of TPixel in bytes for this TCastleImage descendant. }
    class function PixelSize: Cardinal; virtual; abstract;

    { Number of color components in TPixel.

      E.g. RGB is 3 components and RGB+Alpha is 4 components,
      RGB+Exponent is 3 components (because it describes only
      Red, Green and Blue values (Exponent value is just used
      to correctly interpret these, it's not a 4th component)). }
    class function ColorComponentsCount: Cardinal; virtual; abstract;

    { Pointer to the (x, y, z) pixel of image.

      Note that they don't check X, Y, Z correctness in any way,
      it's your responsibility to always pass 0 <= X < Width and
      0 <= Y < Height and 0 <= Z < Depth.

      Note that this function @italic(should) be reintroduced in descendants
      to return the same value but typecasted to something better then Pointer
      (something like ^TPixel). }
    function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): Pointer;

    { Pointer to the first pixel in the Y row of the image.
      Same thing as @link(PixelPtr) but always with X = 0.

      Note that this function @italic(should) be reintroduced in descendants
      to return the same value but typecasted to something better then Pointer,
      preferably something like ^(array of TPixel). }
    function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): Pointer;

    { This inverts RGB colors (i.e. changes each RGB component's value
      to High(Byte)-value). Doesn't touch other components,
      e.g. alpha value in case of TRGBAlphaImage descendant.

      Note that this may be not overriden in every TCastleImage descendant,
      then default implementation of this method in this class
      will raise EInternalError. This also means that you must not
      call inherited in descendants when overriding this method. }
    procedure InvertRGBColors; virtual;

    { Set the RGB color portion of the pixel.

      In case of descendants that have more then RGB components,
      other color components are not touched (e.g. in case of TRGBAlphaImage
      alpha value of given pixel is not changed).

      In case of descendants that don't have anything like RGB encoded
      inside (e.g. TGrayscaleImage), this should not be overriden and then
      default implementation of this method in this class
      will raise EInternalError. This also means that you must not
      call inherited in descendants when overriding this method.

      As usual, you are responsible for guaranting correctness of given
      X, Y coordinates because their correctness is not checked here. }
    procedure SetColorRGB(const X, Y: Integer; const v: TVector3Single); virtual;

    { Create a new object that has exactly the same class
      and the same contents as this object.
      (note: no, this function is *not* constructor, because it's implemented
      in TCastleImage, but it always returns some descendant of TCastleImage). }
    function MakeCopy: TCastleImage;

    { Change Width and Height and appropriately stretch
      image contents.

      If ResizeToX or ResizeToY is 0 then it means to take
      Width or Height, respectively.
      So e.g. using ResizeToX = ResizeToY = 0 is the same thing
      as using ResizeToX = Width and ResizeToY = Height and this is NOP.

      Remember that resizing may change RawPixels pointer, so all pointers
      that you aquired using functions like
      RawPixels, RGBPixels, AlphaPixels, RowPtr, PixelPtr
      may be invalid after calling Resize.

      If ProgressTitle <> '' this will call Progress.Init/Step/Fini
      from CastleProgress to indicate progress of operation. }
    procedure Resize(ResizeToX, ResizeToY: Cardinal;
      const Interpolation: TResizeInterpolation = riNearest;
      const ProgressTitle: string = '');

    { Create a new TCastleImage instance with size ResizeToX, ResizeToY
      and pixels copied from us and appropriately stretched.
      Class of new instance is the same as our class.

      As with @link(Resize), ResizeTo* = 0 means to use current Width/Height.
      So e.g. using MakeResized(0, 0) is the same thing as using MakeCopy.

      As with @link(Resize),
      if ProgressTitle <> '' this will call Progress.Init/Step/Fini
      from CastleProgress to indicate progress of operation. }
    function MakeResized(ResizeToX, ResizeToY: Cardinal;
      const Interpolation: TResizeInterpolation = riNearest;
      const ProgressTitle: string = ''): TCastleImage;

    { Mirror image horizotally (i.e. right edge is swapped with left edge) }
    procedure FlipHorizontal;

    { Make rotated version of the image.
      See @link(Rotate) for description of parameters. }
    function MakeRotated(Angle: Integer): TCastleImage;

    { Rotate image by Angle * 90 degrees, clockwise.
      For example, 0 does nothing. 1 rotates by 90 degrees, 2 rotates
      by 180, 3 rotates by 270. All other values (negative too) are circular
      (modulo), so e.g. 4 again does nothing, 5 rotates by 90 degrees and so on. }
    procedure Rotate(const Angle: Integer);

    { Create a new instance with the same class, and size
      TileX * Width and TileY * Height and contents being our contents
      duplicated (tiled).
      Must be TileX, TileY > 0. }
    function MakeTiled(TileX, TileY: Cardinal): TCastleImage;

    { Extract rectangular area of this image.
      X0 and Y0 are start position (lower-left corner),
      ExtractWidth, ExtractHeight specify size of area.

      This checks parameters for correctness -- if start position in not
      good or ExtractWidth/Height are too large exception
      @link(EImagePosOutOfRange) is raised. }
    function MakeExtracted(X0, Y0, ExtractWidth, ExtractHeight: Cardinal): TCastleImage;

    { Set all image pixels to the same value.
      This is implemented only in descendants that represent a pixel
      as a TVector4Byte (e.g. TRGBAlphaImage) or TVector3Byte
      (e.g. TRGBImage, 4th component is ignored in this case).

      In this class this simply raises EInternalError to say 'not implemented'.
      This also means that you must not call inherited in
      descendants when overriding this method. }
    procedure Clear(const Pixel: TVector4Byte); virtual;

    { Check do all image pixels have the same value Pixel.
      This is implemented only in descendants that represent a pixel
      as TVector4Byte or TVector3Byte (4th component is ignored in this
      case), just like method @link(Clear).

      In this class this simply raises EInternalError to say 'not implemented'.
      This also means that you must not call inherited in
      descendants when overriding this method. }
    function IsClear(const Pixel: TVector4Byte): boolean; virtual;

    { Multiply each RGB color by a matrix.
      This is a useful routine for many various conversions of image colors.
      Every pixel's RGB color is multiplied by given Matrix,
      i.e. PixelRGBColor := Matrix * PixelRGBColor.

      If some value in some channel will be < 0, it will be set to 0.
      And if it will be > High(Byte), it will be set to High(Byte).

      Examples: when
        Matrix = IdentityMatrix3Single, this is NOOP.
        Matrix = ((2, 0, 0), (0, 1, 0), (0, 0, 1))
          red channel is made lighter.
        Matrix = ((0, 0, 1), (0, 1, 0), (1, 0, 0))
          swaps red and blue channel.
        Matrix = ((0.33, 0.33, 0.33),
                  (0.33, 0.33, 0.33),
                  (0.33, 0.33, 0.33))
          is a simple conversion to grayscale (actually incorrect, even if often
          visually acceptable; actually instead of 0.33 one has to use
          GrayscaleFloat/ByteValues, this is already implemented
          in ImageTransformColorsTo1st function)

      Note: it's often more optimal to hard-code necessary color transformations
      as TColorModulatorFunc and use ModulateRGB.

      This function is only implemented for images that represent Pixel
      as RGB values, for now this means TRGBImage and TRGBAlphaImage.
      In case of TRGBAlphaImage (or any other class that represents
      colors as RGB + something more) alpha channel (i.e. "something more")
      is ignored (i.e. left without any modification).

      In this class this simply raises EInternalError to say 'not implemented'.
      This also means that you must not call inherited in
      descendants when overriding this method. }
    procedure TransformRGB(const Matrix: TMatrix3Single); virtual;

    { Process each pixel by given function.
      If ColorModulator = nil then this procedure does nothing.
      Else, every RGB color value of an image will be transformed using
      ColorModulator.

      Like TransformRGB:
      This function is only implemented for images that represent Pixel
      as RGB values, for now this means TRGBImage and TRGBAlphaImage.
      In case of TRGBAlphaImage (or any other class that represents
      colors as RGB + something more) alpha channel (i.e. "something more")
      is ignored (i.e. left without any modification).

      In this class this simply raises EInternalError to say 'not implemented'.
      This also means that you must not call inherited in
      descendants when overriding this method.  }
    procedure ModulateRGB(const ColorModulator: TColorModulatorByteFunc); virtual;

    { Just like ModulateRGB, but this returns new image, not changing initial
      image. This means that if ColorModulator = nil this is
      equivalent to MakeCopy.

      Implemented if and only if ModulateRGB is implemented. }
     function MakeModulatedRGB(
       const ColorModulator: TColorModulatorByteFunc): TCastleImage;

    { Convert image colors to grayscale.

      Implemented if and only if ModulateRGB is implemented.
      When image has alpha channel, alpha channel value
      (or just anything beyond 3 rgb components) is ignored (not modified).

      This changes color to grayscale, but format of memory storage is the same.
      For example, for TRGBImage, they are still kept in RGB format
      (just Red = Green = Blue). If you want to convert to true Grayscale format,
      you should use TRGBImage.ToGrayscale that will create new
      TGrayscaleImage instance. }
    procedure Grayscale;

    { Convert every image color using Color*Convert function from CastleVectors.
      "Channel" parameter determines which Color*Convert function to use
      (Red, Green or Blue), must be 0, 1 or 2.

      Implemented if and only if ModulateRGB is implemented. }
    procedure ConvertToChannelRGB(Channel: Integer);

    { Converts every image color using Color*Strip function from CastleVectors.
      "Channel" parameter determines which Color*Strip function to use
      (Red, Green or Blue), must be 0, 1 or 2.

      Implemented if and only if ModulateRGB is implemented. }
    procedure StripToChannelRGB(Channel: Integer);

    { Check if given Image has the same class, the same sizes
      (Width, Height) and contains exactly the same pixel values. }
    function IsEqual(Image: TCastleImage): boolean;

    { This is like IsEqual, but is compares only given parts of the images.
      Note that it's your responsibility to make sure that given areas
      are really within the sizes of Self or Image.

      Overloaded version without SelfXxx parameters compares whole Self
      to given part of Image. Analogously, version without ImageXxx parameters
      compares whole Image to part of Self.

      @groupBegin }
    function ArePartsEqual(
      const SelfX0, SelfY0, SelfWidth, SelfHeight: Cardinal;
      Image: TCastleImage;
      const ImageX0, ImageY0, ImageWidth, ImageHeight: Cardinal): boolean; overload;

    function ArePartsEqual(
      Image: TCastleImage;
      const ImageX0, ImageY0, ImageWidth, ImageHeight: Cardinal): boolean; overload;

    function ArePartsEqual(
      const SelfX0, SelfY0, SelfWidth, SelfHeight: Cardinal;
      Image: TCastleImage): boolean; overload;
    { @groupEnd }

    { These check that Image and Self have equal classes, and then
      copy Self to Image or Image to Self.
      X0 and Y0 is each case are the position on the destinantion image.

      Optionally you can specify dimensions of rectangle from source image
      to use (please note that they are assumed correct here; so you better
      check them, or risk invalid memory reads).

      @groupBegin }
    procedure CopyFrom(Image: TCastleImage; const X0, Y0: Cardinal);
    procedure CopyFrom(Image: TCastleImage; const X0, Y0: Cardinal;
      const SourceX0, SourceY0, SourceWidth, SourceHeight: Cardinal);
    procedure CopyTo(Image: TCastleImage; const X0, Y0: Cardinal);
    { @groupEnd }

    { Makes linear interpolation of colors from this image and the SecondImage.
      Intuitively, every pixel in new image is set to

@preformatted(
  (1 - Value) * Self[pixel] + Value * SecondImage[pixel]
)

      Both images need to have the exact same size.
      If they are not, EImageLerpDifferentSizes is raised.

      Not all TCastleImage combinations are allowed. Every subclass is required
      to override this to at least handle Lerp between itself.
      That is, TRGBImage.Lerp has to handle Lerp with other TRGBImage,
      TRGBAlphaImage.Lerp has to handle Lerp with other TRGBAlphaImage etc.
      Other combinations may be permitted, if useful and implemented.
      EImageLerpInvalidClasses is raised if given class combinations are
      not allowed.

      In this class, this simply always raises EImageLerpInvalidClasses.

      @raises(EImageLerpDifferentSizes When SecondImage size differs
        from this image.)
      @raises(EImageLerpInvalidClasses When Lerp between this TCastleImage
        descendant class and SecondImage class is not implemented.) }
    procedure LerpWith(const Value: Single; SecondImage: TCastleImage); virtual;

    { Mix 4 colors, with 4 weights, into a resulting color.
      All 4 Colors and OutputColor must be pointers to a pixel of current
      image class, that is they must point to PixelSize bytes of memory.

      @raises(EImageLerpInvalidClasses When mixing is not implemented
        for this image class.) }
    class procedure MixColors(const OutputColor: Pointer;
       const Weights: TVector4Single; const Colors: TVector4Pointer); virtual;
  end;

  TCastleImageList = specialize TFPGObjectList<TCastleImage>;

  TEncodedImageList = specialize TFPGObjectList<TEncodedImage>;

  TS3TCCompression = (
    { s3tcDxt1_RGB and s3tcDxt1_RGBA are the same compression method,
      except in s3tcDxt1_RGB the alpha information is ignored,
      while in s3tcDxt1_RGBA we have simple yes/no alpha.

      The difference is equivalent to OpenGL differences in treating
      @unorderedList(
        @itemSpacing compact
        @item GL_COMPRESSED_RGB_S3TC_DXT1_EXT and
        @item GL_COMPRESSED_RGBA_S3TC_DXT1_EXT.
      )
    }
    s3tcDxt1_RGB,
    s3tcDxt1_RGBA,

    { DXT3 and DXT5 are always treated like they had full-range alpha channel. }
    s3tcDxt3,
    s3tcDxt5);

  ECannotFlipS3TCImage = class(Exception);

  { Image encoded with S3TC compression. }
  TS3TCImage = class(TEncodedImage)
  private
    FCompression: TS3TCCompression;
    FSize: Cardinal;
  public
    constructor Create(const AWidth, AHeight: Cardinal;
      const ADepth: Cardinal;
      const ACompression: TS3TCCompression);

    property Compression: TS3TCCompression read FCompression;

    { Size of the whole image data inside RawPixels, in bytes. }
    property Size: Cardinal read FSize;

    function HasAlpha: boolean; override;
    function AlphaChannel(
      const AlphaTolerance: Byte;
      const WrongPixelsTolerance: Single): TAlphaChannel; override;

    { Flip compressed image vertically, losslessly.

      This usese the knowledge of how S3TC compression works,
      how the data is coded for each 4x4 block,
      to losslessly flip the image, without re-compressing it.
      The idea is described here
      [http://users.telenet.be/tfautre/softdev/ddsload/explanation.htm].

      @raises(ECannotFlipS3TCImage
        Raises ECannotFlipS3TCImage when image Height is not 1, 2, 3
        or a multiple of 4 (since the trick doesn't work in these cases,
        pixels would move between 4x4 blocks). Note that if Height
        is a power of two (as common for OpenGL textures) then it's
        always possible to make a flip.) }
    procedure FlipVertical;

    { Decompress S3TC image.

      This uses DecompressS3TC variable, so you have to initialialize it
      first (for example to GLImage.GLDecompressS3TC) before using this.

      @raises(ECannotDecompressS3TC If cannot decompress S3TC,
        because decompressor is not set and there was some other error
        within decompressor.) }
    function Decompress: TCastleImage;

    function MakeCopy: TS3TCImage;
  end;

  ECannotDecompressS3TC = class(Exception);

  TDecompressS3TCFunction = function (Image: TS3TCImage): TCastleImage;

var
  { Assign here S3TC decompression function that is available.
    This way the "decompressor" is pluggable, which means that
    you can even use OpenGL to decompress S3TC textures, if you're going
    to load images while some OpenGL context is active. }
  DecompressS3TC: TDecompressS3TCFunction;

{ TCastleImageClass and arrays of TCastleImageClasses ----------------------------- }

type
  { }
  TCastleImageClass = class of TCastleImage;
  TEncodedImageClass = class of TEncodedImage;
  TDynArrayImageClasses = array of TCastleImageClass;

  { @deprecated Deprecated name for TCastleImageClass. }
  TImageClass = TCastleImageClass deprecated;

{ Check is ImageClass one of the items in the ImageClasses array,
  or a descendant of one of them. }
function InImageClasses(ImageClass: TCastleImageClass;
  const ImageClasses: array of TCastleImageClass): boolean; overload;

{ Check is Image class one of the items in the ImageClasses array,
  or a descendant of one of them.
  This is a shortcut for InImageClasses(Image.ClassType, ImageClasses). }
function InImageClasses(Image: TCastleImage;
  const ImageClasses: array of TCastleImageClass): boolean; overload;

(*Check if both arrays contain exactly the same classes in the same order.

  May be extended in the future to do better checks and return true
  also if both array contain the same classes but in different order,
  and one array may contain the same classes duplicated any times.
  So the intention is that you should treat both arrays as sets
  (i.e. order of elements is ignored).

  The problem is that this function should be lighting fast
  (as the main purpose of it is to use it in constructions like
  setting property values, e.g.

@longCode(#
  if ImageClassesArraysEqual(Value, SomeProperty) then
  begin
    SomeProperty := Value;
    { ... do some lengthy operations to update new value of SomeProperty ... }
  end;
#)
  ), and doing smarter checks may cost us a little time.

  So for now this function returns
  @unorderedList(
    @item @true if for sure both arrays contain the same classes and
    @item @false if @italic(possibly) they don't contain the same classes.
  ) *)
function ImageClassesEqual(const Ar1, Ar2: array of TCastleImageClass): boolean;

procedure ImageClassesAssign(var Variable: TDynArrayImageClasses;
  const NewValue: array of TCastleImageClass);

{ TCastleImage basic descendants --------------------------------------------- }

type
  TRGBAlphaImage = class;
  TRGBFloatImage = class;
  TGrayscaleImage = class;
  TGrayscaleAlphaImage = class;

  { Image with pixel represented as a TVector3Byte (red, green, blue). }
  TRGBImage = class(TCastleImage)
  private
    function GetRGBPixels: PVector3Byte;
  public
    { This is the same pointer as RawPixels, only typecasted to PVector3Byte }
    property RGBPixels: PVector3Byte read GetRGBPixels;

    class function PixelSize: Cardinal; override;
    class function ColorComponentsCount: Cardinal; override;

    function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): PVector3Byte;
    function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): PArray_Vector3Byte;

    procedure InvertRGBColors; override;

    procedure SetColorRGB(const x, y: Integer; const v: TVector3Single); override;

    procedure Clear(const Pixel: TVector4Byte); override;
    function IsClear(const Pixel: TVector4Byte): boolean; override;

    procedure TransformRGB(const Matrix: TMatrix3Single); override;
    procedure ModulateRGB(const ColorModulator: TColorModulatorByteFunc); override;

    { Create a new TRGBAlphaImage object with RGB colors
      copied from this object, but alpha of each pixel is set
      to some random value (whatever was at that particular memory
      place at that time). }
    function ToRGBAlphaImage_AlphaDontCare: TRGBAlphaImage;

    { Like @link(ToRGBAlphaImage_AlphaDontCare), but alpha of every
      pixel is set to given Alpha. }
    function ToRGBAlphaImage_AlphaConst(Alpha: byte): TRGBAlphaImage;

    { Like @link(ToRGBAlphaImage_AlphaDontCare), but alpha of every
      pixel is set to either AlphaOnColor (when color of pixel
      is equal to AlphaColor with Tolerance, see @link(EqualRGB))
      or AlphaOnNoColor. }
    function ToRGBAlphaImage_AlphaDecide(
      const AlphaColor: TVector3Byte; Tolerance: Byte;
      AlphaOnColor: Byte; AlphaOnNoColor: Byte): TRGBAlphaImage;

    { Convert image to an TRGBFloatImage format.

      Although float format offers superior precision compared to 8bit RGB,
      there is a slight chance of some unnoticeable loss of information
      in such convertion, since floating-point values are involved
      in calculation.

      But generally this conversion is relatively safe (contrary to
      convertion float -> 8-bit RGB, which must be lossy).

      But still you should note that doing such convertion has little
      sense since float format is useful only when you have colors that can't
      be expressed as simple 8-bit RGB. But by using this convertion
      you initially fill float image with data that does not have
      precision beyond standard 0..255 discreet range for each RGB component... }
    function ToRGBFloat: TRGBFloatImage;

    function ToGrayscale: TGrayscaleImage;

    { Draw horizontal line. Must be y1 <= y2, else it is NOOP. }
    procedure HorizontalLine(const x1, x2, y: Integer;
      const Color: TVector3Byte);

    { Draw vertical line. Must be x1 <= x2, else it is NOOP. }
    procedure VerticalLine(const x, y1, y2: Integer;
      const Color: TVector3Byte);

    { Create image by merging two images according to a (third) mask image.
      This is a very special constructor.
      It creates image with the same size as MapImage.
      It also resizes ReplaceWhiteImage, ReplaceBlackImage
      to the size of MapImage.

      Then it inits color of each pixel of our image with
      combined colors of two pixels on the same coordinates from
      ReplaceWhiteImage, ReplaceBlackImage, something like

@preformatted(
  Pixel[x, y] := ReplaceWhiteImage[x, y] * S +
                 ReplaceBlackImage[x, y] * (S-1);
)

      where S = average of red, gree, blue of color MapImage[x, y].

      This means that final image will look like ReplaceWhiteImage
      in the areas where MapImage is white, and it will look like
      ReplaceBlackImage in the areas where MapImage is black. }
    constructor CreateCombined(const MapImage: TRGBImage;
      var ReplaceWhiteImage, ReplaceBlackImage: TRGBImage);

    procedure LerpWith(const Value: Single; SecondImage: TCastleImage); override;
    class procedure MixColors(const OutputColor: Pointer;
       const Weights: TVector4Single; const Colors: TVector4Pointer); override;
  end;

  TRGBAlphaImage = class(TCastleImage)
  private
    function GetAlphaPixels: PVector4Byte;
  public
    { This is the same pointer as RawPixels, only typecasted to PVector4Byte }
    property AlphaPixels: PVector4Byte read GetAlphaPixels;

    class function PixelSize: Cardinal; override;
    class function ColorComponentsCount: Cardinal; override;

    function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): PVector4Byte;
    function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): PArray_Vector4Byte;

    procedure InvertRGBColors; override;

    procedure SetColorRGB(const x, y: Integer; const v: TVector3Single); override;

    procedure Clear(const Pixel: TVector4Byte); override;
    function IsClear(const Pixel: TVector4Byte): boolean; override;

    { Set alpha channel on every pixel to the same given value. }
    procedure ClearAlpha(const Alpha: Byte);

    procedure TransformRGB(const Matrix: TMatrix3Single); override;
    procedure ModulateRGB(const ColorModulator: TColorModulatorByteFunc); override;

    { Set alpha of every pixel to either AlphaOnColor
      (when color of pixel is equal to AlphaColor with Tolerance,
      see @link(EqualRGB)) or AlphaOnNoColor. }
    procedure AlphaDecide(const AlphaColor: TVector3Byte;
      Tolerance: Byte; AlphaOnColor: Byte; AlphaOnNoColor: Byte);

    { Copy RGB contents from one image, and alpha contents from the other.
      RGB channels are copied from the RGB image,
      alpha channel is copied from the Grayscale image. Given RGB and Grayscale
      images must have the same size, and this is the resulting
      size of this image after Compose call. }
    procedure Compose(RGB: TRGBImage; AGrayscale: TGrayscaleImage);

    function HasAlpha: boolean; override;

    function AlphaChannel(
      const AlphaTolerance: Byte;
      const WrongPixelsTolerance: Single): TAlphaChannel; override;

    procedure LerpWith(const Value: Single; SecondImage: TCastleImage); override;
    class procedure MixColors(const OutputColor: Pointer;
       const Weights: TVector4Single; const Colors: TVector4Pointer); override;

    { Remove alpha channel, creating new TRGBImage. }
    function ToRGBImage: TRGBImage;
  end;

  { Image with high-precision RGB colors encoded as 3 floats. }
  TRGBFloatImage = class(TCastleImage)
  private
    function GetRGBFloatPixels: PVector3Single;
  public
    { This is the same pointer as RawPixels, only typecasted to PVector3Single }
    property RGBFloatPixels: PVector3Single read GetRGBFloatPixels;

    class function PixelSize: Cardinal; override;
    class function ColorComponentsCount: Cardinal; override;

    function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): PVector3Single;
    function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): PArray_Vector3Single;

    procedure SetColorRGB(const x, y: Integer; const v: TVector3Single); override;

    procedure Clear(const Pixel: TVector3Single); reintroduce;
    function IsClear(const Pixel: TVector3Single): boolean; reintroduce;

    { Converts TRGBFloatImage to TRGBImage.
      Colors in pixels are simply rounded using @link(Vector3Byte).
      So such convertion not only kills the floating-point
      precision in float format but also clamps color components
      to 0..1. }
    function ToRGBImage: TRGBImage;

    { Every component (red, green, blue) of every pixel
      is multiplied by Scale. }
    procedure ScaleColors(const Scale: Single);

    { Every component (red, green, blue) or every pixel
      is changed to Power(Value, Exp).
      So e.g. Exp = 1/2.2 gives commonly used gamma correction. }
    procedure ExpColors(const Exp: Single);

    procedure LerpWith(const Value: Single; SecondImage: TCastleImage); override;
    class procedure MixColors(const OutputColor: Pointer;
       const Weights: TVector4Single; const Colors: TVector4Pointer); override;
  end;

  { Grayscale image. Color is a simple Byte value. }
  TGrayscaleImage = class(TCastleImage)
  private
    function GetGrayscalePixels: PByte;
  public
    { This is the same pointer as RawPixels, only typecasted to PByte }
    property GrayscalePixels: PByte read GetGrayscalePixels;

    class function PixelSize: Cardinal; override;
    class function ColorComponentsCount: Cardinal; override;

    function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): PByte;
    function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): PByteArray;

    procedure Clear(const Pixel: Byte); reintroduce;
    function IsClear(const Pixel: Byte): boolean; reintroduce;

    { Every pixels value is halved (divided by 2).
      This is done by simple bitshift, so you can be sure that all
      components are < 2^7 after this. }
    procedure HalfColors;

    { Create new TGrayscaleAlphaImage with grayscale channel copied
      from this object, and alpha channel filled with constant Alpha value. }
    function ToGrayscaleAlphaImage_AlphaConst(Alpha: byte): TGrayscaleAlphaImage;

    procedure LerpWith(const Value: Single; SecondImage: TCastleImage); override;
    class procedure MixColors(const OutputColor: Pointer;
       const Weights: TVector4Single; const Colors: TVector4Pointer); override;
  end;

  { Grayscale image with an alpha channel.
    Each pixel is two bytes: grayscale + alpha. }
  TGrayscaleAlphaImage = class(TCastleImage)
  private
    function GetGrayscaleAlphaPixels: PVector2Byte;
  public
    { This is the same pointer as RawPixels, only typecasted to PVector2Byte }
    property GrayscaleAlphaPixels: PVector2Byte read GetGrayscaleAlphaPixels;

    class function PixelSize: Cardinal; override;
    class function ColorComponentsCount: Cardinal; override;

    function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): PVector2Byte;
    function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): PArray_Vector2Byte;

    procedure Clear(const Pixel: TVector2Byte); reintroduce;
    function IsClear(const Pixel: TVector2Byte): boolean; reintroduce;

    function HasAlpha: boolean; override;

    function AlphaChannel(
      const AlphaTolerance: Byte;
      const WrongPixelsTolerance: Single): TAlphaChannel; override;

    procedure LerpWith(const Value: Single; SecondImage: TCastleImage); override;
    class procedure MixColors(const OutputColor: Pointer;
       const Weights: TVector4Single; const Colors: TVector4Pointer); override;
  end;

  { @deprecated Deprecated name for TCastleImage. }
  TImage = TCastleImage deprecated;

{ RGBE <-> 3 Single color convertion --------------------------------- }

{ Encode RGB color as Red + Green + Blue + Exponent format.
  This allows you to encode high-precision colors in 4 bytes,
  see ifRGBE image format for pointers why this is useful.

  Each component of V (red, green, blue) must be from range
  [0, +infinity), not merely from [0, 1].
  That is, V must have only nonnegative values. }
function Vector3ToRGBE(const v: TVector3Single): TVector4Byte;

{ Decode Red + Green + Blue + Exponent back into RGB (3 floats). }
function VectorRGBETo3Single(const v: TVector4Byte): TVector3Single;

{ loading image (format-specific) ---------------------------------------

  Load image from Stream.

  They must honour AllowedImageClasses, just like
  LoadImage does. Except they don't have to care about returning all TCastleImage
  descendants: see @link(TImageFormatInfo.LoadedClasses). So higher-level
  LoadImage will use them and eventually convert their result.

  An appropriate descendant of EImageLoadError will be raised
  in case of error when reading from Stream or when Stream will not
  contain correct data. }

type
  { }
  EImageLoadError = class(Exception);
  EInvalidImageFormat = class(EImageLoadError);
  EInvalidBMP = class(EInvalidImageFormat);
  EInvalidPNG = class(EInvalidImageFormat);
  EInvalidPPM = class(EInvalidImageFormat);
  EInvalidIPL = class(EInvalidImageFormat);
  EInvalidRGBE = class(EInvalidImageFormat);

  { }
  EUnableToLoadImage = class(EImageLoadError);

function LoadPNG(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadBMP(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadGIF(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadTGA(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadSGI(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadTIFF(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadJP2(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadEXR(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadJPEG(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadXPM(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadPSD(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadPCX(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

{ Load PPM image.
  Loads only the first image in .ppm file. }
function LoadPPM(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

{ Load PNM image (PNM, PGM, PBM, PPM) through FpImage.
  Note that for PPM, for now it's more advised to use our LoadPPM. }
function LoadPNM(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

function LoadIPL(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

{ Load RGBE image.
  This low-level function can load to TRGBFloatImage (preserving image data)
  or to TRGBImage (loosing floating point precision of RGBE format). }
function LoadRGBE(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

{ Load DDS image file into a single 2D image. This simply returns the first
  image found in DDS file, which should be the main image.
  If you want to investigate other images in DDS, you have to use TDDSImage
  class. }
function LoadDDS(Stream: TStream;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;

{ saving image (format-specific) --------------------------------------------

  SaveXxx. Each file format may have specialized SaveXxx that allows
  you to give some parameters special for given format.

  Each format must also have procedure with two parameters
  (Img: TCastleImage; Stream: TStream), this will be used with
  ImageFormatsInfo[].
  This means that below we must use overloading instead of
  default parameters, since pointers to given procedures must be
  compatible with @link(TImageSaveFunc).

  SaveXxx should
    raise EImageSaveError.CreateFmt('Saving to XXX image class %s not possible', [Img.ClassName]);
  when Img doesn't have acceptable class.
  Also, list of handled image classes should be reflected in SavedClasses
  in ImageFormatsInfo[] for this format.
}

{ }
procedure SaveBMP(Img: TCastleImage; Stream: TStream);
procedure SavePNG(Img: TCastleImage; Stream: TStream; interlaced: boolean); overload;
procedure SavePNG(Img: TCastleImage; Stream: TStream); { interlaced = false } overload;
{ }
procedure SaveJPEG(Img: TCastleImage; Stream: TStream);
{ }
procedure SavePPM(Img: TCastleImage; Stream: TStream; binary: boolean); overload;
procedure SavePPM(Img: TCastleImage; Stream: TStream); { binary = true } overload;
{ }
procedure SaveRGBE(Img: TCastleImage; Stream: TStream);

procedure SaveDDS(Img: TCastleImage; Stream: TStream);

{ File formats managing ----------------------------------------------------- }

type
  { }
  TImageFormat = (
    { We handle PNG file format fully, both reading and writing,
      through the libpng library.

      This format supports a full alpha channel.
      Besides PSD, this is the only format that allows full-range
      (partial transparency) alpha channel.

      Trying to read / write PNG file when libpng is not installed
      (through LoadImage, SaveImage, LoadPNG, SavePNG and others)
      will raise exception ELibPngNotAvailable. Note that the check
      for availability of libpng is done only once you try to load/save PNG file.
      You can perfectly compile and even run your programs without
      PNG installed, until you try to load/save PNG format. }
    ifPNG,

    { We handle uncompressed BMP images. }
    ifBMP,

    ifPPM,

    { Image formats below are supported by FPImage. }
    ifJPEG, ifGIF, ifTGA, ifXPM, ifPSD, ifPCX, ifPNM,

    { We handle fully DDS (DirectDraw Surface) image format.
      See also TDDSImage class in DDS unit,
      this exposes even more features of the DDS image format. }
    ifDDS,

    { High-dynamic range image format, originally used by Radiance.
      See e.g. the pfilt and ximage programs from the Radiance package
      for processing such images.

      The float color values are encoded smartly as 4 bytes:
      3 mantisas for RGB and 1 byte for an Exponent.
      This is the Greg Ward's RGBE color encoding described in the
      "Graphic Gems" (gem II.5). This allows high floating-point-like precision,
      and possibility to encode any value >= 0 (not necessarily <= 1),
      keeping the pixel only 4 bytes long.

      Encoding a color values with float precision is very useful.
      Otherwise, when synthesized / photographed images are
      very dark / very bright, simply encoding them in traditional fixed-point
      pixel format looses color precision. So potentially important but small
      differences are lost in fixed-point formats.
      And color values are clamped to [0..1] range.
      On the other hand, keeping colors as floats preserves
      everything, and allows to process images later.

      It's most useful and natural to load/save these files as TRGBFloatImage,
      this way you keep the floating-point precision inside memory.
      However, you can also load/convert such image format
      to normal 8-bits image formats (like TRGBImage),
      if you're Ok with losing some of the precision. }
    ifRGBE,

    ifIPL,

    { Image formats below are supported
      by converting them  "under the hood" with ImageMagick.
      This is available only if this unit is compiled with FPC
      (i.e. not with Delphi) on platforms where ExecuteProcess is
      implemented. And ImageMagick must be installed and available on $PATH. }
    ifTIFF, ifSGI, ifJP2, ifEXR
  );
  TImageFormats = set of TImageFormat;

  TImageLoadFunc = function (Stream: TStream;
    const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
  TImageSaveFunc = procedure (Img: TCastleImage; Stream: TStream);

  { Possible TCastleImage classes that can be returned by Load method
    of this file format. It's assumed that appropriate Load can return
    only these classes, and any of these classes,
    and can convert between them.

    If the LoadImage will be called allowing some TCastleImage descendants
    that can be returned by Load of this format,
    then LoadImage will pretty much just pass the call to Load
    for appropriate file format.
    The above is expected to be the most common and most efficient case.
    This way necessary conversion (e.g. adding alpha channel) can be
    done at the lowest level, right inside image format handler,
    which means that e.g. you can do it per-pixel, or by libpng transforms
    in case of PNG format.

    Only when it's not possible (if, and only if, none of the AllowedImageClasses
    specified in LoadImage call can be returned by Load of this format)
    then LoadImage will try more elaborate approach. This means that
    it will try using Load of this image format, followed by
    some convertions of the image afterwards. This is generally less
    efficient, as it means that temporary image will be created during
    loading.
  }
  TImageLoadHandledClasses = (
    lcRGB,
    lcRGB_RGBA,
    lcG_GA_RGB_RGBA,
    lcRGB_RGBFloat
  );

  { Possible TCastleImage classes supported by Save method of this file format. }
  TImageSaveHandledClasses = (
    scRGB,
    scG_GA_RGB_RGBA,
    scRGB_RGBFloat
  );

  { Index of TImageFormatInfo.MimeTypes array and
    type for TImageFormatInfo.MimeTypesCount.
    Implies that TImageFormatInfo.MimeTypes is indexed from 1,
    TImageFormatInfo.MimeTypesCount must be >= 1,
    so each file format must have at least one
    (treated as "default" in some cases) MIME type. }
  TImageFormatInfoMimeTypesCount = 1..6;

  { A type to index TImageFormatInfo.Exts array and also for TImageFormatInfo.ExtsCount.
    So TImageFormatInfo.Exts array is indexed from 1,
    and TImageFormatInfo.ExtsCount must be >= 1, so each file format must have at least one
    (treated as "default" in some cases) file extension. }
  TImageFormatInfoExtsCount = 1..3;

  TImageFormatInfo = record
    { Human-readable format name.

      Note that this is supposed to be shown to normal user,
      in save dialog boxes etc. So it should be short and concise. I used to
      have here long format names like @code(JFIF, JPEG File Interchange Format) or
      @code(PNG, Portable Network Graphic), but they are too ugly, and unnecessarily
      resolving format abbrevs. For example, most users probably used JPEG,
      but not many have to know, or understand, that actually this is image format JFIF;
      these are technical and historical details that are not needed for normal usage of image
      operations.

      Saying it directly, I want to keep this FormatName short and concise.
      This is not a place to educate users what some abbrev means.
      This is a place to "name" each file format in the most natural way, which
      usually means to only slightly rephrase typical file format extension.

      In practice, I now copy descriptions from English GIMP open dialog. }
    FormatName: string;

    MimeTypesCount: TImageFormatInfoMimeTypesCount;

    { MIME types recognized as this image file format.
      First MIME type is the default for this file format
      (some procedures make use of it). }
    MimeTypes: array [TImageFormatInfoMimeTypesCount] of string;

    ExtsCount: TImageFormatInfoExtsCount;

    { File extensions for this image type.
      First file extension is default, which is used for some routines.
      Must be lowercase.

      This is used e.g. to construct file filters in open/save dialogs.
      Together with MimeTypes it is also used by URIMimeType to map
      file extension into a MIME type. An extension matching one of Exts
      values implicates the default MIME type for this format (MimeTypes[1]).

      Note that to cooperate nicely with network URLs
      (when server may report MIME type) and data URIs, most of the code
      should operate using MIME types instead of file extensions.
      So usually you are more interested in MimeTypes than Exts. }
    Exts: array [TImageFormatInfoExtsCount] of string;

    { Load method for this file format.
      @nil if cannot be loaded. }
    Load: TImageLoadFunc;

    { If Load is assigned, this describes what TCastleImage descendants
      can be returned by this Load. LoadImage will need this information,
      to make necessary convertions to other TCastleImage classes,
      when possible. }
    LoadedClasses: TImageLoadHandledClasses;

    { Save method for this file format.
      @nil if cannot be saved. }
    Save: TImageSaveFunc;
    SavedClasses: TImageSaveHandledClasses;
  end;

const
  { Information about supported image formats. }
  ImageFormatInfos: array [TImageFormat] of TImageFormatInfo =
  ( { The order on this list matters --- it determines the order of filters
      for open/save dialogs.
      First list most adviced and well-known formats, starting from lossless. }

    { Portable Network Graphic } { }
    ( FormatName: 'PNG image';
      MimeTypesCount: 1;
      MimeTypes: ('image/png', '', '', '', '', '');
      ExtsCount: 1; Exts: ('png', '', '');
      Load: @LoadPNG; LoadedClasses: lcG_GA_RGB_RGBA;
      Save: @SavePNG; SavedClasses: scG_GA_RGB_RGBA; ),
    ( FormatName: 'Windows BMP image';
      MimeTypesCount: 1;
      MimeTypes: ('image/bmp', '', '', '', '', '');
      ExtsCount: 1; Exts: ('bmp', '', '');
      Load: @LoadBMP; LoadedClasses: lcRGB_RGBA;
      Save: @SaveBMP; SavedClasses: scRGB),
    { Portable Pixel Map } { }
    ( FormatName: 'PPM image';
      MimeTypesCount: 1;
      MimeTypes: ('image/x-portable-pixmap', '', '', '', '', '');
      ExtsCount: 1; Exts: ('ppm', '', '');
      Load: @LoadPPM; LoadedClasses: lcRGB;
      Save: @SavePPM; SavedClasses: scRGB; ),
    { JFIF, JPEG File Interchange Format } { }
    ( FormatName: 'JPEG image';
      MimeTypesCount: 2;
      MimeTypes: ('image/jpeg', 'image/jpg', '', '', '', '');
      ExtsCount: 3; Exts: ('jpg', 'jpeg', 'jpe');
      Load: @LoadJPEG; LoadedClasses: lcRGB_RGBA;
      Save: @SaveJPEG; SavedClasses: scRGB { actually scRGB_RGBA }),
    { Graphics Interchange Format } { }
    ( FormatName: 'GIF image';
      MimeTypesCount: 1;
      MimeTypes: ('image/gif', '', '', '', '', '');
      ExtsCount: 1; Exts: ('gif', '', '');
      Load: @LoadGIF; LoadedClasses: lcRGB_RGBA;
      Save: nil; SavedClasses: scRGB; ),
    ( FormatName: 'TarGA image';
      MimeTypesCount: 2;
      MimeTypes: ('image/x-targa', 'image/x-tga', '', '', '', '');
      ExtsCount: 2; Exts: ('tga', 'tpic', '');
      Load: @LoadTGA; LoadedClasses: lcRGB_RGBA;
      Save: nil; SavedClasses: scRGB; ),
    ( FormatName: 'XPM image';
      MimeTypesCount: 1;
      MimeTypes: ('image/x-xpixmap', '', '', '', '', '');
      ExtsCount: 1; Exts: ('xpm', '', '');
      Load: @LoadXPM; LoadedClasses: lcRGB_RGBA;
      Save: nil; SavedClasses: scRGB; ),
    ( FormatName: 'PSD image';
      MimeTypesCount: 4;
      MimeTypes: ('image/photoshop', 'image/x-photoshop', 'image/psd', 'application/photoshop', '', '');
      ExtsCount: 1; Exts: ('psd', '', '');
      Load: @LoadPSD; LoadedClasses: lcRGB_RGBA;
      Save: nil; SavedClasses: scRGB; ),
    ( FormatName: 'ZSoft PCX image';
      MimeTypesCount: 5;
      MimeTypes: ('image/pcx', 'application/pcx', 'application/x-pcx', 'image/x-pc-paintbrush', 'image/x-pcx', '');
      ExtsCount: 1; Exts: ('pcx', '', '');
      Load: @LoadPCX; LoadedClasses: lcRGB_RGBA;
      Save: nil; SavedClasses: scRGB; ),
    ( FormatName: 'PNM image';
      MimeTypesCount: 6;
      MimeTypes: ('image/x-portable-anymap', 'image/x-portable-graymap', 'image/x-pgm', 'image/x-portable-bitmap', 'image/pbm', 'image/x-pbm');
      ExtsCount: 3; Exts: ('pnm', 'pgm', 'pbm');
      Load: @LoadPNM; LoadedClasses: lcRGB_RGBA;
      Save: nil; SavedClasses: scRGB; ),

    { Direct Draw Surface } { }
    ( FormatName: 'DDS image';
      MimeTypesCount: 1;
      MimeTypes: ('image/x-dds', '', '', '', '', '');
      ExtsCount: 1; Exts: ('dds', '', '');
      Load: @LoadDDS; LoadedClasses: lcG_GA_RGB_RGBA;
      Save: @SaveDDS; SavedClasses: scG_GA_RGB_RGBA; ),

    { Image formats not well known. }

    ( FormatName: 'RGBE (RGB+Exponent) image';
      MimeTypesCount: 1;
      MimeTypes: ('image/vnd.radiance', '', '', '', '', '');
      ExtsCount: 3; Exts: ('rgbe', 'pic', 'hdr');
      Load: @LoadRGBE; LoadedClasses: lcRGB_RGBFloat;
      Save: @SaveRGBE; SavedClasses: scRGB_RGBFloat; ),
    ( FormatName: 'IPLab image';
      MimeTypesCount: 1;
      { ipl MIME type invented by Kambi, to make it unique to communicate image format for LoadImage } { }
      MimeTypes: ('image/x-ipl', '', '', '', '', '');
      ExtsCount: 1; Exts: ('ipl', '', '');
      Load: @LoadIPL; LoadedClasses: lcRGB;
      Save: nil; SavedClasses: scRGB; ),

    { Image formats loaded using ImageMagick's convert.
      Placed at the end of the list, to be at the end of open/save dialogs
      filters, since there's a large chance they will not work,
      if user didn't install ImageMagick. } { }

    ( FormatName: 'TIFF image';
      MimeTypesCount: 1;
      MimeTypes: ('image/tiff', '', '', '', '', '');
      ExtsCount: 2; Exts: ('tiff', 'tif', '');
      Load: @LoadTIFF; LoadedClasses: lcRGB_RGBA;
      Save: nil; SavedClasses: scRGB; ),
    ( FormatName: 'SGI image';
      MimeTypesCount: 3;
      MimeTypes: ('image/sgi', 'image/x-sgi', 'image/x-sgi-rgba', '', '', '');
      ExtsCount: 1; Exts: ('sgi', '', '');
      Load: @LoadSGI; LoadedClasses: lcG_GA_RGB_RGBA;
      Save: nil; SavedClasses: scRGB; ),
    ( FormatName: 'JPEG 2000 image';
      MimeTypesCount: 4;
      MimeTypes: ('image/jp2', 'image/jpeg2000', 'image/jpeg2000-image', 'image/x-jpeg2000-image', '', '');
      ExtsCount: 1; Exts: ('jp2', '', '');
      Load: @LoadJP2; LoadedClasses: lcG_GA_RGB_RGBA;
      Save: nil; SavedClasses: scRGB; ),
    ( FormatName: 'EXR image';
      MimeTypesCount: 1;
      MimeTypes: ('image/x-exr', '', '', '', '', '');
      ExtsCount: 1; Exts: ('exr', '', '');
      Load: @LoadEXR; LoadedClasses: lcG_GA_RGB_RGBA;
      Save: nil; SavedClasses: scRGB; )
  );

{ Find image file format with given MIME type.
  Returns @false if no format matching given MIME type. }
function MimeTypeToImageFormat(const MimeType: string;
  const OnlyLoadable, OnlySaveable: boolean; out ImgFormat: TImageFormat): boolean;

{ List available image file formats.

  This is basically for debug/info purposes, you can show this to user
  to let him know which formats are supported (and by which extensions
  they are recognized). Although almost always a better way to show
  this to user is just to use SaveImage_FileFilters with a save dialog
  like TCastleWindowBase.FileDialog,
  this shows file types in the open/save dialog,
  so it's most natural and convenient to user.

  ListImageExtsLong produces a multiline info (separated by NL, last line not terminated
  by NL), shows all extensions and FormatName for each file format.
  Each line starts with LinePrefix.

  ListImageExtsShort writes all recognized extensions separated by comma (', ').

  @groupBegin }
function ListImageExtsLong(OnlyLoadable, OnlySaveable: boolean; const LinePrefix: string): string;
function ListImageExtsShort(OnlyLoadable, OnlySaveable: boolean): string;
{ @groupEnd }

{ loading image -------------------------------------------------------------- }

type
  { }
  EImageFormatNotSupported = class(Exception);

{ TODO: zrobic LoadImageGuess ktore zgaduje format na podstawie
  zawartosci. }

(*The ultimate procedure to load an image from a file or URL.

  URL is downloaded using CastleDownload unit.
  As always, if you all you care about is loading normal files, then just pass
  a normal filename (absolute or relative to the current directory)
  as the URL parameter.

  Simple examples:

@longCode(#
  { When you don't care what TCastleImage descendant you get: }
  Image := LoadImage('image.png', []);

  { When you insist on getting TRGBImage, that is 8-bit color image
    without an alpha channel. }
  ImageRGB := LoadImage('image.png', [TRGBImage]) as TRGBImage;
#)

  Image file format may be given explicitly (overloaded version with
  Format parameter), or guessed based on URL extension
  (which can be given explicitly by TypeExt,
  or automatically calculated from full URL).
  For now, we cannot guess the file format based on file contents
  or MIME type (the latter case would be sensible for http URLs).

  AllowedImageClasses says what image classes are allowed.
  As a special case, AllowedImageClasses = [] is equivalent to
  AllowedImageClasses = [TCastleImage] which says that all TCastleImage descendants
  are allowed. Then this function will do everything it can to load
  any image into the best subclass of TCastleImage, losing as little image
  information it can.

  Example: consider you're loading a PNG file. Let's suppose you're
  loading it with AllowedImageClasses = []. Then you can get
  TGrayscaleImage, TGrayscaleAlphaImage, TRGBImage, TRGBAlphaImage,
  depending on whether PNG file is grayscale or not and has alpha or not.
  Now let's suppose you specified AllowedImageClasses = [TRGBImage].
  If PNG file will not be grayscale and not have alpha channel,
  LoadImage will return TRGBImage descendant, as before.
  But if PNG fill *will* have alpha channel then
  LoadImage will simply ignore (strip) alpha channel and return you TRGBImage.

  Similar thing for grayscale: if image file was grayscale but you requested
  only TRGBImage, then grayscale may be "expanded" into full three-channel
  RGB.

  There can also happen reverse situation: you e.g. insist that
  AllowedImageClasses = [TRGBAlphaImage] but given PNG image does not
  have alpha channel. In this case LoadImage may add "dummy" alpha channel
  (everywhere equal to 1.0 or High(Byte)).
  Similar thing when you e.g. gave AllowedImageClasses = [TRGBFloatImage]
  but you're loading from PNG image. In this case you want float precision,
  but image file cannot offer it. So LoadImage can simply convert
  discreet values to appropriating floating point values.

  If at any point LoadImage will find that it's unable to satisfy
  AllowedImageClasses, it will raise @link(EUnableToLoadImage).

  @raises(EUnableToLoadImage If Image cannot be loaded into
    allowed AllowedImageClasses.)

  @raises(EImageFormatNotSupported If image file format cannot be loaded at all.
    This can happen if format is totally unknown (not recognized
    MIME type, derived from file extension in case of local files)
    or if this image format cannot be loaded at all.)

  @groupBegin *)
function LoadImage(Stream: TStream; const StreamFormat: TImageFormat;
  const AllowedImageClasses: array of TCastleImageClass)
  :TCastleImage; overload;
function LoadImage(Stream: TStream; const MimeType: string;
  const AllowedImageClasses: array of TCastleImageClass)
  :TCastleImage; overload;
function LoadImage(const URL: string;
  const AllowedImageClasses: array of TCastleImageClass)
  :TCastleImage; overload;
function LoadImage(const URL: string;
  const AllowedImageClasses: array of TCastleImageClass;
  const ResizeToX, ResizeToY: Cardinal;
  const Interpolation: TResizeInterpolation = riNearest): TCastleImage; overload;
{ @groupEnd }

{ saving image --------------------------------------------------------------- }

type
  { }
  EImageSaveError = class(Exception);

{ Save image to a file. Takes URL as parameter, you can give @code(file) URL
  or just a normal filename.

  File format is determined by looking at URL (guessing MIME type using
  URIMimeType), or given explicitly as MimeType,
  or just given explicitly as Format parameter.

  Image class does @bold(not)
  affect the created image file format, on the assumption that the
  "memory format" of the image (what TCastleImage descendant is used)
  can be orthogonal to the actual "file format" used to save this file.

  Tries to write the image preserving it as closely as possible in this
  image format. When it's not possible, according conversions may be done:
  floating point precision of TRGBFloatImage may be lost (if saving
  to any file format besides RGBE file, although saving to OpenEXR may also
  preserve it once implemented), alpha channel may be lost,
  grayscale may be expanded and such.

  Although not absolutely all conversions are implemented for now.
  You can be sure that
  all image formats (that allow any saving at all) can be saved
  from TRGBImage. Also TRGBFloatImage can be saved to RGBE file.
  Also PNG format supports full collection (grayscale/rgb, alpha/no alpha
  are all perfectly possible in PNG file; and TRGBFloatImage will be just converted
  to 8-bit RGB before saving to PNG).

  @raises(EImageSaveError When it's not possible to save image,
    because of Img class (memory format) and/or image file format.)

  @groupBegin }
procedure SaveImage(const img: TCastleImage; const Format: TImageFormat; Stream: TStream); overload;
procedure SaveImage(const img: TCastleImage; const MimeType: string; Stream: TStream); overload;
procedure SaveImage(const Img: TCastleImage; const URL: string); overload;
{ @groupEnd }

{ Other TCastleImage processing ---------------------------------------------------- }

{ Add and set constant alpha channel of given image.
  If image doesn't have alpha channel, we will create new Img instance
  (old instance will be freed) with colors copy.
  Alpha channel is then filled with AlphaConst }
procedure ImageAlphaConstTo1st(var Img: TCastleImage; const AlphaConst: byte);

{ Choose TCastleImage descendant best matching for this image file format.
  The only purpose of this for now is to pick TRGBFloatImage for RGBE files,
  chooses TRGBImage for anything else.

  For the overloaded version with URL, file format is determined
  by guessing based on file extension.

  @groupBegin }
function ImageClassBestForSavingToFormat(const Format: TImageFormat): TCastleImageClass; overload;
function ImageClassBestForSavingToFormat(const URL: string): TCastleImageClass; overload;
{ @groupEnd }

var
  { File filters if you want to choose a file that can be loaded/saved
    by appropriate functions from Images unit.

    These objects should be treated as read-only outside this unit.
    Initialization / finalization of this unit automatically take care of them.

    @groupBegin }
  LoadImage_FileFilters: TFileFilterList;
  SaveImage_FileFilters: TFileFilterList;
  { @groupEnd }

{ Maximum alpha channel type. Chooses "full range" if anything is "full range",
  otherwise choose "simple yes/no" if anything is "simple yes/no",
  otherwise returns "no alpha channel". }
procedure AlphaMaxTo1st(var A: TAlphaChannel; const B: TAlphaChannel);

{$undef read_interface}

implementation

uses CastleProgress, CastleStringUtils, CastleFilesUtils, CastleWarnings,
  CastleDDS, CastleDownload, CastleURIUtils;

{ image loading utilities --------------------------------------------------- }

{ Helper methods for implemented LoadImage. }

function ClassAllowed(ImageClass: TCastleImageClass;
  const AllowedImageClasses: array of TCastleImageClass): boolean;
begin
  Result := (High(AllowedImageClasses) = -1) or
    InImageClasses(ImageClass, AllowedImageClasses);
end;

function LoadImageParams(
  const AllowedImageClasses: array of TCastleImageClass): string;

  function ImageClassesToStr(const AllowedImageClasses: array of TCastleImageClass): string;
  var
    I: Integer;
  begin
    if High(AllowedImageClasses) = -1 then
      Result := 'all' else
    begin
      Result := '';
      for I := 0 to High(AllowedImageClasses) do
      begin
        if Result <> '' then Result += ', ';
        Result += AllowedImageClasses[I].ClassName;
      end;
    end;
  end;

begin
  Result := 'required class [' + ImageClassesToStr(AllowedImageClasses) + ']';
end;

{ file format specific ------------------------------------------------------- }

{$I images_bmp.inc}
{$I images_png.inc}
{$I images_fpimage.inc}
{$I images_ppm.inc}
{$I images_ipl.inc}
{$I images_rgbe_fileformat.inc}
{$I images_external_tool.inc}
{$I images_dds.inc}

{ Colors ------------------------------------------------------------------ }

function EqualRGB(const Color1, Color2: TVector3Byte; Tolerance: Byte): boolean;
begin
 result:=(Abs(Smallint(Color1[0])-Color2[0]) <= tolerance) and
         (Abs(Smallint(Color1[1])-Color2[1]) <= tolerance) and
         (Abs(Smallint(Color1[2])-Color2[2]) <= tolerance);
end;

{ TEncodedImage -------------------------------------------------------------- }

destructor TEncodedImage.Destroy;
begin
  FreeMemNiling(FRawPixels);
  inherited;
end;

function TEncodedImage.IsEmpty: boolean;
begin
 Result := RawPixels = nil;
end;

function TEncodedImage.HasAlpha: boolean;
begin
  Result := false;
end;

function TEncodedImage.AlphaChannel(
  const AlphaTolerance: Byte;
  const WrongPixelsTolerance: Single): TAlphaChannel;
begin
  Result := acNone;
end;

{ TCastleImage --------------------------------------------------------------- }

constructor TCastleImage.Create;
begin
  inherited;
  { Everything is already inited to nil and 0. }
end;

constructor TCastleImage.Create(
  const AWidth, AHeight: Cardinal;
  const ADepth: Cardinal = 1);
begin
  Create;
  SetSize(AWidth, AHeight, ADepth);
end;

procedure TCastleImage.Empty;
begin
  FreeMemNiling(FRawPixels);
  FWidth := 0;
  FHeight := 0;
  FDepth := 0;
end;

procedure TCastleImage.SetSize(const AWidth, AHeight: Cardinal;
  const ADepth: Cardinal = 1);
begin
  FreeMemNiling(FRawPixels);
  FWidth := AWidth;
  FHeight := AHeight;
  FDepth := ADepth;
  if (AWidth <> 0) and (AHeight <> 0) and (ADepth <> 0) then
    FRawPixels := GetMem(PixelSize * AWidth * AHeight * ADepth);
end;

function TCastleImage.PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): Pointer;
begin
  Result := PointerAdd(RawPixels, PixelSize * (Width * (Height * Z + Y) + X));
end;

function TCastleImage.RowPtr(const Y: Cardinal; const Z: Cardinal = 0): Pointer;
begin
  Result := PointerAdd(RawPixels, PixelSize * (Width * (Height * Z + Y)));
end;

procedure TCastleImage.NotImplemented(const AMethodName: string);
begin
  raise EInternalError.Create(AMethodName +
    ' method not implemented for this TCastleImage descendant');
end;

procedure TCastleImage.InvertRGBColors;
begin
  NotImplemented('InvertRGBColors');
end;

procedure TCastleImage.SetColorRGB(const x, y: Integer; const v: TVector3Single);
begin
  NotImplemented('SetColorRGB');
end;

function TCastleImage.MakeCopy: TCastleImage;
begin
  Result := TCastleImageClass(Self.ClassType).Create(Width, Height);
  Move(RawPixels^, Result.RawPixels^, Depth * Width * Height * PixelSize);
end;

type
  TMixColorsFunction = procedure (const OutputColor: Pointer;
    const Weights: TVector4Single; const Colors: TVector4Pointer) of object;

{ This does the real resizing work.
  It assumes that SourceData and DestinData pointers are already allocated.
  DestinWidth, DestinHeight must not be 0. }
procedure InternalResize(PixelSize: Cardinal;
  SourceData: Pointer; SourceWidth, SourceHeight: Cardinal;
  DestinData: Pointer; DestinWidth, DestinHeight: Cardinal;
  const Interpolation: TResizeInterpolation;
  const MixColors: TMixColorsFunction;
  const ProgressTitle: string);
var
  DestinY: Cardinal;

  procedure MakeLineNearest;
  { write row DestinY of DestinData }
  var
    DestinX, SourceX, SourceY: Cardinal;
    SourceRow, DestinRow: PtrUInt;
  begin
    SourceY := DestinY * SourceHeight div DestinHeight;
    SourceRow := PtrUInt(SourceData) + SourceWidth * SourceY * PixelSize;
    DestinRow := PtrUInt(DestinData) + DestinWidth * DestinY * PixelSize;

    for DestinX := 0 to DestinWidth - 1 do
    begin
      SourceX := DestinX * SourceWidth div DestinWidth;
      Move(Pointer(SourceRow + SourceX * PixelSize)^,
           Pointer(DestinRow + DestinX * PixelSize)^,
           PixelSize);
    end;
  end;

  procedure MakeLineBilinear;
  var
    { For every destination pixel, we consider 4 neighbor source pixels.
      - SourceX1 / SourceX2 are smaller / larger X coordinates in source.
      - SourceY1 / SourceY2 are smaller / larger Y coordinates in source.
      - SourceXFrac / SourceYFrac are fractional parts (in [0..1])
        that say how close our perfect point (from which we should take
        destination color) is to 4 neighbor pixels. }
    DestinX, SourceX1, SourceX2, SourceY1, SourceY2: Cardinal;
    Source1Row, Source2Row, DestinRow: PtrUInt;
    SourceXFrac, SourceYFrac: Single;
    Weights: TVector4Single;
    Colors: TVector4Pointer;
  begin
    SourceYFrac := DestinY * SourceHeight / DestinHeight;
    SourceY1 := Max(Trunc(SourceYFrac), 0);
    SourceY2 := Min(SourceY1 + 1, SourceHeight - 1);
    SourceYFrac := Frac(SourceYFrac);
    Source1Row := PtrUInt(SourceData) + SourceWidth * SourceY1 * PixelSize;
    Source2Row := PtrUInt(SourceData) + SourceWidth * SourceY2 * PixelSize;
    DestinRow := PtrUInt(DestinData) + DestinWidth * DestinY * PixelSize;

    for DestinX := 0 to DestinWidth - 1 do
    begin
      SourceXFrac := DestinX * SourceWidth / DestinWidth;
      SourceX1 := Max(Trunc(SourceXFrac), 0);
      SourceX2 := Min(SourceX1 + 1, SourceWidth - 1);
      SourceXFrac := Frac(SourceXFrac);
      Weights[0] := SourceXFrac * SourceYFrac;
      Colors[0] := Pointer(Source2Row + SourceX2 * PixelSize);
      Weights[1] := (1 - SourceXFrac) * SourceYFrac;
      Colors[1] := Pointer(Source2Row + SourceX1 * PixelSize);
      Weights[2] := (1 - SourceXFrac) * (1 - SourceYFrac);
      Colors[2] := Pointer(Source1Row + SourceX1 * PixelSize);
      Weights[3] :=  SourceXFrac * (1 - SourceYFrac);
      Colors[3] := Pointer(Source1Row + SourceX2 * PixelSize);
      MixColors(Pointer(DestinRow + DestinX * PixelSize), Weights, Colors);
    end;
  end;

type
  TMakeLineFunction = procedure is nested;
var
  MakeLine: TMakeLineFunction;
begin
  case Interpolation of
    riNearest : MakeLine := @MakeLineNearest;
    riBilinear: MakeLine := @MakeLineBilinear;
    else raise EInternalError.Create('Unknown Interpolation for InternalResize');
  end;

  if ProgressTitle = '' then
  begin
    for DestinY := 0 to DestinHeight - 1 do MakeLine;
  end else
  begin
    Progress.Init(DestinHeight, ProgressTitle);
    try
      for DestinY := 0 to DestinHeight - 1 do
      begin
        MakeLine;
        Progress.Step;
      end;
    finally Progress.Fini end;
  end;
end;

procedure TCastleImage.Resize(ResizeToX, ResizeToY: Cardinal;
  const Interpolation: TResizeInterpolation;
  const ProgressTitle: string);
var
  NewPixels: Pointer;
begin
  if ((ResizeToX <> 0) and (ResizeToX <> Width)) or
     ((ResizeToY <> 0) and (ResizeToY <> Height)) then
  begin
    { Make both ResizeTo* non-zero. }
    if ResizeToX = 0 then ResizeToX := Width;
    if ResizeToY = 0 then ResizeToY := Height;

    NewPixels := GetMem(ResizeToX * ResizeToY * PixelSize);
    InternalResize(PixelSize, RawPixels, Width, Height,
      NewPixels, ResizeToX, ResizeToY, Interpolation, @MixColors, ProgressTitle);
    FreeMemNiling(FRawPixels);

    FRawPixels := NewPixels;
    FWidth := ResizeToX;
    FHeight := ResizeToY;
  end;
end;

function TCastleImage.MakeResized(ResizeToX, ResizeToY: Cardinal;
  const Interpolation: TResizeInterpolation;
  const ProgressTitle: string): TCastleImage;
begin
  { Make both ResizeTo* non-zero. }
  if ResizeToX = 0 then ResizeToX := Width;
  if ResizeToY = 0 then ResizeToY := Height;

  Result := TCastleImageClass(ClassType).Create(ResizeToX, ResizeToY);
  try
    if not IsEmpty then
      InternalResize(PixelSize,
               RawPixels,        Width,        Height,
        Result.RawPixels, Result.Width, Result.Height,
        Interpolation, @MixColors, ProgressTitle);
  except Result.Free; raise end;
end;

function TCastleImage.MakeRotated(Angle: Integer): TCastleImage;

  procedure Rotate90;
  var
    X, Y: Integer;
  begin
    Result := TCastleImageClass(ClassType).Create(Height, Width);
    for X := 0 to Width - 1 do
      for Y := 0 to Height - 1 do
        Move(PixelPtr(X, Y)^, Result.PixelPtr(Y, Width - 1 - X)^, PixelSize);
  end;

  procedure Rotate180;
  var
    X, Y: Integer;
  begin
    Result := TCastleImageClass(ClassType).Create(Width, Height);
    for X := 0 to Width - 1 do
      for Y := 0 to Height - 1 do
        Move(PixelPtr(X, Y)^, Result.PixelPtr(Width - 1 - X, Height - 1 - Y)^, PixelSize);
  end;

  procedure Rotate270;
  var
    X, Y: Integer;
  begin
    Result := TCastleImageClass(ClassType).Create(Height, Width);
    for X := 0 to Width - 1 do
      for Y := 0 to Height - 1 do
        Move(PixelPtr(X, Y)^, Result.PixelPtr(Height - 1 - Y, X)^, PixelSize);
  end;

begin
  { convert Angle to 0..3 range }
  Angle := Angle mod 4;
  if Angle < 0 then Angle += 4;

  case Angle of
    1: Rotate90;
    2: Rotate180;
    3: Rotate270;
    { else Angle = 0, nothing to do }
  end;
end;

procedure TCastleImage.Rotate(const Angle: Integer);
var
  New: TCastleImage;
begin
  New := MakeRotated(Angle);
  try
    SetSize(New.Width, New.Height);
    Move(New.RawPixels^, RawPixels^, New.Width * New.Height * PixelSize);
  finally FreeAndNil(New) end;
end;

procedure TCastleImage.FlipHorizontal;
var
  ImageRow, TmpPixel, Pix1, Pix2: Pointer;
  x, y: Integer;
begin
  TmpPixel := GetMem(PixelSize);
  try
    for y := 0 to Height-1 do
    begin
      ImageRow := RowPtr(y);
      for x := 0 to (Width-1) div 2 do
      begin
        Pix1 := PointerAdd(ImageRow, Cardinal(x) * PixelSize);
        Pix2 := PointerAdd(ImageRow, (Width-1-Cardinal(x)) * PixelSize);
        Move(Pix1^, TmpPixel^, PixelSize);
        Move(Pix2^, Pix1^, PixelSize);
        Move(TmpPixel^, Pix2^, PixelSize);
      end;
    end;
  finally FreeMem(TmpPixel) end;
end;

function TCastleImage.MakeTiled(TileX, TileY: Cardinal): TCastleImage;
var
  i, j: Cardinal;
begin
  Result := TCastleImageClass(ClassType).Create(TileX * Width, TileY * Height);
  try
    { Correct but naive version:

    for i := 0 to result.Width-1 do
     for j := 0 to result.Height-1 do
      move(Image.PixelPtr(i mod Image.Width, j mod Image.Height)^,
           Result.PixelPtr( i, j)^,
           Result.PixelSize );

    This can be speeded up copying whole rows at once: }

    for i := 0 to TileX - 1 do
      for j := 0 to Result.Height - 1 do
        Move(PixelPtr(0, j mod Height)^,
             Result.PixelPtr(i * Width, j)^,
             PixelSize * Width );
  except Result.Free; raise end;
end;

function TCastleImage.MakeExtracted(X0, Y0, ExtractWidth, ExtractHeight: Cardinal): TCastleImage;
var
  y: Cardinal;
begin
  if x0 + ExtractWidth > Width then
    raise EImagePosOutOfRange.Create('x0 in MakeExtracted out of range');
  if y0 + ExtractHeight > Height then
    raise EImagePosOutOfRange.Create('y0 in MakeExtracted out of range');

  Result := TCastleImageClass(ClassType).Create(ExtractWidth, ExtractHeight);
  try
    for y := 0 to ExtractHeight - 1 do
      Move(PixelPtr(x0, y + y0)^, Result.RowPtr(y)^, PixelSize * ExtractWidth);
  except Result.Free; raise end;
end;

procedure TCastleImage.Clear(const Pixel: TVector4Byte);
begin
  NotImplemented('Clear');
end;

function TCastleImage.IsClear(const Pixel: TVector4Byte): boolean;
begin
  NotImplemented('IsClear');
  { code will never get here (NotImplemented always raises an exception),
    and code "Result := false;" below is only to avoid compiler warning
    that function result is undefined. }
  Result := false;
end;

procedure TCastleImage.TransformRGB(const Matrix: TMatrix3Single);
begin
  NotImplemented('TransformRGB');
end;

procedure TCastleImage.ModulateRGB(const ColorModulator: TColorModulatorByteFunc);
begin
  NotImplemented('ModulateRGB');
end;

function TCastleImage.MakeModulatedRGB(
  const ColorModulator: TColorModulatorByteFunc): TCastleImage;
begin
  Result := MakeCopy;
  Result.ModulateRGB(ColorModulator);
end;

procedure TCastleImage.Grayscale;
begin
  ModulateRGB(@ColorGrayscaleByte);
end;

procedure TCastleImage.ConvertToChannelRGB(Channel: Integer);
begin
  case Channel of
    0: ModulateRGB(@ColorRedConvertByte);
    1: ModulateRGB(@ColorGreenConvertByte);
    2: ModulateRGB(@ColorBlueConvertByte);
    else raise EInternalError.Create(
      'ConvertToChannelRGB: Channel must be 0, 1 or 2');
  end;
end;

procedure TCastleImage.StripToChannelRGB(Channel: Integer);
begin
  case Channel of
    0: ModulateRGB(@ColorRedStripByte);
    1: ModulateRGB(@ColorGreenStripByte);
    2: ModulateRGB(@ColorBlueStripByte);
    else raise EInternalError.Create(
      'StripToChannelRGB: Channel must be 0, 1 or 2');
  end;
end;

function TCastleImage.IsEqual(Image: TCastleImage): boolean;
begin
  Result :=
    (Image.ClassType = ClassType) and
    (Image.Width = Width) and
    (Image.Height = Height) and
    (Image.Depth = Depth) and
    (CompareMem(Image.RawPixels, RawPixels, Width * Height * PixelSize));
end;

function TCastleImage.ArePartsEqual(
  const SelfX0, SelfY0, SelfWidth, SelfHeight: Cardinal;
  Image: TCastleImage;
  const ImageX0, ImageY0, ImageWidth, ImageHeight: Cardinal): boolean;
var
  Y: Integer;
  SelfPtr: Pointer;
  ImagePtr: Pointer;
  SelfRowByteWidth, ImageRowByteWidth, RowByteWidth: Cardinal;
begin
  Result :=
    (Image.ClassType = ClassType) and
    (SelfWidth = ImageWidth) and
    (SelfHeight = ImageHeight);
  if Result then
  begin
    SelfPtr := PixelPtr(SelfX0, SelfY0);
    ImagePtr := Image.PixelPtr(ImageX0, ImageY0);
    RowByteWidth := ImageWidth * PixelSize;
    SelfRowByteWidth := Self.Width * PixelSize;
    ImageRowByteWidth := Image.Width * Image.PixelSize;
    for Y := 0 to Integer(ImageHeight) - 1 do
    begin
      if not CompareMem(SelfPtr, ImagePtr, RowByteWidth) then
      begin
        Result := false;
        Exit;
      end;
      PtrUInt(SelfPtr) := PtrUInt(SelfPtr) + SelfRowByteWidth;
      PtrUInt(ImagePtr) := PtrUInt(ImagePtr) + ImageRowByteWidth;
    end;
  end;
end;

function TCastleImage.ArePartsEqual(
  Image: TCastleImage;
  const ImageX0, ImageY0, ImageWidth, ImageHeight: Cardinal): boolean;
begin
  Result := ArePartsEqual(
    0, 0, Width, Height,
    Image,
    ImageX0, ImageY0, ImageWidth, ImageHeight);
end;

function TCastleImage.ArePartsEqual(
  const SelfX0, SelfY0, SelfWidth, SelfHeight: Cardinal;
  Image: TCastleImage): boolean;
begin
  Result := ArePartsEqual(
    SelfX0, SelfY0, SelfWidth, SelfHeight,
    Image,
    0, 0, Image.Width, Image.Height);
end;

procedure TCastleImage.CopyFrom(Image: TCastleImage; const X0, Y0: Cardinal;
  const SourceX0, SourceY0, SourceWidth, SourceHeight: Cardinal);
var
  Y: Integer;
  SelfPtr: Pointer;
  ImagePtr: Pointer;
  SelfRowByteWidth, ImageRowByteWidth, CopyRowByteWidth: Cardinal;
begin
  if Image.ClassType <> ClassType then
    raise Exception.Create('Cannot copy pixels from one image to another:' +
      ' different image classes');

  SelfPtr := PixelPtr(X0, Y0);
  ImagePtr := Image.PixelPtr(SourceX0, SourceY0);
  SelfRowByteWidth := Self.Width * PixelSize;
  ImageRowByteWidth := Image.Width * Image.PixelSize;
  CopyRowByteWidth := SourceWidth * Image.PixelSize;
  for Y := 0 to Integer(SourceHeight) - 1 do
  begin
    Move(ImagePtr^, SelfPtr^, CopyRowByteWidth);
    PtrUInt(SelfPtr) := PtrUInt(SelfPtr) + SelfRowByteWidth;
    PtrUInt(ImagePtr) := PtrUInt(ImagePtr) + ImageRowByteWidth;
  end;
end;

procedure TCastleImage.CopyFrom(Image: TCastleImage; const X0, Y0: Cardinal);
begin
  CopyFrom(Image, X0, Y0, 0, 0, Image.Width, Image.Height);
end;

procedure TCastleImage.CopyTo(Image: TCastleImage; const X0, Y0: Cardinal);
begin
  Image.CopyFrom(Self, X0, Y0);
end;

procedure TCastleImage.LerpSimpleCheckConditions(SecondImage: TCastleImage);
begin
  if (Width <> SecondImage.Width) or
     (Height <> SecondImage.Height) then
    raise EImageLerpDifferentSizes.CreateFmt('Linear interpolation not possible, images have different sizes: first has %d x %d, second has %d x %d',
      [Width, Height, SecondImage.Width, SecondImage.Height]);

  if not (SecondImage is Self.ClassType) then
    raise EImageLerpInvalidClasses.CreateFmt('Linear interpolation between %s and %s class not possible',
      [ClassName, SecondImage.ClassName]);
end;

procedure TCastleImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
begin
  raise EImageLerpInvalidClasses.Create('Linear interpolation (TCastleImage.LerpWith) not possible with the base TCastleImage class');
end;

class procedure TCastleImage.MixColors(const OutputColor: Pointer;
  const Weights: TVector4Single; const Colors: TVector4Pointer);
begin
  raise EImageLerpInvalidClasses.Create('Mixing colors (TCastleImage.MixColors) not possible with the base TCastleImage class');
end;

{ TS3TCImage ----------------------------------------------------------------- }

constructor TS3TCImage.Create(const AWidth, AHeight: Cardinal;
  const ADepth: Cardinal;
  const ACompression: TS3TCCompression);
begin
  inherited Create;
  FWidth := AWidth;
  FHeight := AHeight;
  FDepth := ADepth;
  FCompression := ACompression;

  { All DXT* compression methods compress 4x4 pixels into some constant size.
    When Width / Height is not divisible by 4, we have to round up.

    This matches what MSDN docs say about DDS with mipmaps:
    http://msdn.microsoft.com/en-us/library/bb205578(VS.85).aspx
    When mipmaps are used, DDS Width/Height must be power-of-two,
    so the base level is usually divisible by 4. But on the following mipmap
    levels the size decreases, eventually to 1x1, so this still matters.
    And MSDN says then explicitly that with DXT1, you have always
    minimum 8 bytes, and with DXT2-5 minimum 16 bytes.
  }

  case Compression of
    s3tcDxt1_RGB,
    s3tcDxt1_RGBA: FSize := Depth * DivRoundUp(Width, 4) * DivRoundUp(Height, 4) * 8 { 8 bytes for each 16 pixels };
    s3tcDxt3,
    s3tcDxt5: FSize := Depth * DivRoundUp(Width, 4) * DivRoundUp(Height, 4) * 16 { 16 bytes for each 16 pixels };
    else EInternalError.Create('TS3TCImage.Create-Compression?');
  end;

  FRawPixels := GetMem(FSize);
end;

function TS3TCImage.HasAlpha: boolean;
begin
  Result := Compression in [s3tcDxt1_RGBA, s3tcDxt3, s3tcDxt5];
end;

function TS3TCImage.AlphaChannel(
  const AlphaTolerance: Byte;
  const WrongPixelsTolerance: Single): TAlphaChannel;
begin
  { S3TCImage doesn't analyze for alpha channel, instead simply assumes
    image is always full-range alpha it if has alpha channel. }
  case Compression of
    s3tcDxt1_RGB : Result := acNone;
    s3tcDxt1_RGBA: Result := acSimpleYesNo;
    s3tcDxt3, s3tcDxt5: Result := acFullRange;
  end;
end;

{$I images_s3tc_flip_vertical.inc}

function TS3TCImage.Decompress: TCastleImage;
begin
  if Assigned(DecompressS3TC) then
    Result := DecompressS3TC(Self) else
    raise ECannotDecompressS3TC.Create('Cannot decompress S3TC image: no decompressor initialized');
end;

function TS3TCImage.MakeCopy: TS3TCImage;
begin
  Result := TS3TCImage.Create(Width, Height, Depth, Compression);
  Assert(Result.Size = Size);
  Move(RawPixels^, Result.RawPixels^, Size);
end;

{ TCastleImageClass and arrays of TCastleImageClasses ----------------------------- }

function InImageClasses(ImageClass: TCastleImageClass;
  const ImageClasses: array of TCastleImageClass): boolean;
var
  i: Integer;
begin
  for i := 0 to High(ImageClasses) do
    if ImageClass.InheritsFrom(ImageClasses[i]) then
    begin
      Result := true;
      Exit;
    end;
  Result := false;
end;

function InImageClasses(Image: TCastleImage;
  const ImageClasses: array of TCastleImageClass): boolean;
begin
  Result := InImageClasses(TCastleImageClass(Image.ClassType), ImageClasses);
end;

function ImageClassesEqual(const Ar1, Ar2: array of TCastleImageClass): boolean;
var
  i: Integer;
begin
  if High(Ar1) <> High(Ar2) then
  begin
    Result := false;
    Exit;
  end;

  for i := 0 to High(Ar1) do
    if Ar1[I] <> Ar2[I] then
    begin
      Result := false;
      Exit;
    end;

  Result := true;
end;

procedure ImageClassesAssign(var Variable: TDynArrayImageClasses;
  const NewValue: array of TCastleImageClass);
var
  i: Integer;
begin
  SetLength(Variable, High(NewValue) + 1);
  for i := 0 to High(NewValue) do
    Variable[i] := NewValue[i];
end;

{ TRGBImage ------------------------------------------------------------ }

constructor TRGBImage.CreateCombined(const MapImage: TRGBImage;
  var ReplaceWhiteImage, ReplaceBlackImage: TRGBImage);
var
  Map, White, Black, Res: PVector3Byte;
  s: single;
  i: integer;
begin
  Create(MapImage.Width, MapImage.Height);

  ReplaceWhiteImage.Resize(MapImage.Width, MapImage.Height);
  ReplaceBlackImage.Resize(MapImage.Width, MapImage.Height);

  Map := MapImage.RGBPixels;
  White := ReplaceWhiteImage.RGBPixels;
  Black := ReplaceBlackImage.RGBPixels;
  Res := RGBPixels;

  for i := 1 to Width * Height do
  begin
    s := (Map^[0] + Map^[1] + Map^[2]) / 255 / 3;
    Res^[0] := Round(s * White^[0] + (1-s) * Black^[0]);
    Res^[1] := Round(s * White^[1] + (1-s) * Black^[1]);
    Res^[2] := Round(s * White^[2] + (1-s) * Black^[2]);
    Inc(Map);
    Inc(White);
    Inc(Black);
    Inc(Res);
  end;
end;

function TRGBImage.GetRGBPixels: PVector3Byte;
begin
  Result := PVector3Byte(RawPixels);
end;

class function TRGBImage.PixelSize: Cardinal;
begin
  Result := 3;
end;

class function TRGBImage.ColorComponentsCount: Cardinal;
begin
  Result := 3;
end;

function TRGBImage.PixelPtr(const X, Y, Z: Cardinal): PVector3Byte;
begin
  Result := PVector3Byte(inherited PixelPtr(X, Y, Z));
end;

function TRGBImage.RowPtr(const Y, Z: Cardinal): PArray_Vector3Byte;
begin
  Result := PArray_Vector3Byte(inherited RowPtr(Y, Z));
end;

procedure TRGBImage.InvertRGBColors;
var
  i: Cardinal;
  prgb: PVector3byte;
begin
  prgb := RGBPixels;
  for i := 1 to Width * Height do
  begin
    prgb^[0] := High(byte)-prgb^[0];
    prgb^[1] := High(byte)-prgb^[1];
    prgb^[2] := High(byte)-prgb^[2];
    Inc(prgb);
  end;
end;

procedure TRGBImage.SetColorRGB(const x, y: Integer; const v: TVector3Single);
begin
  PVector3Byte(PixelPtr(x, y))^ := Vector3Byte(v);
end;

procedure TRGBImage.Clear(const Pixel: TVector4Byte);
var
  P: PVector3Byte;
  I: Cardinal;
begin
  P := RGBPixels;
  for I := 1 to Width * Height do
  begin
    Move(Pixel, P^, SizeOf(TVector3Byte));
    Inc(P);
  end;
end;

function TRGBImage.IsClear(const Pixel: TVector4Byte): boolean;
var
  P: PVector3Byte;
  I: Cardinal;
begin
  P := RGBPixels;
  for I := 1 to Width * Height do
  begin
    if not CompareMem(@Pixel, P, SizeOf(TVector3Byte)) then
    begin
      Result := false;
      Exit;
    end;
    Inc(P);
  end;
  Result := true;
end;

procedure TRGBImage.TransformRGB(const Matrix: TMatrix3Single);
type PPixel = PVector3Byte;
{$I images_transformrgb_implement.inc}

procedure TRGBImage.ModulateRGB(const ColorModulator: TColorModulatorByteFunc);
type PPixel = PVector3Byte;
{$I images_modulatergb_implement.inc}

function TRGBImage.ToRGBAlphaImage_AlphaDontCare: TRGBAlphaImage;
var
  pi: PVector3Byte;
  pa: PVector4Byte;
  i: Cardinal;
begin
  Result := TRGBAlphaImage.Create(Width, Height);
  pi := RGBPixels;
  pa := Result.AlphaPixels;
  for i := 1 to Width * Height do
  begin
    Move(pi^, pa^, SizeOf(TVector3Byte));
    {pa^[3] := <dont_care_about_this_value>}
    Inc(pi);
    Inc(pa);
  end;
end;

function TRGBImage.ToRGBAlphaImage_AlphaConst(Alpha: byte): TRGBAlphaImage;

{ Note: implementation of this *could* use ToRGBAlphaImage_AlphaDontCare,
  but doesn't, to be faster. }

var
  pi: PVector3Byte;
  pa: PVector4Byte;
  i: Cardinal;
begin
  Result := TRGBAlphaImage.Create(Width, Height);
  pi := RGBPixels;
  pa := Result.AlphaPixels;
  for i := 1 to Width * Height do
  begin
    Move(pi^, pa^, SizeOf(TVector3Byte));
    pa^[3] := Alpha;
    Inc(pi);
    Inc(pa);
  end;
end;

function TRGBImage.ToRGBAlphaImage_AlphaDecide(
  const AlphaColor: TVector3Byte;
  Tolerance: byte; AlphaOnColor: byte; AlphaOnNoColor: byte): TRGBAlphaImage;
begin
  Result := ToRGBAlphaImage_AlphaDontCare;
  Result.AlphaDecide(AlphaColor, Tolerance, AlphaOnColor, AlphaOnNoColor);
end;

function TRGBImage.ToRGBFloat: TRGBFloatImage;
var
  PFloat: PVector3Single;
  PByte: PVector3Byte;
  i: Cardinal;
begin
  result := TRGBFloatImage.Create(Width, Height);
  try
    PByte := RGBPixels;
    PFloat := Result.RGBFloatPixels;
    for i := 1 to Width * Height do
    begin
      PFloat^ := Vector3Single(PByte^);
      Inc(PByte);
      Inc(PFloat);
    end;
  except Result.Free; raise end;
end;

function TRGBImage.ToGrayscale: TGrayscaleImage;
var
  pRGB: PVector3Byte;
  pGrayscale: PByte;
  I: Cardinal;
begin
  Result := TGrayscaleImage.Create(Width, Height);
  try
    pRGB := RGBPixels;
    pGrayscale := Result.GrayscalePixels;
    for i := 1 to Width * Height do
    begin
      pGrayscale^ := GrayscaleValue(pRGB^);
      Inc(pRGB);
      Inc(pGrayscale);
    end;
  except Result.Free; raise end;
end;

procedure TRGBImage.HorizontalLine(const x1, x2, y: Integer;
  const Color: TVector3Byte);
var
  P: PVector3Byte;
  i: Integer;
begin
  P := PixelPtr(x1, y);
  for i := 0 to x2 - x1 do begin P^ := Color; Inc(P) end;
end;

procedure TRGBImage.VerticalLine(const x, y1, y2: Integer;
  const Color: TVector3Byte);
var P: PVector3Byte;
    i: Integer;
begin
 P := PixelPtr(x, y1);
 for i := 0 to y2 - y1 do
 begin
  P^ := Color;
  P := PointerAdd(P, SizeOf(TVector3Byte) * Width);
 end;
end;

procedure TRGBImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
var
  SelfPtr: PVector3Byte;
  SecondPtr: PVector3Byte;
  I: Cardinal;
begin
  LerpSimpleCheckConditions(SecondImage);

  SelfPtr := RGBPixels;
  SecondPtr := TRGBImage(SecondImage).RGBPixels;
  for I := 1 to Width * Height do
  begin
    SelfPtr^ := Lerp(Value, SelfPtr^, SecondPtr^);
    Inc(SelfPtr);
    Inc(SecondPtr);
  end;
end;

class procedure TRGBImage.MixColors(const OutputColor: Pointer;
  const Weights: TVector4Single; const Colors: TVector4Pointer);
var
  OutputCol: PVector3Byte absolute OutputColor;
  Cols: array [0..3] of PVector3Byte absolute Colors;
begin
  OutputCol^[0] := Clamped(Round(Weights[0] * Cols[0]^[0] + Weights[1] * Cols[1]^[0] + Weights[2] * Cols[2]^[0] + Weights[3] * Cols[3]^[0]), 0, High(Byte));
  OutputCol^[1] := Clamped(Round(Weights[0] * Cols[0]^[1] + Weights[1] * Cols[1]^[1] + Weights[2] * Cols[2]^[1] + Weights[3] * Cols[3]^[1]), 0, High(Byte));
  OutputCol^[2] := Clamped(Round(Weights[0] * Cols[0]^[2] + Weights[1] * Cols[1]^[2] + Weights[2] * Cols[2]^[2] + Weights[3] * Cols[3]^[2]), 0, High(Byte));
end;

{ TRGBAlphaImage ------------------------------------------------------------ }

function TRGBAlphaImage.GetAlphaPixels: PVector4Byte;
begin
  Result := PVector4Byte(RawPixels);
end;

class function TRGBAlphaImage.PixelSize: Cardinal;
begin
  Result := 4;
end;

class function TRGBAlphaImage.ColorComponentsCount: Cardinal;
begin
  Result := 4;
end;

function TRGBAlphaImage.PixelPtr(const X, Y, Z: Cardinal): PVector4Byte;
begin
  Result := PVector4Byte(inherited PixelPtr(X, Y, Z));
end;

function TRGBAlphaImage.RowPtr(const Y, Z: Cardinal): PArray_Vector4Byte;
begin
  Result := PArray_Vector4Byte(inherited RowPtr(Y, Z));
end;

procedure TRGBAlphaImage.InvertRGBColors;
var
  i: Cardinal;
  palpha: PVector4byte;
begin
  palpha := AlphaPixels;
  for i := 1 to Width * Height do
  begin
    palpha^[0] := High(byte)-palpha^[0];
    palpha^[1] := High(byte)-palpha^[1];
    palpha^[2] := High(byte)-palpha^[2];
    Inc(palpha);
  end;
end;

procedure TRGBAlphaImage.SetColorRGB(const x, y: Integer; const v: TVector3Single);
begin
  PVector3Byte(PixelPtr(x, y))^ := Vector3Byte(v);
end;

procedure TRGBAlphaImage.Clear(const Pixel: TVector4Byte);
begin
  FillDWord(RawPixels^, Width*Height, LongWord(Pixel));
end;

procedure TRGBAlphaImage.ClearAlpha(const Alpha: Byte);
var
  i: Cardinal;
  palpha: PVector4byte;
begin
  palpha := AlphaPixels;
  for i := 1 to Width * Height do
  begin
    palpha^[3] := Alpha;
    Inc(palpha);
  end;
end;

function TRGBAlphaImage.IsClear(const Pixel: TVector4Byte): boolean;
begin
  Result := IsMemDWordFilled(RawPixels^, Width*Height, LongWord(Pixel));
end;

procedure TRGBAlphaImage.TransformRGB(const Matrix: TMatrix3Single);
type PPixel = PVector4Byte;
{$I images_transformrgb_implement.inc}

procedure TRGBAlphaImage.ModulateRGB(const ColorModulator: TColorModulatorByteFunc);
type PPixel = PVector4Byte;
{$I images_modulatergb_implement.inc}

procedure TRGBAlphaImage.AlphaDecide(const AlphaColor: TVector3Byte;
  Tolerance: Byte; AlphaOnColor: Byte; AlphaOnNoColor: Byte);
var
  pa: PVector4Byte;
  i: Cardinal;
begin
  pa := AlphaPixels;
  for i := 1 to Width * Height do
  begin
    if EqualRGB(AlphaColor, PVector3Byte(pa)^, Tolerance) then
      pa^[3] := AlphaOnColor else
      pa^[3] := AlphaOnNoColor;
    Inc(pa);
  end;
end;

procedure TRGBAlphaImage.Compose(RGB: TRGBImage; AGrayscale: TGrayscaleImage);
var
  PtrAlpha: PVector4Byte;
  PtrRGB: PVector3Byte;
  PtrGrayscale: PByte;
  I: Cardinal;
begin
  Check( (RGB.Width = AGrayscale.Width) and
         (RGB.Height = AGrayscale.Height),
    'For TRGBAlphaImage.Compose, RGB and alpha images must have the same sizes');

  SetSize(RGB.Width, RGB.Height);

  PtrAlpha := AlphaPixels;
  PtrRGB := RGB.RGBPixels;
  PtrGrayscale := AGrayscale.GrayscalePixels;

  for I := 1 to Width * Height do
  begin
    System.Move(PtrRGB^, PtrAlpha^, SizeOf(TVector3Byte));
    PtrAlpha^[3] := PtrGrayscale^;

    Inc(PtrAlpha);
    Inc(PtrRGB);
    Inc(PtrGrayscale);
  end;
end;

function TRGBAlphaImage.HasAlpha: boolean;
begin
  Result := true;
end;

function TRGBAlphaImage.AlphaChannel(
  const AlphaTolerance: Byte;
  const WrongPixelsTolerance: Single): TAlphaChannel;
var
  PtrAlpha: PVector4Byte;
  I, WrongPixels, AllPixels: Cardinal;
begin
  WrongPixels := 0;
  AllPixels := Width * Height;

  PtrAlpha := AlphaPixels;

  if WrongPixelsTolerance = 0 then
  begin
    for I := 1 to AllPixels do
    begin
      if (PtrAlpha^[3] > AlphaTolerance) and
         (PtrAlpha^[3] < 255 - AlphaTolerance) then
        { Special case for WrongPixelsTolerance = exactly 0.
          Avoids the cases when float "WrongPixels / AllPixels"
          may be so small that it's equal to 0, which would
          cause some wrong pixels to "slip" even with
          WrongPixelsTolerance = 0. }
        Exit(acFullRange);
      Inc(PtrAlpha);
    end;
  end else
  begin
    for I := 1 to AllPixels do
    begin
      if (PtrAlpha^[3] > AlphaTolerance) and
         (PtrAlpha^[3] < 255 - AlphaTolerance) then
      begin
        Inc(WrongPixels);
        { From the speed point of view, is it sensible to test
          WrongPixelsTolerance at each WrongPixels increment?
          On one hand, we can Exit with false faster.
          On the other hand, we lose time for checking it many times,
          if WrongPixelsTolerance is larger.
          Well, sensible WrongPixelsTolerance are very small --- so I
          think this is Ok to check this every time. }
        if WrongPixels / AllPixels > WrongPixelsTolerance then
          Exit(acFullRange);
      end;
      Inc(PtrAlpha);
    end;
  end;

  Result := acSimpleYesNo;
end;

procedure TRGBAlphaImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
var
  SelfPtr: PVector4Byte;
  SecondPtr: PVector4Byte;
  I: Cardinal;
begin
  LerpSimpleCheckConditions(SecondImage);

  SelfPtr := AlphaPixels;
  SecondPtr := TRGBAlphaImage(SecondImage).AlphaPixels;
  for I := 1 to Width * Height do
  begin
    SelfPtr^ := Lerp(Value, SelfPtr^, SecondPtr^);
    Inc(SelfPtr);
    Inc(SecondPtr);
  end;
end;

class procedure TRGBAlphaImage.MixColors(const OutputColor: Pointer;
  const Weights: TVector4Single; const Colors: TVector4Pointer);
var
  OutputCol: PVector4Byte absolute OutputColor;
  Cols: array [0..3] of PVector4Byte absolute Colors;
begin
  OutputCol^[0] := Clamped(Round(Weights[0] * Cols[0]^[0] + Weights[1] * Cols[1]^[0] + Weights[2] * Cols[2]^[0] + Weights[3] * Cols[3]^[0]), 0, High(Byte));
  OutputCol^[1] := Clamped(Round(Weights[0] * Cols[0]^[1] + Weights[1] * Cols[1]^[1] + Weights[2] * Cols[2]^[1] + Weights[3] * Cols[3]^[1]), 0, High(Byte));
  OutputCol^[2] := Clamped(Round(Weights[0] * Cols[0]^[2] + Weights[1] * Cols[1]^[2] + Weights[2] * Cols[2]^[2] + Weights[3] * Cols[3]^[2]), 0, High(Byte));
  OutputCol^[3] := Clamped(Round(Weights[0] * Cols[0]^[3] + Weights[1] * Cols[1]^[3] + Weights[2] * Cols[2]^[3] + Weights[3] * Cols[3]^[3]), 0, High(Byte));
end;

function TRGBAlphaImage.ToRGBImage: TRGBImage;
var
  SelfPtr: PVector4Byte;
  ResultPtr: PVector3Byte;
  I: Cardinal;
begin
  Result := TRGBImage.Create(Width, Height);
  SelfPtr := AlphaPixels;
  ResultPtr := Result.RGBPixels;
  for I := 1 to Width * Height do
  begin
    Move(SelfPtr^, ResultPtr^, SizeOf(TVector3Byte));
    Inc(SelfPtr);
    Inc(ResultPtr);
  end;
end;

{ TRGBFloatImage ------------------------------------------------------------ }

function TRGBFloatImage.GetRGBFloatPixels: PVector3Single;
begin
  Result := PVector3Single(RawPixels);
end;

class function TRGBFloatImage.PixelSize: Cardinal;
begin
  Result := SizeOf(TVector3Single);
end;

class function TRGBFloatImage.ColorComponentsCount: Cardinal;
begin
  Result := 3;
end;

function TRGBFloatImage.PixelPtr(const X, Y, Z: Cardinal): PVector3Single;
begin
  Result := PVector3Single(inherited PixelPtr(X, Y, Z));
end;

function TRGBFloatImage.RowPtr(const Y, Z: Cardinal): PArray_Vector3Single;
begin
  Result := PArray_Vector3Single(inherited RowPtr(Y, Z));
end;

procedure TRGBFloatImage.SetColorRGB(const x, y: Integer; const V: TVector3Single);
begin
  PVector3Single(PixelPtr(x, y))^ := V;
end;

procedure TRGBFloatImage.Clear(const Pixel: TVector3Single);
var
  P: PVector3Single;
  I: Cardinal;
begin
  P := RGBFloatPixels;
  for I := 1 to Width * Height do
  begin
    Move(Pixel, P^, SizeOf(TVector3Single));
    Inc(P);
  end;
end;

function TRGBFloatImage.IsClear(const Pixel: TVector3Single): boolean;
var
  P: PVector3Single;
  I: Cardinal;
begin
  P := RGBFloatPixels;
  for I := 1 to Width * Height do
  begin
    if not CompareMem(@Pixel, P, SizeOf(TVector3Single)) then
    begin
      Result := false;
      Exit;
    end;
    Inc(P);
  end;
  Result := true;
end;

function TRGBFloatImage.ToRGBImage: TRGBImage;
var
  PFloat: PVector3Single;
  PByte: PVector3Byte;
  i: Cardinal;
begin
  Result := TRGBImage.Create(Width, Height);
  try
    PByte := Result.RGBPixels;
    PFloat := RGBFloatPixels;
    for i := 1 to Width * Height do
    begin
      PByte^ := Vector3Byte(PFloat^);
      Inc(PByte);
      Inc(PFloat);
    end;
  except Result.Free; raise end;
end;

procedure TRGBFloatImage.ScaleColors(const Scale: Single);
var
  pFloat: PVector3Single;
  i: Cardinal;
begin
  PFloat := RGBFloatPixels;
  for i := 1 to Width * Height do
  begin
    PFloat^ := VectorScale(PFloat^, Scale);
    Inc(PFloat);
  end;
end;

procedure TRGBFloatImage.ExpColors(const Exp: Single);
var
  pFloat: PVector3Single;
  i: Cardinal;
begin
  PFloat := RGBFloatPixels;
  for i := 1 to Width * Height do
  begin
    PFloat^ := VectorPowerComponents(PFloat^, Exp);
    Inc(PFloat);
  end;
end;

procedure TRGBFloatImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
var
  SelfPtr: PVector3Single;
  SecondPtr: PVector3Single;
  I: Cardinal;
begin
  LerpSimpleCheckConditions(SecondImage);

  SelfPtr := RGBFloatPixels;
  SecondPtr := TRGBFloatImage(SecondImage).RGBFloatPixels;
  for I := 1 to Width * Height do
  begin
    SelfPtr^ := Lerp(Value, SelfPtr^, SecondPtr^);
    Inc(SelfPtr);
    Inc(SecondPtr);
  end;
end;

class procedure TRGBFloatImage.MixColors(const OutputColor: Pointer;
  const Weights: TVector4Single; const Colors: TVector4Pointer);
var
  OutputCol: PVector3Single absolute OutputColor;
  Cols: array [0..3] of PVector3Single absolute Colors;
begin
  OutputCol^[0] := Weights[0] * Cols[0]^[0] + Weights[1] * Cols[1]^[0] + Weights[2] * Cols[2]^[0] + Weights[3] * Cols[3]^[0];
  OutputCol^[1] := Weights[0] * Cols[0]^[1] + Weights[1] * Cols[1]^[1] + Weights[2] * Cols[2]^[1] + Weights[3] * Cols[3]^[1];
  OutputCol^[2] := Weights[0] * Cols[0]^[2] + Weights[1] * Cols[1]^[2] + Weights[2] * Cols[2]^[2] + Weights[3] * Cols[3]^[2];
end;

{ TGrayscaleImage ------------------------------------------------------------ }

function TGrayscaleImage.GetGrayscalePixels: PByte;
begin
  Result := PByte(RawPixels);
end;

class function TGrayscaleImage.PixelSize: Cardinal;
begin
  Result := 1;
end;

class function TGrayscaleImage.ColorComponentsCount: Cardinal;
begin
  Result := 1;
end;

function TGrayscaleImage.PixelPtr(const X, Y, Z: Cardinal): PByte;
begin
  Result := PByte(inherited PixelPtr(X, Y, Z));
end;

function TGrayscaleImage.RowPtr(const Y, Z: Cardinal): PByteArray;
begin
  Result := PByteArray(inherited RowPtr(Y, Z));
end;

procedure TGrayscaleImage.Clear(const Pixel: Byte);
begin
  FillChar(RawPixels^, Width * Height, Pixel);
end;

function TGrayscaleImage.IsClear(const Pixel: Byte): boolean;
begin
  Result := IsMemCharFilled(RawPixels^, Width * Height, Char(Pixel));
end;

procedure TGrayscaleImage.HalfColors;
var
  P: PByte;
  I: Cardinal;
begin
  P := GrayscalePixels;
  for I := 1 to Width * Height do
  begin
    P^ := P^ shr 1;
    Inc(P);
  end;
end;

procedure TGrayscaleImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
var
  SelfPtr: PByte;
  SecondPtr: PByte;
  I: Cardinal;
begin
  LerpSimpleCheckConditions(SecondImage);

  SelfPtr := GrayscalePixels;
  SecondPtr := TGrayscaleImage(SecondImage).GrayscalePixels;
  for I := 1 to Width * Height do
  begin
    SelfPtr^ := Clamped(Round(Lerp(Value, SelfPtr^, SecondPtr^)), 0, High(Byte));
    Inc(SelfPtr);
    Inc(SecondPtr);
  end;
end;

class procedure TGrayscaleImage.MixColors(const OutputColor: Pointer;
  const Weights: TVector4Single; const Colors: TVector4Pointer);
var
  OutputCol: PByte absolute OutputColor;
  Cols: array [0..3] of PByte absolute Colors;
begin
  OutputCol^ := Clamped(Round(Weights[0] * Cols[0]^ + Weights[1] * Cols[1]^ + Weights[2] * Cols[2]^ + Weights[3] * Cols[3]^), 0, High(Byte));
end;

function TGrayscaleImage.ToGrayscaleAlphaImage_AlphaConst(Alpha: byte): TGrayscaleAlphaImage;
var
  pg: PByte;
  pa: PVector2Byte;
  I: Cardinal;
begin
  Result := TGrayscaleAlphaImage.Create(Width, Height);
  pg := GrayscalePixels;
  pa := Result.GrayscaleAlphaPixels;
  for i := 1 to Width * Height do
  begin
    pa^[0] := pg^;
    pa^[1] := Alpha;
    Inc(pg);
    Inc(pa);
  end;
end;

{ TGrayscaleAlphaImage ------------------------------------------------------------ }

function TGrayscaleAlphaImage.GetGrayscaleAlphaPixels: PVector2Byte;
begin
  Result := PVector2Byte(RawPixels);
end;

class function TGrayscaleAlphaImage.PixelSize: Cardinal;
begin
  Result := 2;
end;

class function TGrayscaleAlphaImage.ColorComponentsCount: Cardinal;
begin
  Result := 2;
end;

function TGrayscaleAlphaImage.PixelPtr(const X, Y, Z: Cardinal): PVector2Byte;
begin
  Result := PVector2Byte(inherited PixelPtr(X, Y, Z));
end;

function TGrayscaleAlphaImage.RowPtr(const Y, Z: Cardinal): PArray_Vector2Byte;
begin
  Result := PArray_Vector2Byte(inherited RowPtr(Y, Z));
end;

procedure TGrayscaleAlphaImage.Clear(const Pixel: TVector2Byte);
var
  P: PVector2Byte;
  I: Cardinal;
begin
  P := GrayscaleAlphaPixels;
  for I := 1 to Width * Height do
  begin
    Move(Pixel, P^, SizeOf(Pixel));
    Inc(P);
  end;
end;

function TGrayscaleAlphaImage.IsClear(const Pixel: TVector2Byte): boolean;
var
  P: PVector2Byte;
  I: Cardinal;
begin
  P := GrayscaleAlphaPixels;
  for I := 1 to Width * Height do
  begin
    if not CompareMem(@Pixel, P, SizeOf(Pixel)) then
    begin
      Result := false;
      Exit;
    end;
    Inc(P);
  end;
  Result := true;
end;

function TGrayscaleAlphaImage.HasAlpha: boolean;
begin
  Result := true;
end;

function TGrayscaleAlphaImage.AlphaChannel(
  const AlphaTolerance: Byte;
  const WrongPixelsTolerance: Single): TAlphaChannel;
var
  PtrAlpha: PVector2Byte;
  I, WrongPixels, AllPixels: Cardinal;
begin
  WrongPixels := 0;
  AllPixels := Width * Height;

  PtrAlpha := GrayscaleAlphaPixels;

  if WrongPixelsTolerance = 0 then
  begin
    for I := 1 to AllPixels do
    begin
      if (PtrAlpha^[1] > AlphaTolerance) and
         (PtrAlpha^[1] < 255 - AlphaTolerance) then
        { Special case for WrongPixelsTolerance = exactly 0.
          Avoids the cases when float "WrongPixels / AllPixels"
          may be so small that it's equal to 0, which would
          cause some wrong pixels to "slip" even with
          WrongPixelsTolerance = 0. }
        Exit(acFullRange);
      Inc(PtrAlpha);
    end;
  end else
  begin
    for I := 1 to AllPixels do
    begin
      if (PtrAlpha^[1] > AlphaTolerance) and
         (PtrAlpha^[1] < 255 - AlphaTolerance) then
      begin
        Inc(WrongPixels);
        { From the speed point of view, is it sensible to test
          WrongPixelsTolerance at each WrongPixels increment?
          On one hand, we can Exit with false faster.
          On the other hand, we lose time for checking it many times,
          if WrongPixelsTolerance is larger.
          Well, sensible WrongPixelsTolerance are very small --- so I
          think this is Ok to check this every time. }
        if WrongPixels / AllPixels > WrongPixelsTolerance then
          Exit(acFullRange);
      end;
      Inc(PtrAlpha);
    end;
  end;

  Result := acSimpleYesNo;
end;

procedure TGrayscaleAlphaImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
var
  SelfPtr: PVector2Byte;
  SecondPtr: PVector2Byte;
  I: Cardinal;
begin
  LerpSimpleCheckConditions(SecondImage);

  SelfPtr := GrayscaleAlphaPixels;
  SecondPtr := TGrayscaleAlphaImage(SecondImage).GrayscaleAlphaPixels;
  for I := 1 to Width * Height do
  begin
    SelfPtr^ := Lerp(Value, SelfPtr^, SecondPtr^);
    Inc(SelfPtr);
    Inc(SecondPtr);
  end;
end;

class procedure TGrayscaleAlphaImage.MixColors(const OutputColor: Pointer;
  const Weights: TVector4Single; const Colors: TVector4Pointer);
var
  OutputCol: PVector2Byte absolute OutputColor;
  Cols: array [0..3] of PVector2Byte absolute Colors;
begin
  OutputCol^[0] := Clamped(Round(Weights[0] * Cols[0]^[0] + Weights[1] * Cols[1]^[0] + Weights[2] * Cols[2]^[0] + Weights[3] * Cols[3]^[0]), 0, High(Byte));
  OutputCol^[1] := Clamped(Round(Weights[0] * Cols[0]^[1] + Weights[1] * Cols[1]^[1] + Weights[2] * Cols[2]^[1] + Weights[3] * Cols[3]^[1]), 0, High(Byte));
end;

{ RGBE <-> 3 Single color convertion --------------------------------- }

const
  { do signed Exponent dodaj RGBEExponentOffset zeby zapisac exponent jako Byte }
  RGBEExponentOffset = 128;
  { RGBEMin/MaxExponent = min i max wartosci dla exponent ktore moga dac
    (Exponent + RGBEExponentOffset) w zakresie Byte.
    Czyli RGBEMinExponent + RGBEExponentOffset = 0,
          RGBEMaxExponent + RGBEExponentOffset = High(Byte),
    stad  RGBEMinExponent = -RGBEExponentOffset,
          RGBEMaxExponent = High(Byte) - RGBEExponentOffset }
  RGBEMinExponent = -RGBEExponentOffset;
  RGBEMaxExponent = High(Byte) - RGBEExponentOffset;

  { zero musi byc reprezentowane w specjalny sposob w formacie RGBE,
    podobnie jak w kazdym formacie zmiennoprzec. }
  RGBEZero: TVector4Byte=(0, 0, 0, 0);

  RGBELow :TVector4Byte=(0, 0, 0, 0); { = RGBEZero }
  RGBEHigh: TVector4Byte=(High(Byte), High(Byte), High(Byte), High(Byte));

function Vector3ToRGBE(const v: TVector3Single): TVector4Byte;
{ implementacja : jak Graphic Gems II.5 ale z poprawkami -
  - nazwy MaxVal i V sa osobne (dla czytelnosci),
  - checki czy Exponent jest w granicach RGBEMin/MaxExponent }
{ uwagi : moznaby sadzic ze Multiplier powinien byc liczony jako
    Mantissa * 255 / MaxVal (255 = High(Byte) zamiast 256),
    zeby poprawnie mapowac zakres 0..1 na zakres bajta.
    Ale,
    - po pierwsze, specyfikacja formatu RGBE (czyli Graphic Gems II.5)
      mowi zeby uzywac 256
    - po drugie, uzywanie 256 podaje nam prosty warunek na sprawdzenie
      czy czworka bajtow jest poprawnym RGBE : mianowicie, przynajmniej
      jeden z pierwszych trzech bajtow musi byc >= 128
      (czyli musi miec najstarszy bit = 1). Tym samym ten bajt jest >= 0.5
      a wiec jest poprawna mantysa. Ten prosty test na poprawnosc ma zastosowanie
      przy kodowaniu plikow rgbe przy uzyciu prostego RLE, gdzie wykorzystujemy
      takie niepoprawne czworki RGBE to kodowania specjalnych informacji.
    - po trzecie i chyba najwazniejsze, gdyby uzywac 256 to wartosc
      mantysy = 255 byla bezuzyteczna bo odpowiadalaby wartosci float = 1.0
      a mantysa zawsze musi byc ostro mniejsza od 1, z definicji.
      I to jest chyba koronny argument za mnozeniem tutaj przez 256.
}
var
  MaxVal, Multiplier: Single;
  Mantissa: Extended;
  Exponent: Integer;
begin
  MaxVal := CastleUtils.max(v[0], CastleUtils.max(v[1], v[2]));

  { rozpatrujemy tu nie tylko przypadek gdy liczba jest = 0 ale takze
    gdy jest bliska zeru. To jest standardowe zachowanie, ale uwaga -
    - w tym przypadku mogloby sie (blednie) wydawac ze mozemy tutaj zrobic
    wyjatek i sprawdzac ponizej tylko MaxVal = 0.0 (dokladna rownosc)
    a sprawdzanie bliskosci do zera zrzucic na test Exponent < RGBEMinExponent
    ponizej. ALE to nie jest prawda - test Exponent < RGBEMinExponent przejdzie
    dopiero dla niesamowicie mikroskopijnych liczb (< 1 / 2^127) podczas gdy liczby
    pomiedzy tymi "mikroskopijnie malymi" a SINGLE_EQUALITY_EPSILON ciagle
    beda powodowac problemy (bo przy liczeniu Multiplier dzielimy przez MaxVal
    wiec male MaxVal -> Float overflow). }
  if MaxVal < SingleEqualityEpsilon then begin result := RGBEZero; Exit end;

  Frexp(MaxVal, Mantissa, Exponent);

  if Exponent < RGBEMinExponent then begin result := RGBELow; Exit end;
  if Exponent > RGBEMaxExponent then begin result := RGBEHigh; Exit end;

  Multiplier := Mantissa * 256 / MaxVal;

  { MaxVal * Multiplier daje Mantissa * High(byte) a wiec cos w zakresie
    0 .. High(Byte) bo Mantissa <= 1 (de facto, Mantissa >= 0.5 wiec
    mozna podac dokladniejsze ograniczenie na Mantissa * High(byte)).
    Wszystkie pozostale v[] sa mniejsze od MaxVal wiec one tez dadza cos
    w zakresie bajta. }
  result[0] := Clamped(Round(v[0]*Multiplier), 0, High(Byte));
  result[1] := Clamped(Round(v[1]*Multiplier), 0, High(Byte));
  result[2] := Clamped(Round(v[2]*Multiplier), 0, High(Byte));

  { sprawdzajac czy Exponent in RGBEMin/MaxExponent wczesniej juz zapewnilem
    sobie ze ponizsze przypisanie jest Ok, wynik zmiesci sie w zakresie bajta. }
  result[3] := Exponent + RGBEExponentOffset;
end;

function VectorRGBETo3Single(const v: TVector4Byte): TVector3Single;
{ implementacja : jak Graphic Gems II.5.

  Multiplier wychodzi od 1/256 (a nie 1/255), nalezaloby tu wiec poczynic
  podobne uwagi co przy konwersji w druga strone, Vector3ToRGBE.
  Patrz tamtejszy komentarz. }
var
  Multiplier: Single;
begin
  if v[3] = 0 then begin result := ZeroVector3Single; Exit end;

  Multiplier := Ldexp(1/256, Integer(v[3])-RGBEExponentOffset);
  result[0] := v[0]*Multiplier;
  result[1] := v[1]*Multiplier;
  result[2] := v[2]*Multiplier;
end;

{ file formats managing ---------------------------------------------------------------- }

function MimeTypeToImageFormat(const MimeType: string;
  const OnlyLoadable, OnlySaveable: boolean; out ImgFormat: TImageFormat): boolean;
var
  I: TImageFormat;
  M: TImageFormatInfoMimeTypesCount;
begin
  for I := Low(I) to High(I) do
  begin
    if ((not OnlyLoadable) or Assigned(ImageFormatInfos[I].Load)) and
       ((not OnlySaveable) or Assigned(ImageFormatInfos[I].Save)) then
    for M := 1 to ImageFormatInfos[I].MimeTypesCount do
      if MimeType = ImageFormatInfos[I].MimeTypes[M] then
      begin
        ImgFormat := I;
        Exit(true);
      end;
  end;
  Result := false;
end;

function ListImageExtsLong(OnlyLoadable, OnlySaveable: boolean; const LinePrefix: string): string;
var
  iff: TImageFormat;
  i: integer;
begin
  result := '';

  for iff := Low(iff) to High(iff) do
    if ((not OnlyLoadable) or Assigned(ImageFormatInfos[iff].Load)) and
       ((not OnlySaveable) or Assigned(ImageFormatInfos[iff].Save)) then
    begin
      { zwrocmy uwage ze nie chcemy doklejac nl na koncu (bo zalatwieniu
        sprawy z formatem iff) bo tam nie byloby zbyt wygodnie rozpoznawac
        czy jestesmy ostatnia linia czy nie (na skutek OnlySaveable/OnlyLoadable
        nie mozna tego rozpoznac prostym sprawdzeniem iff < High(iff) }
      if result <> '' then result := result + nl;

      result := result +LinePrefix +ImageFormatInfos[iff].exts[1];
      for i := 2 to ImageFormatInfos[iff].extsCount do
        result := result + ', ' +ImageFormatInfos[iff].exts[i];
      result := result + ' - '+ImageFormatInfos[iff].formatName;
    end;
end;

function ListImageExtsShort(OnlyLoadable, OnlySaveable: boolean): string;
var
  iff: TImageFormat;
  i: integer;
begin
  result := '';

  for iff := Low(iff) to High(iff) do
    if ((not OnlyLoadable) or Assigned(ImageFormatInfos[iff].Load)) and
       ((not OnlySaveable) or Assigned(ImageFormatInfos[iff].Save)) then
    begin
      for i := 1 to ImageFormatInfos[iff].extsCount do
      begin
        if result <> '' then result := result + ', ';
        result := result + ImageFormatInfos[iff].exts[i];
      end;
    end;
end;

{ LoadImage --------------------------------------------------------------- }

function LoadImage(Stream: TStream; const StreamFormat: TImageFormat;
  const AllowedImageClasses: array of TCastleImageClass)
  :TCastleImage;

  { ClassAllowed is only a shortcut to global utility. }
  function ClassAllowed(ImageClass: TCastleImageClass): boolean;
  begin
    Result := CastleImages.ClassAllowed(ImageClass, AllowedImageClasses);
  end;

  { On input, Image must be TRGBImage and on output it will be TGrayscaleImage. }
  procedure ImageGrayscaleTo1st(var Image: TCastleImage);
  var
    NewImage: TGrayscaleImage;
  begin
    NewImage := (Image as TRGBImage).ToGrayscale;
    FreeAndNil(Image);
    Image := NewImage;
  end;

  procedure ImageRGBToFloatTo1st(var Image: TCastleImage);
  var
    NewResult: TCastleImage;
  begin
    NewResult := (Image as TRGBImage).ToRGBFloat;
    Image.Free;
    Image := NewResult;
  end;

const
  DummyDefaultAlpha = High(Byte);
var
  Load: TImageLoadFunc;
begin
  Result := nil;
  try
    if Assigned(ImageFormatInfos[StreamFormat].Load) then
    begin
      Load := ImageFormatInfos[StreamFormat].Load;
      case ImageFormatInfos[StreamFormat].LoadedClasses of
        lcG_GA_RGB_RGBA:
          begin
            if ClassAllowed(TRGBImage) or
               ClassAllowed(TRGBAlphaImage) or
               ClassAllowed(TGrayscaleImage) or
               ClassAllowed(TGrayscaleAlphaImage) then
              Result := Load(Stream, AllowedImageClasses) else
            if ClassAllowed(TRGBFloatImage) then
            begin
              Result := Load(Stream, [TRGBImage]);
              ImageRGBToFloatTo1st(result);
            end else
              raise EUnableToLoadImage.CreateFmt('LoadImage cannot load this image file format to %s', [LoadImageParams(AllowedImageClasses)]);
          end;
        lcRGB_RGBA:
          begin
            if ClassAllowed(TRGBImage) or
               ClassAllowed(TRGBAlphaImage) then
              Result := Load(Stream, AllowedImageClasses) else
{TODO:            if ClassAllowed(TGrayscaleImage) or
               ClassAllowed(TGrayscaleAlphaImage) }
            if ClassAllowed(TRGBFloatImage) then
            begin
              Result := Load(Stream, [TRGBImage]);
              ImageRGBToFloatTo1st(result);
            end else
              raise EUnableToLoadImage.CreateFmt('LoadImage cannot load this image file format to %s', [LoadImageParams(AllowedImageClasses)]);
          end;
        lcRGB:
          begin
            Result := Load(Stream, [TRGBImage]);
            Assert(Result is TRGBImage);

            if not (ClassAllowed(TRGBImage)) then
            begin
              if ClassAllowed(TRGBAlphaImage) then
              begin
                ImageAlphaConstTo1st(Result, DummyDefaultAlpha);
              end else
              if ClassAllowed(TGrayscaleImage) then
              begin
                ImageGrayscaleTo1st(Result);
              end else
              { TODO:
              if ClassAllowed(TGrayscaleAlphaImage) then
              begin
                ImageAlphaConstTo1st(Result, DummyDefaultAlpha);
                ImageGrayscaleAlphaTo1st(Result);
              end else }
              if ClassAllowed(TRGBFloatImage) then
              begin
                ImageRGBToFloatTo1st(result);
              end else
                raise EUnableToLoadImage.CreateFmt('LoadImage cannot load this image file format to %s', [LoadImageParams(AllowedImageClasses)]);
            end;
          end;
        lcRGB_RGBFloat:
          begin
            if ClassAllowed(TRGBFloatImage) or
               ClassAllowed(TRGBImage) then
              Result := LoadRGBE(Stream, AllowedImageClasses) else
            begin
              Result := LoadRGBE(Stream, [TRGBImage]);
              if ClassAllowed(TRGBAlphaImage) then
              begin
                ImageAlphaConstTo1st(result, DummyDefaultAlpha);
              end else
              if ClassAllowed(TGrayscaleImage) then
              begin
                ImageGrayscaleTo1st(Result);
              end else
              if ClassAllowed(TGrayscaleAlphaImage) then
              begin
                ImageGrayscaleTo1st(Result);
                ImageAlphaConstTo1st(result, DummyDefaultAlpha);
              end else
                raise EUnableToLoadImage.CreateFmt('LoadImage: RGBE format cannot be loaded to %s', [LoadImageParams(AllowedImageClasses)]);
            end;
          end;
        else raise EInternalError.Create('LoadImage: LoadedClasses?');
      end;
    end else
    raise EImageFormatNotSupported.Create('Can''t load image format "'+
      ImageFormatInfos[StreamFormat].FormatName+'"');

  except Result.Free; raise end;
end;

function LoadImage(Stream: TStream; const MimeType: string;
  const AllowedImageClasses: array of TCastleImageClass)
  :TCastleImage;
var
  iff: TImageFormat;
begin
  if MimeTypeToImageFormat(MimeType, true, false, iff) then
    result := LoadImage(Stream, iff, AllowedImageClasses) else
    raise EImageFormatNotSupported.Create('Unrecognized image MIME type: "'+MimeType+'"');
end;

function LoadImage(const URL: string;
  const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
const
  SLoadError = 'Error loading image from URL "%s": %s';
var
  f: TStream;
  MimeType: string;
begin
  try
    try
      f := Download(URL, [soForceMemoryStream], MimeType);
    except
      on E: EReadError do raise EImageLoadError.Create(E.Message);
    end;

    try
      result := LoadImage(f, MimeType, AllowedImageClasses);
    finally f.Free end;
  except
    { capture some exceptions to add URL to exception message }
    on E: EImageLoadError do
    begin
      E.Message := Format(SLoadError, [URIDisplay(URL), E.Message]);
      raise;
    end;
    on E: EImageFormatNotSupported do
    begin
      E.Message := Format(SLoadError, [URIDisplay(URL), E.Message]);
      raise;
    end;
  end;
end;

function LoadImage(const URL: string;
  const AllowedImageClasses: array of TCastleImageClass;
  const ResizeToX, ResizeToY: Cardinal;
  const Interpolation: TResizeInterpolation): TCastleImage;
begin
  result := LoadImage(URL, AllowedImageClasses);
  Result.Resize(ResizeToX, ResizeToY, Interpolation);
end;

{ SaveImage na TCastleImage ---------------------------------------------------- }

procedure SaveImage(const Img: TCastleImage; const Format: TImageFormat; Stream: TStream);
var
  ImgRGB: TRGBImage;
  Save: TImageSaveFunc;
begin
  if Assigned(ImageFormatInfos[Format].Save) then
  begin
    Save := ImageFormatInfos[Format].Save;
    case ImageFormatInfos[Format].SavedClasses of
      scRGB:
        begin
          if Img is TRGBImage then
            Save(Img, Stream) else
          if Img is TRGBFloatImage then
          begin
            ImgRGB := TRGBFloatImage(Img).ToRGBImage;
            try
              SaveImage(ImgRGB, Format, Stream);
            finally ImgRGB.Free end;
          end else
            raise EImageSaveError.CreateFmt('Saving image not possible: Cannot save image class %s to this format', [Img.ClassName]);
        end;
      scG_GA_RGB_RGBA:
        begin
          if (Img is TRGBImage) or
             (Img is TRGBAlphaImage) or
             (Img is TGrayscaleImage) or
             (Img is TGrayscaleAlphaImage) then
            Save(Img, Stream) else
          if Img is TRGBFloatImage then
          begin
            ImgRGB := TRGBFloatImage(Img).ToRGBImage;
            try
              SaveImage(ImgRGB, Format, Stream);
            finally ImgRGB.Free end;
          end else
            raise EImageSaveError.CreateFmt('Saving image not possible: Cannot save image class %s to this format', [Img.ClassName]);
        end;
      scRGB_RGBFloat:
        begin
          if (Img is TRGBImage) or
             (Img is TRGBFloatImage) then
            Save(Img, Stream) else
            raise EImageSaveError.CreateFmt('Saving image not possible: Cannot save image class %s to this format', [Img.ClassName]);
        end;
      else raise EInternalError.Create('SaveImage: SavedClasses?');
    end;
  end else
    raise EImageSaveError.CreateFmt('Saving image class %s not implemented', [Img.ClassName]);
end;

procedure SaveImage(const img: TCastleImage; const MimeType: string; Stream: TStream);
var
  Format: TImageFormat;
begin
  if not MimeTypeToImageFormat(MimeType, false, true, Format) then
    raise EImageSaveError.CreateFmt('Unknown image MIME type "%s", cannot save. Make sure the filename/URL you want to save has one of the recognized extensions',
      [MimeType]);
  SaveImage(Img, Format, Stream);
end;

procedure SaveImage(const Img: TCastleImage; const URL: string);
var
  Stream: TStream;
  Format: TImageFormat;
  MimeType: string;
begin
  { Do not call SaveImage with MimeType: string parameter, instead calculate
    Format here. This way we can make better error messaage. }
  MimeType := URIMimeType(URL);
  if not MimeTypeToImageFormat(MimeType, false, true, Format) then
    raise EImageSaveError.CreateFmt('Unknown image MIME type "%s", cannot save URL "%s". Make sure the filename/URL you want to save has one of the recognized extensions',
      [MimeType, URL]);

  Stream := URLSaveStream(URL);
  try
    SaveImage(Img, Format, Stream);
  finally FreeAndNil(Stream) end;
end;

{ other image processing ------------------------------------------- }

procedure ImageAlphaConstTo1st(var Img: TCastleImage; const AlphaConst: byte);
var
  NewImg: TCastleImage;
begin
  if Img is TRGBImage then
  begin
    NewImg := TRGBImage(Img).ToRGBAlphaImage_AlphaConst(AlphaConst);
    FreeAndNil(Img);
    Img := NewImg;
  end else
  if Img is TGrayscaleImage then
  begin
    NewImg := TGrayscaleImage(Img).ToGrayscaleAlphaImage_AlphaConst(AlphaConst);
    FreeAndNil(Img);
    Img := NewImg;
  end;

  if not ((Img is TRGBAlphaImage) or
          (Img is TGrayscaleAlphaImage)) then
    raise EInternalError.Create(
      'ImageAlphaConstTo1st not possible for this TCastleImage descendant: ' + Img.ClassName);
end;

function ImageClassBestForSavingToFormat(const URL: string): TCastleImageClass;
var
  Format: TImageFormat;
begin
  if not MimeTypeToImageFormat(URIMimeType(URL), false, true, Format) then
    Exit(TRGBImage);
  Result := ImageClassBestForSavingToFormat(Format);
end;

function ImageClassBestForSavingToFormat(const Format: TImageFormat): TCastleImageClass;
begin
  if Format = ifRGBE then
    Result := TRGBFloatImage else
    Result := TRGBImage;
end;

{ unit initialization / finalization ----------------------------------------- }

procedure InitializeImagesFileFilters;

  function CreateImagesFilters: TFileFilterList;
  begin
    Result := TFileFilterList.Create(true);
    Result.AddFilter('All Files', ['*']);
    Result.AddFilter('All Images', []);
    Result.DefaultFilter := 1;
  end;

  procedure AddImageFormat(Filters: TFileFilterList; Format: TImageFormatInfo);
  var
    F: TFileFilter;
    ExtIndex: Integer;
    Pattern: string;
  begin
    F := TFileFilter.Create;
    Filters.Add(F);
    F.Name := Format.FormatName + ' (';

    for ExtIndex := 1 to Format.ExtsCount do
    begin
      Pattern := '*.' + Format.Exts[ExtIndex];

      { add to "All images" filter }
      Filters[Filters.DefaultFilter].Patterns.Append(Pattern);

      { add to this filter }
      F.Patterns.Append(Pattern);

      { add to this filter visible name }
      if ExtIndex <> 1 then F.Name := F.Name + ', ';
      F.Name := F.Name + Pattern;
    end;

    F.Name := F.Name + ')';
  end;

var
  Format: TImageFormat;
begin
  LoadImage_FileFilters := CreateImagesFilters;
  SaveImage_FileFilters := CreateImagesFilters;

  for Format := Low(Format) to High(Format) do
  begin
    if Assigned(ImageFormatInfos[Format].Load) then
      AddImageFormat(LoadImage_FileFilters, ImageFormatInfos[Format]);
    if Assigned(ImageFormatInfos[Format].Save) then
      AddImageFormat(SaveImage_FileFilters, ImageFormatInfos[Format]);
  end;
end;

procedure AlphaMaxTo1st(var A: TAlphaChannel; const B: TAlphaChannel);
begin
  if B > A then A := B;
end;

initialization
  InitializeImagesFileFilters;
  InitializePNG;
finalization
  FreeAndNil(LoadImage_FileFilters);
  FreeAndNil(SaveImage_FileFilters);
end.

(* ----------------------------------------------------------------------------------
stare comments do LoadImage :

 { w result.data zwracaja bitmape w formacie GL_RGB na GL_UNSIGNED_BYTE, bez alignowania !
   Tzn. powinno byc PixelStorei(GL_UNPACK_ALIGNMENT, 1) aby dzialaly w kazdej sytuacji.
   LoadImageData zwraca tylko wskaznik result.data.
   Jesli resizeTo[] <> 0 to dany wymiar bedzie resizowany.
   UWAGA ! Przydzielony pointer data ZAWSZE nalezy zwolnic z pamieci przez FreeMem
     (polecam moje FreeMemNiling).
   ImageProc, jesli <> nil, jest wywolywane dla zaladowanego image'a PRZED wykonaniem
     ewentualnego skalowania. Ma to zastosowanie np. gdy chcesz zaladowac stosunkowo
     maly obrazek z pliku, zamienic go np. na czarno-bialy i potem przeskalowac na
     bardzo duzy rozmiar. W takiej sytuacji duzo bardziej ekonomiczne jest wywolanie
     konwersji na black&white jeszcze PRZED skalowaniem, a wiec najlepiej przekaz
     MakeBlackAndWhite jako ImageProc. Acha, jesli chcesz to mozesz w ImageProc
     zmienic rozmiary obrazka. (chociaz dla typowego resizu pewnie wygodniej bedzie
     uzyc parametrow resizeToX, resizeToY)
 }

*)