/usr/src/castle-game-engine-4.1.1/images/castleimages.pas is in castle-game-engine-src 4.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 | {
Copyright 2001-2013 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
(*Loading, saving, and processing of 2D (and 3D) images (TCastleImage and descendants).
Storing images in the memory, loading and saving them from/to files in various
formats, resizing, converting to grayscale, copying and merging,
many other image operations --- it's all here.
The most important class here is @link(TCastleImage).
It represents an image as a simple uncompressed array of pixels.
Descendants of TCastleImage define what exactly is a "pixel".
We have 8-bit color images
(@link(TRGBAlphaImage), @link(TRGBImage),
@link(TGrayscaleAlphaImage) and @link(TGrayscaleImage)).
We also have an image with floating-point precision and range:
@link(TRGBFloatImage).
You are free to create more descendants of TCastleImage in your own units
if you want to encode the pixel differently.
When reading and writing image files, we understand various image
formats. See TImageFormat documentation for a current list of supported
formats, with comments specific to particular formats.
The basic loading and saving procedures and LoadImage and SaveImage.
Example usage of this unit:
@longCode(#
var
Image: TCastleImage;
begin
Image := LoadImage('image.png', []);
{ scale the image to be 2x smaller }
Image.Resize(Image.Width div 2, Image.Height div 2);
SaveImage(Image, 'newimage.png');
end;
#)
This unit is of course not dependent on OpenGL or any other rendering
library. See CastleGLImages for OpenGL image operations (for textures and others).
*)
unit CastleImages;
{
TODO:
- implement more impressive resizing filters, at least simple
linear like gluScaleImage
}
{$include castleconf.inc}
{$include pngconf.inc}
{$modeswitch nestedprocvars}{$H+}
interface
uses SysUtils, Classes, Math, CastleUtils, CastleVectors,
CastlePng, CastleFileFilters, CastleClassUtils, CastleColors,
FGL, FPImage, FPReadPCX, FPReadGIF, FPReadPSD, FPReadTGA, FPReadTiff, FPReadXPM,
FPReadJPEG, FPWriteJPEG, FPReadPNM;
type
{ See TCastleImage.AlphaChannel. }
TAlphaChannel = (acNone, acSimpleYesNo, acFullRange);
const
{ Default parameters for TEncodedImage.AlphaChannel,
decide how to detect textures alpha channel. }
DefaultAlphaTolerance = 5;
DefaultAlphaWrongPixelsTolerance = 0.01;
{ Colors ------------------------------------------------------------ }
{ Check if the two RGB colors are equal, ignoring small differences.
All three color components may differ by at most Tolerance.
When Tolerance is 0, this is a normal (exact) comparison. }
function EqualRGB(const Color1, Color2: TVector3Byte; Tolerance: Byte): boolean;
{ TCastleImage --------------------------------------------------------------- }
type
{ Raised by @link(TCastleImage.MakeExtracted) when coordinates on image
are wrong.
Possibly I will use it in more routines in the future. }
EImagePosOutOfRange = class(Exception);
EImageLerpError = class(Exception);
EImageLerpInvalidClasses = class(EImageLerpError);
EImageLerpDifferentSizes = class(EImageLerpError);
{ Abstract class for an image with unspecified, possibly compressed,
memory format. The idea is that both uncompressed images (TCastleImage)
and compressed images (TS3TCImage) are derived from this class. }
TEncodedImage = class
private
FWidth, FHeight, FDepth: Cardinal;
protected
{ Operate on this by Get/Realloc/FreeMem.
It's always freed and nil'ed in destructor. }
FRawPixels: Pointer;
public
destructor Destroy; override;
property Width: Cardinal read FWidth;
property Height: Cardinal read FHeight;
property Depth: Cardinal read FDepth;
property RawPixels: Pointer read FRawPixels;
{ Is an image empty.
@true means that RawPixels = @nil,
and Width * Height * Depth = 0
(so either Width = 0 or Height = 0 or Depth = 0).
@false means that RawPixels <> nil and Width * Height * Depth <> 0
(so all Width > 0 and Height > 0 and Depth > 0, since they are
Cardinal (unsigned) always). }
function IsEmpty: boolean;
{ Does an image have an alpha channel.
You may also be interested in the AlphaChannel.
AlphaChannel answers always atNone if HasAlpha = false,
and always acSimpleYesNo or acFullRange if HasAlpha = true.
But AlphaChannel may perform longer analysis of pixels
(to differ between acSimpleYesNo and acFullRange), while this
function always executes ultra-fast (as it's constant for each
TCastleImage descendant).
@italic(Descendants implementors notes:) in this class, TCastleImage,
this returns @false. Override to return @true for images with
alpha channel. }
function HasAlpha: boolean; virtual;
{ @abstract(Check does an image have an alpha channel,
and if yes analyze alpha channel: is it a single yes-no (only full
or none values), or does it have alpha values in between?)
This is quite useful for automatic detection how alpha textures
should be displayed: for simple yes/no alpha, OpenGL alpha_test
is a simple solution. For full range alpha, OpenGL blending should
be used. Blending is a little problematic, since it requires
special rendering order, since it doesn't cooperate nicely with
Z-buffer. That's why we try to detect simple yes/no alpha textures,
so that we're able to use simpler alpha test for them.
This method analyzes every pixel. It's alpha is considered "simple"
if it's <= AlphaTolerance, or >= 255 - AlphaTolerance.
So for the default AlphaTolerance, "simple" alpha means only exactly
0 or 255 (maximum Byte values).
The method returns true if the ratio of non-simple pixels is
WrongPixelsTolerance. For example, default WrongPixelsTolerance = 0
means that every pixel must have "simple" alpha channel.
Greated WrongPixelsTolerance values may allow some tolerance,
for example WrongPixelsTolerance = 0.01 allows 1 percent of pixels
to fail the "simple alpha" test and the image can still be considered
"simple yes/no alpha channel".
In summary, default Tolerance values are 0, so exactly all pixels
must have exactly full or exactly none alpha. Increasing
tolerance values (for example, AlphaTolerance = 5
and WrongPixelsTolerance = 0.01 may be good start --- still conservative
enough, and tolerate small deviations) allows you to accept
more images as simple yes/no alpha. Of course too large tolerance
values have no sense --- AlphaTolerance >= 128, or WrongPixelsTolerance >= 1.0
will cause all images to be accepted as "simple yes/no alpha".
@italic(Descendants implementors notes:) in this class, this simply
always returns atNone. For descendants that have alpha channel,
implement it, honouring AlphaTolerance and WrongPixelsTolerance as
described. }
function AlphaChannel(
const AlphaTolerance: Byte = DefaultAlphaTolerance;
const WrongPixelsTolerance: Single = DefaultAlphaWrongPixelsTolerance):
TAlphaChannel; virtual;
end;
TResizeInterpolation = (riNearest, riBilinear);
{ An abstract class representing image as a simple array of pixels.
RawPixels is a pointer to Width * Height * Depth of pixels.
What exactly is a "pixel" is undefined in this class. Each descendant
of TCastleImage defines it's own pixel encoding and interpretation.
The only requirement is that all pixels have the same size (PixelSize).
For example, for TRGBImage a "pixel" is a TVector3Byte type
representing a (red, green, blue) color value.
When Depth > 1, the image is actually a 3D (not just 2D!) image.
We call the particular 2D layers then "slices".
Although some TCastleImage methods (and functions in other units, like CastleGLImages)
still operate only on the 1st "slice", that is the 2D image on Depth = 0
--- be careful. But many methods correctly take the depth into consideration.
Pixels in RawPixels are ordered in slices, each slice is ordered in rows,
in each row pixels are specified
from left to right, rows are specified starting from lower row to upper.
This means that you can think of RawPixels as
@longCode(#
^(packed array[0..Depth - 1, 0..Height - 1, 0..Width - 1] of TPixel)
#)
Assuming the above definition, RawPixels^[z, y, x]
is color of pixel at position z, x, y.
Note that specifying rows from lower to upper follows an OpenGL standard,
this makes using this unit with OpenGL straightforward.
Don't ever operate on RawPixels pointer directly --- allocating, reallocating,
freeing memory pointed to by RawPixels is handled inside this class.
You must only worry to always free created TCastleImage instances
(like with any class).
Note that the only valid states of instances of this class
are when (Width * Height * Depth > 0 and RawPixels <> nil) or
(Width * Height * Depth = 0 and RawPixels = nil). Otherwise the fundamental
assumption that RawPixels is a pointer to Width * Height * Depth pixels would
be broken (as nil pointer cannot point to anything, and on the other
side it's rather useless to have a pointer to 0 bytes (since you
can never dereference it anyway) even if theoretically every PtrInt
value can be treated as valid pointer to 0 bytes).
Note about coordinates:
@orderedList(
@item(All X, Y, Z coordinates of pixels are 0-based
(X in range 0..Width-1, and Y in 0..Height-1, and Z in 0..Depth-1).)
@item(If documentation for some method does not specify otherwise,
correctness of coordinates is *not* checked in method,
which can lead to various errors at runtime if you will pass
incorrect coordinates to given routine.)
)
}
TCastleImage = class(TEncodedImage)
private
procedure NotImplemented(const AMethodName: string);
protected
{ Check that both images have the same sizes and Second image class
descends from First image class. If not, raise appropriate ELerpXxx
exceptions.
Some implementation of TRGBImage.LerpWith may require
other checks (since LerpWith may be sometimes allowed between unequal
classes), so this doesn't have to be used by all TRGBImage.LerpWith
implementations (although it's comfortable for simple implementations). }
procedure LerpSimpleCheckConditions(SecondImage: TCastleImage);
public
{ Constructor without parameters creates image with Width = Height = Depth = 0
and RawPixels = nil, so IsEmpty will return @true.
Both constructors must be virtual, this allows to implement things
like TCastleImage.MakeCopy. }
constructor Create; overload; virtual;
constructor Create(
const AWidth, AHeight: Cardinal;
const ADepth: Cardinal = 1); overload; virtual;
{ This is equivalent to SetSize(0, 0, 0).
It sets Width = Height = 0 and RawPixels = nil. }
procedure Empty;
{ Change Width and Height to given AWidth, AHeight.
RawPixels is changed to point to the new memory.
Previous image contents are lost. (use one of the other methods,
like @link(Resize), if you want to change image size preserving
it's contents) }
procedure SetSize(
const AWidth, AHeight: Cardinal;
const ADepth: Cardinal = 1);
{ Size of TPixel in bytes for this TCastleImage descendant. }
class function PixelSize: Cardinal; virtual; abstract;
{ Number of color components in TPixel.
E.g. RGB is 3 components and RGB+Alpha is 4 components,
RGB+Exponent is 3 components (because it describes only
Red, Green and Blue values (Exponent value is just used
to correctly interpret these, it's not a 4th component)). }
class function ColorComponentsCount: Cardinal; virtual; abstract;
{ Pointer to the (x, y, z) pixel of image.
Note that they don't check X, Y, Z correctness in any way,
it's your responsibility to always pass 0 <= X < Width and
0 <= Y < Height and 0 <= Z < Depth.
Note that this function @italic(should) be reintroduced in descendants
to return the same value but typecasted to something better then Pointer
(something like ^TPixel). }
function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): Pointer;
{ Pointer to the first pixel in the Y row of the image.
Same thing as @link(PixelPtr) but always with X = 0.
Note that this function @italic(should) be reintroduced in descendants
to return the same value but typecasted to something better then Pointer,
preferably something like ^(array of TPixel). }
function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): Pointer;
{ This inverts RGB colors (i.e. changes each RGB component's value
to High(Byte)-value). Doesn't touch other components,
e.g. alpha value in case of TRGBAlphaImage descendant.
Note that this may be not overriden in every TCastleImage descendant,
then default implementation of this method in this class
will raise EInternalError. This also means that you must not
call inherited in descendants when overriding this method. }
procedure InvertRGBColors; virtual;
{ Set the RGB color portion of the pixel.
In case of descendants that have more then RGB components,
other color components are not touched (e.g. in case of TRGBAlphaImage
alpha value of given pixel is not changed).
In case of descendants that don't have anything like RGB encoded
inside (e.g. TGrayscaleImage), this should not be overriden and then
default implementation of this method in this class
will raise EInternalError. This also means that you must not
call inherited in descendants when overriding this method.
As usual, you are responsible for guaranting correctness of given
X, Y coordinates because their correctness is not checked here. }
procedure SetColorRGB(const X, Y: Integer; const v: TVector3Single); virtual;
{ Create a new object that has exactly the same class
and the same contents as this object.
(note: no, this function is *not* constructor, because it's implemented
in TCastleImage, but it always returns some descendant of TCastleImage). }
function MakeCopy: TCastleImage;
{ Change Width and Height and appropriately stretch
image contents.
If ResizeToX or ResizeToY is 0 then it means to take
Width or Height, respectively.
So e.g. using ResizeToX = ResizeToY = 0 is the same thing
as using ResizeToX = Width and ResizeToY = Height and this is NOP.
Remember that resizing may change RawPixels pointer, so all pointers
that you aquired using functions like
RawPixels, RGBPixels, AlphaPixels, RowPtr, PixelPtr
may be invalid after calling Resize.
If ProgressTitle <> '' this will call Progress.Init/Step/Fini
from CastleProgress to indicate progress of operation. }
procedure Resize(ResizeToX, ResizeToY: Cardinal;
const Interpolation: TResizeInterpolation = riNearest;
const ProgressTitle: string = '');
{ Create a new TCastleImage instance with size ResizeToX, ResizeToY
and pixels copied from us and appropriately stretched.
Class of new instance is the same as our class.
As with @link(Resize), ResizeTo* = 0 means to use current Width/Height.
So e.g. using MakeResized(0, 0) is the same thing as using MakeCopy.
As with @link(Resize),
if ProgressTitle <> '' this will call Progress.Init/Step/Fini
from CastleProgress to indicate progress of operation. }
function MakeResized(ResizeToX, ResizeToY: Cardinal;
const Interpolation: TResizeInterpolation = riNearest;
const ProgressTitle: string = ''): TCastleImage;
{ Mirror image horizotally (i.e. right edge is swapped with left edge) }
procedure FlipHorizontal;
{ Make rotated version of the image.
See @link(Rotate) for description of parameters. }
function MakeRotated(Angle: Integer): TCastleImage;
{ Rotate image by Angle * 90 degrees, clockwise.
For example, 0 does nothing. 1 rotates by 90 degrees, 2 rotates
by 180, 3 rotates by 270. All other values (negative too) are circular
(modulo), so e.g. 4 again does nothing, 5 rotates by 90 degrees and so on. }
procedure Rotate(const Angle: Integer);
{ Create a new instance with the same class, and size
TileX * Width and TileY * Height and contents being our contents
duplicated (tiled).
Must be TileX, TileY > 0. }
function MakeTiled(TileX, TileY: Cardinal): TCastleImage;
{ Extract rectangular area of this image.
X0 and Y0 are start position (lower-left corner),
ExtractWidth, ExtractHeight specify size of area.
This checks parameters for correctness -- if start position in not
good or ExtractWidth/Height are too large exception
@link(EImagePosOutOfRange) is raised. }
function MakeExtracted(X0, Y0, ExtractWidth, ExtractHeight: Cardinal): TCastleImage;
{ Set all image pixels to the same value.
This is implemented only in descendants that represent a pixel
as a TVector4Byte (e.g. TRGBAlphaImage) or TVector3Byte
(e.g. TRGBImage, 4th component is ignored in this case).
In this class this simply raises EInternalError to say 'not implemented'.
This also means that you must not call inherited in
descendants when overriding this method. }
procedure Clear(const Pixel: TVector4Byte); virtual;
{ Check do all image pixels have the same value Pixel.
This is implemented only in descendants that represent a pixel
as TVector4Byte or TVector3Byte (4th component is ignored in this
case), just like method @link(Clear).
In this class this simply raises EInternalError to say 'not implemented'.
This also means that you must not call inherited in
descendants when overriding this method. }
function IsClear(const Pixel: TVector4Byte): boolean; virtual;
{ Multiply each RGB color by a matrix.
This is a useful routine for many various conversions of image colors.
Every pixel's RGB color is multiplied by given Matrix,
i.e. PixelRGBColor := Matrix * PixelRGBColor.
If some value in some channel will be < 0, it will be set to 0.
And if it will be > High(Byte), it will be set to High(Byte).
Examples: when
Matrix = IdentityMatrix3Single, this is NOOP.
Matrix = ((2, 0, 0), (0, 1, 0), (0, 0, 1))
red channel is made lighter.
Matrix = ((0, 0, 1), (0, 1, 0), (1, 0, 0))
swaps red and blue channel.
Matrix = ((0.33, 0.33, 0.33),
(0.33, 0.33, 0.33),
(0.33, 0.33, 0.33))
is a simple conversion to grayscale (actually incorrect, even if often
visually acceptable; actually instead of 0.33 one has to use
GrayscaleFloat/ByteValues, this is already implemented
in ImageTransformColorsTo1st function)
Note: it's often more optimal to hard-code necessary color transformations
as TColorModulatorFunc and use ModulateRGB.
This function is only implemented for images that represent Pixel
as RGB values, for now this means TRGBImage and TRGBAlphaImage.
In case of TRGBAlphaImage (or any other class that represents
colors as RGB + something more) alpha channel (i.e. "something more")
is ignored (i.e. left without any modification).
In this class this simply raises EInternalError to say 'not implemented'.
This also means that you must not call inherited in
descendants when overriding this method. }
procedure TransformRGB(const Matrix: TMatrix3Single); virtual;
{ Process each pixel by given function.
If ColorModulator = nil then this procedure does nothing.
Else, every RGB color value of an image will be transformed using
ColorModulator.
Like TransformRGB:
This function is only implemented for images that represent Pixel
as RGB values, for now this means TRGBImage and TRGBAlphaImage.
In case of TRGBAlphaImage (or any other class that represents
colors as RGB + something more) alpha channel (i.e. "something more")
is ignored (i.e. left without any modification).
In this class this simply raises EInternalError to say 'not implemented'.
This also means that you must not call inherited in
descendants when overriding this method. }
procedure ModulateRGB(const ColorModulator: TColorModulatorByteFunc); virtual;
{ Just like ModulateRGB, but this returns new image, not changing initial
image. This means that if ColorModulator = nil this is
equivalent to MakeCopy.
Implemented if and only if ModulateRGB is implemented. }
function MakeModulatedRGB(
const ColorModulator: TColorModulatorByteFunc): TCastleImage;
{ Convert image colors to grayscale.
Implemented if and only if ModulateRGB is implemented.
When image has alpha channel, alpha channel value
(or just anything beyond 3 rgb components) is ignored (not modified).
This changes color to grayscale, but format of memory storage is the same.
For example, for TRGBImage, they are still kept in RGB format
(just Red = Green = Blue). If you want to convert to true Grayscale format,
you should use TRGBImage.ToGrayscale that will create new
TGrayscaleImage instance. }
procedure Grayscale;
{ Convert every image color using Color*Convert function from CastleVectors.
"Channel" parameter determines which Color*Convert function to use
(Red, Green or Blue), must be 0, 1 or 2.
Implemented if and only if ModulateRGB is implemented. }
procedure ConvertToChannelRGB(Channel: Integer);
{ Converts every image color using Color*Strip function from CastleVectors.
"Channel" parameter determines which Color*Strip function to use
(Red, Green or Blue), must be 0, 1 or 2.
Implemented if and only if ModulateRGB is implemented. }
procedure StripToChannelRGB(Channel: Integer);
{ Check if given Image has the same class, the same sizes
(Width, Height) and contains exactly the same pixel values. }
function IsEqual(Image: TCastleImage): boolean;
{ This is like IsEqual, but is compares only given parts of the images.
Note that it's your responsibility to make sure that given areas
are really within the sizes of Self or Image.
Overloaded version without SelfXxx parameters compares whole Self
to given part of Image. Analogously, version without ImageXxx parameters
compares whole Image to part of Self.
@groupBegin }
function ArePartsEqual(
const SelfX0, SelfY0, SelfWidth, SelfHeight: Cardinal;
Image: TCastleImage;
const ImageX0, ImageY0, ImageWidth, ImageHeight: Cardinal): boolean; overload;
function ArePartsEqual(
Image: TCastleImage;
const ImageX0, ImageY0, ImageWidth, ImageHeight: Cardinal): boolean; overload;
function ArePartsEqual(
const SelfX0, SelfY0, SelfWidth, SelfHeight: Cardinal;
Image: TCastleImage): boolean; overload;
{ @groupEnd }
{ These check that Image and Self have equal classes, and then
copy Self to Image or Image to Self.
X0 and Y0 is each case are the position on the destinantion image.
Optionally you can specify dimensions of rectangle from source image
to use (please note that they are assumed correct here; so you better
check them, or risk invalid memory reads).
@groupBegin }
procedure CopyFrom(Image: TCastleImage; const X0, Y0: Cardinal);
procedure CopyFrom(Image: TCastleImage; const X0, Y0: Cardinal;
const SourceX0, SourceY0, SourceWidth, SourceHeight: Cardinal);
procedure CopyTo(Image: TCastleImage; const X0, Y0: Cardinal);
{ @groupEnd }
{ Makes linear interpolation of colors from this image and the SecondImage.
Intuitively, every pixel in new image is set to
@preformatted(
(1 - Value) * Self[pixel] + Value * SecondImage[pixel]
)
Both images need to have the exact same size.
If they are not, EImageLerpDifferentSizes is raised.
Not all TCastleImage combinations are allowed. Every subclass is required
to override this to at least handle Lerp between itself.
That is, TRGBImage.Lerp has to handle Lerp with other TRGBImage,
TRGBAlphaImage.Lerp has to handle Lerp with other TRGBAlphaImage etc.
Other combinations may be permitted, if useful and implemented.
EImageLerpInvalidClasses is raised if given class combinations are
not allowed.
In this class, this simply always raises EImageLerpInvalidClasses.
@raises(EImageLerpDifferentSizes When SecondImage size differs
from this image.)
@raises(EImageLerpInvalidClasses When Lerp between this TCastleImage
descendant class and SecondImage class is not implemented.) }
procedure LerpWith(const Value: Single; SecondImage: TCastleImage); virtual;
{ Mix 4 colors, with 4 weights, into a resulting color.
All 4 Colors and OutputColor must be pointers to a pixel of current
image class, that is they must point to PixelSize bytes of memory.
@raises(EImageLerpInvalidClasses When mixing is not implemented
for this image class.) }
class procedure MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer); virtual;
end;
TCastleImageList = specialize TFPGObjectList<TCastleImage>;
TEncodedImageList = specialize TFPGObjectList<TEncodedImage>;
TS3TCCompression = (
{ s3tcDxt1_RGB and s3tcDxt1_RGBA are the same compression method,
except in s3tcDxt1_RGB the alpha information is ignored,
while in s3tcDxt1_RGBA we have simple yes/no alpha.
The difference is equivalent to OpenGL differences in treating
@unorderedList(
@itemSpacing compact
@item GL_COMPRESSED_RGB_S3TC_DXT1_EXT and
@item GL_COMPRESSED_RGBA_S3TC_DXT1_EXT.
)
}
s3tcDxt1_RGB,
s3tcDxt1_RGBA,
{ DXT3 and DXT5 are always treated like they had full-range alpha channel. }
s3tcDxt3,
s3tcDxt5);
ECannotFlipS3TCImage = class(Exception);
{ Image encoded with S3TC compression. }
TS3TCImage = class(TEncodedImage)
private
FCompression: TS3TCCompression;
FSize: Cardinal;
public
constructor Create(const AWidth, AHeight: Cardinal;
const ADepth: Cardinal;
const ACompression: TS3TCCompression);
property Compression: TS3TCCompression read FCompression;
{ Size of the whole image data inside RawPixels, in bytes. }
property Size: Cardinal read FSize;
function HasAlpha: boolean; override;
function AlphaChannel(
const AlphaTolerance: Byte;
const WrongPixelsTolerance: Single): TAlphaChannel; override;
{ Flip compressed image vertically, losslessly.
This usese the knowledge of how S3TC compression works,
how the data is coded for each 4x4 block,
to losslessly flip the image, without re-compressing it.
The idea is described here
[http://users.telenet.be/tfautre/softdev/ddsload/explanation.htm].
@raises(ECannotFlipS3TCImage
Raises ECannotFlipS3TCImage when image Height is not 1, 2, 3
or a multiple of 4 (since the trick doesn't work in these cases,
pixels would move between 4x4 blocks). Note that if Height
is a power of two (as common for OpenGL textures) then it's
always possible to make a flip.) }
procedure FlipVertical;
{ Decompress S3TC image.
This uses DecompressS3TC variable, so you have to initialialize it
first (for example to GLImage.GLDecompressS3TC) before using this.
@raises(ECannotDecompressS3TC If cannot decompress S3TC,
because decompressor is not set and there was some other error
within decompressor.) }
function Decompress: TCastleImage;
function MakeCopy: TS3TCImage;
end;
ECannotDecompressS3TC = class(Exception);
TDecompressS3TCFunction = function (Image: TS3TCImage): TCastleImage;
var
{ Assign here S3TC decompression function that is available.
This way the "decompressor" is pluggable, which means that
you can even use OpenGL to decompress S3TC textures, if you're going
to load images while some OpenGL context is active. }
DecompressS3TC: TDecompressS3TCFunction;
{ TCastleImageClass and arrays of TCastleImageClasses ----------------------------- }
type
{ }
TCastleImageClass = class of TCastleImage;
TEncodedImageClass = class of TEncodedImage;
TDynArrayImageClasses = array of TCastleImageClass;
{ @deprecated Deprecated name for TCastleImageClass. }
TImageClass = TCastleImageClass deprecated;
{ Check is ImageClass one of the items in the ImageClasses array,
or a descendant of one of them. }
function InImageClasses(ImageClass: TCastleImageClass;
const ImageClasses: array of TCastleImageClass): boolean; overload;
{ Check is Image class one of the items in the ImageClasses array,
or a descendant of one of them.
This is a shortcut for InImageClasses(Image.ClassType, ImageClasses). }
function InImageClasses(Image: TCastleImage;
const ImageClasses: array of TCastleImageClass): boolean; overload;
(*Check if both arrays contain exactly the same classes in the same order.
May be extended in the future to do better checks and return true
also if both array contain the same classes but in different order,
and one array may contain the same classes duplicated any times.
So the intention is that you should treat both arrays as sets
(i.e. order of elements is ignored).
The problem is that this function should be lighting fast
(as the main purpose of it is to use it in constructions like
setting property values, e.g.
@longCode(#
if ImageClassesArraysEqual(Value, SomeProperty) then
begin
SomeProperty := Value;
{ ... do some lengthy operations to update new value of SomeProperty ... }
end;
#)
), and doing smarter checks may cost us a little time.
So for now this function returns
@unorderedList(
@item @true if for sure both arrays contain the same classes and
@item @false if @italic(possibly) they don't contain the same classes.
) *)
function ImageClassesEqual(const Ar1, Ar2: array of TCastleImageClass): boolean;
procedure ImageClassesAssign(var Variable: TDynArrayImageClasses;
const NewValue: array of TCastleImageClass);
{ TCastleImage basic descendants --------------------------------------------- }
type
TRGBAlphaImage = class;
TRGBFloatImage = class;
TGrayscaleImage = class;
TGrayscaleAlphaImage = class;
{ Image with pixel represented as a TVector3Byte (red, green, blue). }
TRGBImage = class(TCastleImage)
private
function GetRGBPixels: PVector3Byte;
public
{ This is the same pointer as RawPixels, only typecasted to PVector3Byte }
property RGBPixels: PVector3Byte read GetRGBPixels;
class function PixelSize: Cardinal; override;
class function ColorComponentsCount: Cardinal; override;
function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): PVector3Byte;
function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): PArray_Vector3Byte;
procedure InvertRGBColors; override;
procedure SetColorRGB(const x, y: Integer; const v: TVector3Single); override;
procedure Clear(const Pixel: TVector4Byte); override;
function IsClear(const Pixel: TVector4Byte): boolean; override;
procedure TransformRGB(const Matrix: TMatrix3Single); override;
procedure ModulateRGB(const ColorModulator: TColorModulatorByteFunc); override;
{ Create a new TRGBAlphaImage object with RGB colors
copied from this object, but alpha of each pixel is set
to some random value (whatever was at that particular memory
place at that time). }
function ToRGBAlphaImage_AlphaDontCare: TRGBAlphaImage;
{ Like @link(ToRGBAlphaImage_AlphaDontCare), but alpha of every
pixel is set to given Alpha. }
function ToRGBAlphaImage_AlphaConst(Alpha: byte): TRGBAlphaImage;
{ Like @link(ToRGBAlphaImage_AlphaDontCare), but alpha of every
pixel is set to either AlphaOnColor (when color of pixel
is equal to AlphaColor with Tolerance, see @link(EqualRGB))
or AlphaOnNoColor. }
function ToRGBAlphaImage_AlphaDecide(
const AlphaColor: TVector3Byte; Tolerance: Byte;
AlphaOnColor: Byte; AlphaOnNoColor: Byte): TRGBAlphaImage;
{ Convert image to an TRGBFloatImage format.
Although float format offers superior precision compared to 8bit RGB,
there is a slight chance of some unnoticeable loss of information
in such convertion, since floating-point values are involved
in calculation.
But generally this conversion is relatively safe (contrary to
convertion float -> 8-bit RGB, which must be lossy).
But still you should note that doing such convertion has little
sense since float format is useful only when you have colors that can't
be expressed as simple 8-bit RGB. But by using this convertion
you initially fill float image with data that does not have
precision beyond standard 0..255 discreet range for each RGB component... }
function ToRGBFloat: TRGBFloatImage;
function ToGrayscale: TGrayscaleImage;
{ Draw horizontal line. Must be y1 <= y2, else it is NOOP. }
procedure HorizontalLine(const x1, x2, y: Integer;
const Color: TVector3Byte);
{ Draw vertical line. Must be x1 <= x2, else it is NOOP. }
procedure VerticalLine(const x, y1, y2: Integer;
const Color: TVector3Byte);
{ Create image by merging two images according to a (third) mask image.
This is a very special constructor.
It creates image with the same size as MapImage.
It also resizes ReplaceWhiteImage, ReplaceBlackImage
to the size of MapImage.
Then it inits color of each pixel of our image with
combined colors of two pixels on the same coordinates from
ReplaceWhiteImage, ReplaceBlackImage, something like
@preformatted(
Pixel[x, y] := ReplaceWhiteImage[x, y] * S +
ReplaceBlackImage[x, y] * (S-1);
)
where S = average of red, gree, blue of color MapImage[x, y].
This means that final image will look like ReplaceWhiteImage
in the areas where MapImage is white, and it will look like
ReplaceBlackImage in the areas where MapImage is black. }
constructor CreateCombined(const MapImage: TRGBImage;
var ReplaceWhiteImage, ReplaceBlackImage: TRGBImage);
procedure LerpWith(const Value: Single; SecondImage: TCastleImage); override;
class procedure MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer); override;
end;
TRGBAlphaImage = class(TCastleImage)
private
function GetAlphaPixels: PVector4Byte;
public
{ This is the same pointer as RawPixels, only typecasted to PVector4Byte }
property AlphaPixels: PVector4Byte read GetAlphaPixels;
class function PixelSize: Cardinal; override;
class function ColorComponentsCount: Cardinal; override;
function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): PVector4Byte;
function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): PArray_Vector4Byte;
procedure InvertRGBColors; override;
procedure SetColorRGB(const x, y: Integer; const v: TVector3Single); override;
procedure Clear(const Pixel: TVector4Byte); override;
function IsClear(const Pixel: TVector4Byte): boolean; override;
{ Set alpha channel on every pixel to the same given value. }
procedure ClearAlpha(const Alpha: Byte);
procedure TransformRGB(const Matrix: TMatrix3Single); override;
procedure ModulateRGB(const ColorModulator: TColorModulatorByteFunc); override;
{ Set alpha of every pixel to either AlphaOnColor
(when color of pixel is equal to AlphaColor with Tolerance,
see @link(EqualRGB)) or AlphaOnNoColor. }
procedure AlphaDecide(const AlphaColor: TVector3Byte;
Tolerance: Byte; AlphaOnColor: Byte; AlphaOnNoColor: Byte);
{ Copy RGB contents from one image, and alpha contents from the other.
RGB channels are copied from the RGB image,
alpha channel is copied from the Grayscale image. Given RGB and Grayscale
images must have the same size, and this is the resulting
size of this image after Compose call. }
procedure Compose(RGB: TRGBImage; AGrayscale: TGrayscaleImage);
function HasAlpha: boolean; override;
function AlphaChannel(
const AlphaTolerance: Byte;
const WrongPixelsTolerance: Single): TAlphaChannel; override;
procedure LerpWith(const Value: Single; SecondImage: TCastleImage); override;
class procedure MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer); override;
{ Remove alpha channel, creating new TRGBImage. }
function ToRGBImage: TRGBImage;
end;
{ Image with high-precision RGB colors encoded as 3 floats. }
TRGBFloatImage = class(TCastleImage)
private
function GetRGBFloatPixels: PVector3Single;
public
{ This is the same pointer as RawPixels, only typecasted to PVector3Single }
property RGBFloatPixels: PVector3Single read GetRGBFloatPixels;
class function PixelSize: Cardinal; override;
class function ColorComponentsCount: Cardinal; override;
function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): PVector3Single;
function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): PArray_Vector3Single;
procedure SetColorRGB(const x, y: Integer; const v: TVector3Single); override;
procedure Clear(const Pixel: TVector3Single); reintroduce;
function IsClear(const Pixel: TVector3Single): boolean; reintroduce;
{ Converts TRGBFloatImage to TRGBImage.
Colors in pixels are simply rounded using @link(Vector3Byte).
So such convertion not only kills the floating-point
precision in float format but also clamps color components
to 0..1. }
function ToRGBImage: TRGBImage;
{ Every component (red, green, blue) of every pixel
is multiplied by Scale. }
procedure ScaleColors(const Scale: Single);
{ Every component (red, green, blue) or every pixel
is changed to Power(Value, Exp).
So e.g. Exp = 1/2.2 gives commonly used gamma correction. }
procedure ExpColors(const Exp: Single);
procedure LerpWith(const Value: Single; SecondImage: TCastleImage); override;
class procedure MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer); override;
end;
{ Grayscale image. Color is a simple Byte value. }
TGrayscaleImage = class(TCastleImage)
private
function GetGrayscalePixels: PByte;
public
{ This is the same pointer as RawPixels, only typecasted to PByte }
property GrayscalePixels: PByte read GetGrayscalePixels;
class function PixelSize: Cardinal; override;
class function ColorComponentsCount: Cardinal; override;
function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): PByte;
function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): PByteArray;
procedure Clear(const Pixel: Byte); reintroduce;
function IsClear(const Pixel: Byte): boolean; reintroduce;
{ Every pixels value is halved (divided by 2).
This is done by simple bitshift, so you can be sure that all
components are < 2^7 after this. }
procedure HalfColors;
{ Create new TGrayscaleAlphaImage with grayscale channel copied
from this object, and alpha channel filled with constant Alpha value. }
function ToGrayscaleAlphaImage_AlphaConst(Alpha: byte): TGrayscaleAlphaImage;
procedure LerpWith(const Value: Single; SecondImage: TCastleImage); override;
class procedure MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer); override;
end;
{ Grayscale image with an alpha channel.
Each pixel is two bytes: grayscale + alpha. }
TGrayscaleAlphaImage = class(TCastleImage)
private
function GetGrayscaleAlphaPixels: PVector2Byte;
public
{ This is the same pointer as RawPixels, only typecasted to PVector2Byte }
property GrayscaleAlphaPixels: PVector2Byte read GetGrayscaleAlphaPixels;
class function PixelSize: Cardinal; override;
class function ColorComponentsCount: Cardinal; override;
function PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): PVector2Byte;
function RowPtr(const Y: Cardinal; const Z: Cardinal = 0): PArray_Vector2Byte;
procedure Clear(const Pixel: TVector2Byte); reintroduce;
function IsClear(const Pixel: TVector2Byte): boolean; reintroduce;
function HasAlpha: boolean; override;
function AlphaChannel(
const AlphaTolerance: Byte;
const WrongPixelsTolerance: Single): TAlphaChannel; override;
procedure LerpWith(const Value: Single; SecondImage: TCastleImage); override;
class procedure MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer); override;
end;
{ @deprecated Deprecated name for TCastleImage. }
TImage = TCastleImage deprecated;
{ RGBE <-> 3 Single color convertion --------------------------------- }
{ Encode RGB color as Red + Green + Blue + Exponent format.
This allows you to encode high-precision colors in 4 bytes,
see ifRGBE image format for pointers why this is useful.
Each component of V (red, green, blue) must be from range
[0, +infinity), not merely from [0, 1].
That is, V must have only nonnegative values. }
function Vector3ToRGBE(const v: TVector3Single): TVector4Byte;
{ Decode Red + Green + Blue + Exponent back into RGB (3 floats). }
function VectorRGBETo3Single(const v: TVector4Byte): TVector3Single;
{ loading image (format-specific) ---------------------------------------
Load image from Stream.
They must honour AllowedImageClasses, just like
LoadImage does. Except they don't have to care about returning all TCastleImage
descendants: see @link(TImageFormatInfo.LoadedClasses). So higher-level
LoadImage will use them and eventually convert their result.
An appropriate descendant of EImageLoadError will be raised
in case of error when reading from Stream or when Stream will not
contain correct data. }
type
{ }
EImageLoadError = class(Exception);
EInvalidImageFormat = class(EImageLoadError);
EInvalidBMP = class(EInvalidImageFormat);
EInvalidPNG = class(EInvalidImageFormat);
EInvalidPPM = class(EInvalidImageFormat);
EInvalidIPL = class(EInvalidImageFormat);
EInvalidRGBE = class(EInvalidImageFormat);
{ }
EUnableToLoadImage = class(EImageLoadError);
function LoadPNG(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadBMP(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadGIF(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadTGA(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadSGI(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadTIFF(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadJP2(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadEXR(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadJPEG(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadXPM(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadPSD(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadPCX(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
{ Load PPM image.
Loads only the first image in .ppm file. }
function LoadPPM(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
{ Load PNM image (PNM, PGM, PBM, PPM) through FpImage.
Note that for PPM, for now it's more advised to use our LoadPPM. }
function LoadPNM(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
function LoadIPL(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
{ Load RGBE image.
This low-level function can load to TRGBFloatImage (preserving image data)
or to TRGBImage (loosing floating point precision of RGBE format). }
function LoadRGBE(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
{ Load DDS image file into a single 2D image. This simply returns the first
image found in DDS file, which should be the main image.
If you want to investigate other images in DDS, you have to use TDDSImage
class. }
function LoadDDS(Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
{ saving image (format-specific) --------------------------------------------
SaveXxx. Each file format may have specialized SaveXxx that allows
you to give some parameters special for given format.
Each format must also have procedure with two parameters
(Img: TCastleImage; Stream: TStream), this will be used with
ImageFormatsInfo[].
This means that below we must use overloading instead of
default parameters, since pointers to given procedures must be
compatible with @link(TImageSaveFunc).
SaveXxx should
raise EImageSaveError.CreateFmt('Saving to XXX image class %s not possible', [Img.ClassName]);
when Img doesn't have acceptable class.
Also, list of handled image classes should be reflected in SavedClasses
in ImageFormatsInfo[] for this format.
}
{ }
procedure SaveBMP(Img: TCastleImage; Stream: TStream);
procedure SavePNG(Img: TCastleImage; Stream: TStream; interlaced: boolean); overload;
procedure SavePNG(Img: TCastleImage; Stream: TStream); { interlaced = false } overload;
{ }
procedure SaveJPEG(Img: TCastleImage; Stream: TStream);
{ }
procedure SavePPM(Img: TCastleImage; Stream: TStream; binary: boolean); overload;
procedure SavePPM(Img: TCastleImage; Stream: TStream); { binary = true } overload;
{ }
procedure SaveRGBE(Img: TCastleImage; Stream: TStream);
procedure SaveDDS(Img: TCastleImage; Stream: TStream);
{ File formats managing ----------------------------------------------------- }
type
{ }
TImageFormat = (
{ We handle PNG file format fully, both reading and writing,
through the libpng library.
This format supports a full alpha channel.
Besides PSD, this is the only format that allows full-range
(partial transparency) alpha channel.
Trying to read / write PNG file when libpng is not installed
(through LoadImage, SaveImage, LoadPNG, SavePNG and others)
will raise exception ELibPngNotAvailable. Note that the check
for availability of libpng is done only once you try to load/save PNG file.
You can perfectly compile and even run your programs without
PNG installed, until you try to load/save PNG format. }
ifPNG,
{ We handle uncompressed BMP images. }
ifBMP,
ifPPM,
{ Image formats below are supported by FPImage. }
ifJPEG, ifGIF, ifTGA, ifXPM, ifPSD, ifPCX, ifPNM,
{ We handle fully DDS (DirectDraw Surface) image format.
See also TDDSImage class in DDS unit,
this exposes even more features of the DDS image format. }
ifDDS,
{ High-dynamic range image format, originally used by Radiance.
See e.g. the pfilt and ximage programs from the Radiance package
for processing such images.
The float color values are encoded smartly as 4 bytes:
3 mantisas for RGB and 1 byte for an Exponent.
This is the Greg Ward's RGBE color encoding described in the
"Graphic Gems" (gem II.5). This allows high floating-point-like precision,
and possibility to encode any value >= 0 (not necessarily <= 1),
keeping the pixel only 4 bytes long.
Encoding a color values with float precision is very useful.
Otherwise, when synthesized / photographed images are
very dark / very bright, simply encoding them in traditional fixed-point
pixel format looses color precision. So potentially important but small
differences are lost in fixed-point formats.
And color values are clamped to [0..1] range.
On the other hand, keeping colors as floats preserves
everything, and allows to process images later.
It's most useful and natural to load/save these files as TRGBFloatImage,
this way you keep the floating-point precision inside memory.
However, you can also load/convert such image format
to normal 8-bits image formats (like TRGBImage),
if you're Ok with losing some of the precision. }
ifRGBE,
ifIPL,
{ Image formats below are supported
by converting them "under the hood" with ImageMagick.
This is available only if this unit is compiled with FPC
(i.e. not with Delphi) on platforms where ExecuteProcess is
implemented. And ImageMagick must be installed and available on $PATH. }
ifTIFF, ifSGI, ifJP2, ifEXR
);
TImageFormats = set of TImageFormat;
TImageLoadFunc = function (Stream: TStream;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
TImageSaveFunc = procedure (Img: TCastleImage; Stream: TStream);
{ Possible TCastleImage classes that can be returned by Load method
of this file format. It's assumed that appropriate Load can return
only these classes, and any of these classes,
and can convert between them.
If the LoadImage will be called allowing some TCastleImage descendants
that can be returned by Load of this format,
then LoadImage will pretty much just pass the call to Load
for appropriate file format.
The above is expected to be the most common and most efficient case.
This way necessary conversion (e.g. adding alpha channel) can be
done at the lowest level, right inside image format handler,
which means that e.g. you can do it per-pixel, or by libpng transforms
in case of PNG format.
Only when it's not possible (if, and only if, none of the AllowedImageClasses
specified in LoadImage call can be returned by Load of this format)
then LoadImage will try more elaborate approach. This means that
it will try using Load of this image format, followed by
some convertions of the image afterwards. This is generally less
efficient, as it means that temporary image will be created during
loading.
}
TImageLoadHandledClasses = (
lcRGB,
lcRGB_RGBA,
lcG_GA_RGB_RGBA,
lcRGB_RGBFloat
);
{ Possible TCastleImage classes supported by Save method of this file format. }
TImageSaveHandledClasses = (
scRGB,
scG_GA_RGB_RGBA,
scRGB_RGBFloat
);
{ Index of TImageFormatInfo.MimeTypes array and
type for TImageFormatInfo.MimeTypesCount.
Implies that TImageFormatInfo.MimeTypes is indexed from 1,
TImageFormatInfo.MimeTypesCount must be >= 1,
so each file format must have at least one
(treated as "default" in some cases) MIME type. }
TImageFormatInfoMimeTypesCount = 1..6;
{ A type to index TImageFormatInfo.Exts array and also for TImageFormatInfo.ExtsCount.
So TImageFormatInfo.Exts array is indexed from 1,
and TImageFormatInfo.ExtsCount must be >= 1, so each file format must have at least one
(treated as "default" in some cases) file extension. }
TImageFormatInfoExtsCount = 1..3;
TImageFormatInfo = record
{ Human-readable format name.
Note that this is supposed to be shown to normal user,
in save dialog boxes etc. So it should be short and concise. I used to
have here long format names like @code(JFIF, JPEG File Interchange Format) or
@code(PNG, Portable Network Graphic), but they are too ugly, and unnecessarily
resolving format abbrevs. For example, most users probably used JPEG,
but not many have to know, or understand, that actually this is image format JFIF;
these are technical and historical details that are not needed for normal usage of image
operations.
Saying it directly, I want to keep this FormatName short and concise.
This is not a place to educate users what some abbrev means.
This is a place to "name" each file format in the most natural way, which
usually means to only slightly rephrase typical file format extension.
In practice, I now copy descriptions from English GIMP open dialog. }
FormatName: string;
MimeTypesCount: TImageFormatInfoMimeTypesCount;
{ MIME types recognized as this image file format.
First MIME type is the default for this file format
(some procedures make use of it). }
MimeTypes: array [TImageFormatInfoMimeTypesCount] of string;
ExtsCount: TImageFormatInfoExtsCount;
{ File extensions for this image type.
First file extension is default, which is used for some routines.
Must be lowercase.
This is used e.g. to construct file filters in open/save dialogs.
Together with MimeTypes it is also used by URIMimeType to map
file extension into a MIME type. An extension matching one of Exts
values implicates the default MIME type for this format (MimeTypes[1]).
Note that to cooperate nicely with network URLs
(when server may report MIME type) and data URIs, most of the code
should operate using MIME types instead of file extensions.
So usually you are more interested in MimeTypes than Exts. }
Exts: array [TImageFormatInfoExtsCount] of string;
{ Load method for this file format.
@nil if cannot be loaded. }
Load: TImageLoadFunc;
{ If Load is assigned, this describes what TCastleImage descendants
can be returned by this Load. LoadImage will need this information,
to make necessary convertions to other TCastleImage classes,
when possible. }
LoadedClasses: TImageLoadHandledClasses;
{ Save method for this file format.
@nil if cannot be saved. }
Save: TImageSaveFunc;
SavedClasses: TImageSaveHandledClasses;
end;
const
{ Information about supported image formats. }
ImageFormatInfos: array [TImageFormat] of TImageFormatInfo =
( { The order on this list matters --- it determines the order of filters
for open/save dialogs.
First list most adviced and well-known formats, starting from lossless. }
{ Portable Network Graphic } { }
( FormatName: 'PNG image';
MimeTypesCount: 1;
MimeTypes: ('image/png', '', '', '', '', '');
ExtsCount: 1; Exts: ('png', '', '');
Load: @LoadPNG; LoadedClasses: lcG_GA_RGB_RGBA;
Save: @SavePNG; SavedClasses: scG_GA_RGB_RGBA; ),
( FormatName: 'Windows BMP image';
MimeTypesCount: 1;
MimeTypes: ('image/bmp', '', '', '', '', '');
ExtsCount: 1; Exts: ('bmp', '', '');
Load: @LoadBMP; LoadedClasses: lcRGB_RGBA;
Save: @SaveBMP; SavedClasses: scRGB),
{ Portable Pixel Map } { }
( FormatName: 'PPM image';
MimeTypesCount: 1;
MimeTypes: ('image/x-portable-pixmap', '', '', '', '', '');
ExtsCount: 1; Exts: ('ppm', '', '');
Load: @LoadPPM; LoadedClasses: lcRGB;
Save: @SavePPM; SavedClasses: scRGB; ),
{ JFIF, JPEG File Interchange Format } { }
( FormatName: 'JPEG image';
MimeTypesCount: 2;
MimeTypes: ('image/jpeg', 'image/jpg', '', '', '', '');
ExtsCount: 3; Exts: ('jpg', 'jpeg', 'jpe');
Load: @LoadJPEG; LoadedClasses: lcRGB_RGBA;
Save: @SaveJPEG; SavedClasses: scRGB { actually scRGB_RGBA }),
{ Graphics Interchange Format } { }
( FormatName: 'GIF image';
MimeTypesCount: 1;
MimeTypes: ('image/gif', '', '', '', '', '');
ExtsCount: 1; Exts: ('gif', '', '');
Load: @LoadGIF; LoadedClasses: lcRGB_RGBA;
Save: nil; SavedClasses: scRGB; ),
( FormatName: 'TarGA image';
MimeTypesCount: 2;
MimeTypes: ('image/x-targa', 'image/x-tga', '', '', '', '');
ExtsCount: 2; Exts: ('tga', 'tpic', '');
Load: @LoadTGA; LoadedClasses: lcRGB_RGBA;
Save: nil; SavedClasses: scRGB; ),
( FormatName: 'XPM image';
MimeTypesCount: 1;
MimeTypes: ('image/x-xpixmap', '', '', '', '', '');
ExtsCount: 1; Exts: ('xpm', '', '');
Load: @LoadXPM; LoadedClasses: lcRGB_RGBA;
Save: nil; SavedClasses: scRGB; ),
( FormatName: 'PSD image';
MimeTypesCount: 4;
MimeTypes: ('image/photoshop', 'image/x-photoshop', 'image/psd', 'application/photoshop', '', '');
ExtsCount: 1; Exts: ('psd', '', '');
Load: @LoadPSD; LoadedClasses: lcRGB_RGBA;
Save: nil; SavedClasses: scRGB; ),
( FormatName: 'ZSoft PCX image';
MimeTypesCount: 5;
MimeTypes: ('image/pcx', 'application/pcx', 'application/x-pcx', 'image/x-pc-paintbrush', 'image/x-pcx', '');
ExtsCount: 1; Exts: ('pcx', '', '');
Load: @LoadPCX; LoadedClasses: lcRGB_RGBA;
Save: nil; SavedClasses: scRGB; ),
( FormatName: 'PNM image';
MimeTypesCount: 6;
MimeTypes: ('image/x-portable-anymap', 'image/x-portable-graymap', 'image/x-pgm', 'image/x-portable-bitmap', 'image/pbm', 'image/x-pbm');
ExtsCount: 3; Exts: ('pnm', 'pgm', 'pbm');
Load: @LoadPNM; LoadedClasses: lcRGB_RGBA;
Save: nil; SavedClasses: scRGB; ),
{ Direct Draw Surface } { }
( FormatName: 'DDS image';
MimeTypesCount: 1;
MimeTypes: ('image/x-dds', '', '', '', '', '');
ExtsCount: 1; Exts: ('dds', '', '');
Load: @LoadDDS; LoadedClasses: lcG_GA_RGB_RGBA;
Save: @SaveDDS; SavedClasses: scG_GA_RGB_RGBA; ),
{ Image formats not well known. }
( FormatName: 'RGBE (RGB+Exponent) image';
MimeTypesCount: 1;
MimeTypes: ('image/vnd.radiance', '', '', '', '', '');
ExtsCount: 3; Exts: ('rgbe', 'pic', 'hdr');
Load: @LoadRGBE; LoadedClasses: lcRGB_RGBFloat;
Save: @SaveRGBE; SavedClasses: scRGB_RGBFloat; ),
( FormatName: 'IPLab image';
MimeTypesCount: 1;
{ ipl MIME type invented by Kambi, to make it unique to communicate image format for LoadImage } { }
MimeTypes: ('image/x-ipl', '', '', '', '', '');
ExtsCount: 1; Exts: ('ipl', '', '');
Load: @LoadIPL; LoadedClasses: lcRGB;
Save: nil; SavedClasses: scRGB; ),
{ Image formats loaded using ImageMagick's convert.
Placed at the end of the list, to be at the end of open/save dialogs
filters, since there's a large chance they will not work,
if user didn't install ImageMagick. } { }
( FormatName: 'TIFF image';
MimeTypesCount: 1;
MimeTypes: ('image/tiff', '', '', '', '', '');
ExtsCount: 2; Exts: ('tiff', 'tif', '');
Load: @LoadTIFF; LoadedClasses: lcRGB_RGBA;
Save: nil; SavedClasses: scRGB; ),
( FormatName: 'SGI image';
MimeTypesCount: 3;
MimeTypes: ('image/sgi', 'image/x-sgi', 'image/x-sgi-rgba', '', '', '');
ExtsCount: 1; Exts: ('sgi', '', '');
Load: @LoadSGI; LoadedClasses: lcG_GA_RGB_RGBA;
Save: nil; SavedClasses: scRGB; ),
( FormatName: 'JPEG 2000 image';
MimeTypesCount: 4;
MimeTypes: ('image/jp2', 'image/jpeg2000', 'image/jpeg2000-image', 'image/x-jpeg2000-image', '', '');
ExtsCount: 1; Exts: ('jp2', '', '');
Load: @LoadJP2; LoadedClasses: lcG_GA_RGB_RGBA;
Save: nil; SavedClasses: scRGB; ),
( FormatName: 'EXR image';
MimeTypesCount: 1;
MimeTypes: ('image/x-exr', '', '', '', '', '');
ExtsCount: 1; Exts: ('exr', '', '');
Load: @LoadEXR; LoadedClasses: lcG_GA_RGB_RGBA;
Save: nil; SavedClasses: scRGB; )
);
{ Find image file format with given MIME type.
Returns @false if no format matching given MIME type. }
function MimeTypeToImageFormat(const MimeType: string;
const OnlyLoadable, OnlySaveable: boolean; out ImgFormat: TImageFormat): boolean;
{ List available image file formats.
This is basically for debug/info purposes, you can show this to user
to let him know which formats are supported (and by which extensions
they are recognized). Although almost always a better way to show
this to user is just to use SaveImage_FileFilters with a save dialog
like TCastleWindowBase.FileDialog,
this shows file types in the open/save dialog,
so it's most natural and convenient to user.
ListImageExtsLong produces a multiline info (separated by NL, last line not terminated
by NL), shows all extensions and FormatName for each file format.
Each line starts with LinePrefix.
ListImageExtsShort writes all recognized extensions separated by comma (', ').
@groupBegin }
function ListImageExtsLong(OnlyLoadable, OnlySaveable: boolean; const LinePrefix: string): string;
function ListImageExtsShort(OnlyLoadable, OnlySaveable: boolean): string;
{ @groupEnd }
{ loading image -------------------------------------------------------------- }
type
{ }
EImageFormatNotSupported = class(Exception);
{ TODO: zrobic LoadImageGuess ktore zgaduje format na podstawie
zawartosci. }
(*The ultimate procedure to load an image from a file or URL.
URL is downloaded using CastleDownload unit.
As always, if you all you care about is loading normal files, then just pass
a normal filename (absolute or relative to the current directory)
as the URL parameter.
Simple examples:
@longCode(#
{ When you don't care what TCastleImage descendant you get: }
Image := LoadImage('image.png', []);
{ When you insist on getting TRGBImage, that is 8-bit color image
without an alpha channel. }
ImageRGB := LoadImage('image.png', [TRGBImage]) as TRGBImage;
#)
Image file format may be given explicitly (overloaded version with
Format parameter), or guessed based on URL extension
(which can be given explicitly by TypeExt,
or automatically calculated from full URL).
For now, we cannot guess the file format based on file contents
or MIME type (the latter case would be sensible for http URLs).
AllowedImageClasses says what image classes are allowed.
As a special case, AllowedImageClasses = [] is equivalent to
AllowedImageClasses = [TCastleImage] which says that all TCastleImage descendants
are allowed. Then this function will do everything it can to load
any image into the best subclass of TCastleImage, losing as little image
information it can.
Example: consider you're loading a PNG file. Let's suppose you're
loading it with AllowedImageClasses = []. Then you can get
TGrayscaleImage, TGrayscaleAlphaImage, TRGBImage, TRGBAlphaImage,
depending on whether PNG file is grayscale or not and has alpha or not.
Now let's suppose you specified AllowedImageClasses = [TRGBImage].
If PNG file will not be grayscale and not have alpha channel,
LoadImage will return TRGBImage descendant, as before.
But if PNG fill *will* have alpha channel then
LoadImage will simply ignore (strip) alpha channel and return you TRGBImage.
Similar thing for grayscale: if image file was grayscale but you requested
only TRGBImage, then grayscale may be "expanded" into full three-channel
RGB.
There can also happen reverse situation: you e.g. insist that
AllowedImageClasses = [TRGBAlphaImage] but given PNG image does not
have alpha channel. In this case LoadImage may add "dummy" alpha channel
(everywhere equal to 1.0 or High(Byte)).
Similar thing when you e.g. gave AllowedImageClasses = [TRGBFloatImage]
but you're loading from PNG image. In this case you want float precision,
but image file cannot offer it. So LoadImage can simply convert
discreet values to appropriating floating point values.
If at any point LoadImage will find that it's unable to satisfy
AllowedImageClasses, it will raise @link(EUnableToLoadImage).
@raises(EUnableToLoadImage If Image cannot be loaded into
allowed AllowedImageClasses.)
@raises(EImageFormatNotSupported If image file format cannot be loaded at all.
This can happen if format is totally unknown (not recognized
MIME type, derived from file extension in case of local files)
or if this image format cannot be loaded at all.)
@groupBegin *)
function LoadImage(Stream: TStream; const StreamFormat: TImageFormat;
const AllowedImageClasses: array of TCastleImageClass)
:TCastleImage; overload;
function LoadImage(Stream: TStream; const MimeType: string;
const AllowedImageClasses: array of TCastleImageClass)
:TCastleImage; overload;
function LoadImage(const URL: string;
const AllowedImageClasses: array of TCastleImageClass)
:TCastleImage; overload;
function LoadImage(const URL: string;
const AllowedImageClasses: array of TCastleImageClass;
const ResizeToX, ResizeToY: Cardinal;
const Interpolation: TResizeInterpolation = riNearest): TCastleImage; overload;
{ @groupEnd }
{ saving image --------------------------------------------------------------- }
type
{ }
EImageSaveError = class(Exception);
{ Save image to a file. Takes URL as parameter, you can give @code(file) URL
or just a normal filename.
File format is determined by looking at URL (guessing MIME type using
URIMimeType), or given explicitly as MimeType,
or just given explicitly as Format parameter.
Image class does @bold(not)
affect the created image file format, on the assumption that the
"memory format" of the image (what TCastleImage descendant is used)
can be orthogonal to the actual "file format" used to save this file.
Tries to write the image preserving it as closely as possible in this
image format. When it's not possible, according conversions may be done:
floating point precision of TRGBFloatImage may be lost (if saving
to any file format besides RGBE file, although saving to OpenEXR may also
preserve it once implemented), alpha channel may be lost,
grayscale may be expanded and such.
Although not absolutely all conversions are implemented for now.
You can be sure that
all image formats (that allow any saving at all) can be saved
from TRGBImage. Also TRGBFloatImage can be saved to RGBE file.
Also PNG format supports full collection (grayscale/rgb, alpha/no alpha
are all perfectly possible in PNG file; and TRGBFloatImage will be just converted
to 8-bit RGB before saving to PNG).
@raises(EImageSaveError When it's not possible to save image,
because of Img class (memory format) and/or image file format.)
@groupBegin }
procedure SaveImage(const img: TCastleImage; const Format: TImageFormat; Stream: TStream); overload;
procedure SaveImage(const img: TCastleImage; const MimeType: string; Stream: TStream); overload;
procedure SaveImage(const Img: TCastleImage; const URL: string); overload;
{ @groupEnd }
{ Other TCastleImage processing ---------------------------------------------------- }
{ Add and set constant alpha channel of given image.
If image doesn't have alpha channel, we will create new Img instance
(old instance will be freed) with colors copy.
Alpha channel is then filled with AlphaConst }
procedure ImageAlphaConstTo1st(var Img: TCastleImage; const AlphaConst: byte);
{ Choose TCastleImage descendant best matching for this image file format.
The only purpose of this for now is to pick TRGBFloatImage for RGBE files,
chooses TRGBImage for anything else.
For the overloaded version with URL, file format is determined
by guessing based on file extension.
@groupBegin }
function ImageClassBestForSavingToFormat(const Format: TImageFormat): TCastleImageClass; overload;
function ImageClassBestForSavingToFormat(const URL: string): TCastleImageClass; overload;
{ @groupEnd }
var
{ File filters if you want to choose a file that can be loaded/saved
by appropriate functions from Images unit.
These objects should be treated as read-only outside this unit.
Initialization / finalization of this unit automatically take care of them.
@groupBegin }
LoadImage_FileFilters: TFileFilterList;
SaveImage_FileFilters: TFileFilterList;
{ @groupEnd }
{ Maximum alpha channel type. Chooses "full range" if anything is "full range",
otherwise choose "simple yes/no" if anything is "simple yes/no",
otherwise returns "no alpha channel". }
procedure AlphaMaxTo1st(var A: TAlphaChannel; const B: TAlphaChannel);
{$undef read_interface}
implementation
uses CastleProgress, CastleStringUtils, CastleFilesUtils, CastleWarnings,
CastleDDS, CastleDownload, CastleURIUtils;
{ image loading utilities --------------------------------------------------- }
{ Helper methods for implemented LoadImage. }
function ClassAllowed(ImageClass: TCastleImageClass;
const AllowedImageClasses: array of TCastleImageClass): boolean;
begin
Result := (High(AllowedImageClasses) = -1) or
InImageClasses(ImageClass, AllowedImageClasses);
end;
function LoadImageParams(
const AllowedImageClasses: array of TCastleImageClass): string;
function ImageClassesToStr(const AllowedImageClasses: array of TCastleImageClass): string;
var
I: Integer;
begin
if High(AllowedImageClasses) = -1 then
Result := 'all' else
begin
Result := '';
for I := 0 to High(AllowedImageClasses) do
begin
if Result <> '' then Result += ', ';
Result += AllowedImageClasses[I].ClassName;
end;
end;
end;
begin
Result := 'required class [' + ImageClassesToStr(AllowedImageClasses) + ']';
end;
{ file format specific ------------------------------------------------------- }
{$I images_bmp.inc}
{$I images_png.inc}
{$I images_fpimage.inc}
{$I images_ppm.inc}
{$I images_ipl.inc}
{$I images_rgbe_fileformat.inc}
{$I images_external_tool.inc}
{$I images_dds.inc}
{ Colors ------------------------------------------------------------------ }
function EqualRGB(const Color1, Color2: TVector3Byte; Tolerance: Byte): boolean;
begin
result:=(Abs(Smallint(Color1[0])-Color2[0]) <= tolerance) and
(Abs(Smallint(Color1[1])-Color2[1]) <= tolerance) and
(Abs(Smallint(Color1[2])-Color2[2]) <= tolerance);
end;
{ TEncodedImage -------------------------------------------------------------- }
destructor TEncodedImage.Destroy;
begin
FreeMemNiling(FRawPixels);
inherited;
end;
function TEncodedImage.IsEmpty: boolean;
begin
Result := RawPixels = nil;
end;
function TEncodedImage.HasAlpha: boolean;
begin
Result := false;
end;
function TEncodedImage.AlphaChannel(
const AlphaTolerance: Byte;
const WrongPixelsTolerance: Single): TAlphaChannel;
begin
Result := acNone;
end;
{ TCastleImage --------------------------------------------------------------- }
constructor TCastleImage.Create;
begin
inherited;
{ Everything is already inited to nil and 0. }
end;
constructor TCastleImage.Create(
const AWidth, AHeight: Cardinal;
const ADepth: Cardinal = 1);
begin
Create;
SetSize(AWidth, AHeight, ADepth);
end;
procedure TCastleImage.Empty;
begin
FreeMemNiling(FRawPixels);
FWidth := 0;
FHeight := 0;
FDepth := 0;
end;
procedure TCastleImage.SetSize(const AWidth, AHeight: Cardinal;
const ADepth: Cardinal = 1);
begin
FreeMemNiling(FRawPixels);
FWidth := AWidth;
FHeight := AHeight;
FDepth := ADepth;
if (AWidth <> 0) and (AHeight <> 0) and (ADepth <> 0) then
FRawPixels := GetMem(PixelSize * AWidth * AHeight * ADepth);
end;
function TCastleImage.PixelPtr(const X, Y: Cardinal; const Z: Cardinal = 0): Pointer;
begin
Result := PointerAdd(RawPixels, PixelSize * (Width * (Height * Z + Y) + X));
end;
function TCastleImage.RowPtr(const Y: Cardinal; const Z: Cardinal = 0): Pointer;
begin
Result := PointerAdd(RawPixels, PixelSize * (Width * (Height * Z + Y)));
end;
procedure TCastleImage.NotImplemented(const AMethodName: string);
begin
raise EInternalError.Create(AMethodName +
' method not implemented for this TCastleImage descendant');
end;
procedure TCastleImage.InvertRGBColors;
begin
NotImplemented('InvertRGBColors');
end;
procedure TCastleImage.SetColorRGB(const x, y: Integer; const v: TVector3Single);
begin
NotImplemented('SetColorRGB');
end;
function TCastleImage.MakeCopy: TCastleImage;
begin
Result := TCastleImageClass(Self.ClassType).Create(Width, Height);
Move(RawPixels^, Result.RawPixels^, Depth * Width * Height * PixelSize);
end;
type
TMixColorsFunction = procedure (const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer) of object;
{ This does the real resizing work.
It assumes that SourceData and DestinData pointers are already allocated.
DestinWidth, DestinHeight must not be 0. }
procedure InternalResize(PixelSize: Cardinal;
SourceData: Pointer; SourceWidth, SourceHeight: Cardinal;
DestinData: Pointer; DestinWidth, DestinHeight: Cardinal;
const Interpolation: TResizeInterpolation;
const MixColors: TMixColorsFunction;
const ProgressTitle: string);
var
DestinY: Cardinal;
procedure MakeLineNearest;
{ write row DestinY of DestinData }
var
DestinX, SourceX, SourceY: Cardinal;
SourceRow, DestinRow: PtrUInt;
begin
SourceY := DestinY * SourceHeight div DestinHeight;
SourceRow := PtrUInt(SourceData) + SourceWidth * SourceY * PixelSize;
DestinRow := PtrUInt(DestinData) + DestinWidth * DestinY * PixelSize;
for DestinX := 0 to DestinWidth - 1 do
begin
SourceX := DestinX * SourceWidth div DestinWidth;
Move(Pointer(SourceRow + SourceX * PixelSize)^,
Pointer(DestinRow + DestinX * PixelSize)^,
PixelSize);
end;
end;
procedure MakeLineBilinear;
var
{ For every destination pixel, we consider 4 neighbor source pixels.
- SourceX1 / SourceX2 are smaller / larger X coordinates in source.
- SourceY1 / SourceY2 are smaller / larger Y coordinates in source.
- SourceXFrac / SourceYFrac are fractional parts (in [0..1])
that say how close our perfect point (from which we should take
destination color) is to 4 neighbor pixels. }
DestinX, SourceX1, SourceX2, SourceY1, SourceY2: Cardinal;
Source1Row, Source2Row, DestinRow: PtrUInt;
SourceXFrac, SourceYFrac: Single;
Weights: TVector4Single;
Colors: TVector4Pointer;
begin
SourceYFrac := DestinY * SourceHeight / DestinHeight;
SourceY1 := Max(Trunc(SourceYFrac), 0);
SourceY2 := Min(SourceY1 + 1, SourceHeight - 1);
SourceYFrac := Frac(SourceYFrac);
Source1Row := PtrUInt(SourceData) + SourceWidth * SourceY1 * PixelSize;
Source2Row := PtrUInt(SourceData) + SourceWidth * SourceY2 * PixelSize;
DestinRow := PtrUInt(DestinData) + DestinWidth * DestinY * PixelSize;
for DestinX := 0 to DestinWidth - 1 do
begin
SourceXFrac := DestinX * SourceWidth / DestinWidth;
SourceX1 := Max(Trunc(SourceXFrac), 0);
SourceX2 := Min(SourceX1 + 1, SourceWidth - 1);
SourceXFrac := Frac(SourceXFrac);
Weights[0] := SourceXFrac * SourceYFrac;
Colors[0] := Pointer(Source2Row + SourceX2 * PixelSize);
Weights[1] := (1 - SourceXFrac) * SourceYFrac;
Colors[1] := Pointer(Source2Row + SourceX1 * PixelSize);
Weights[2] := (1 - SourceXFrac) * (1 - SourceYFrac);
Colors[2] := Pointer(Source1Row + SourceX1 * PixelSize);
Weights[3] := SourceXFrac * (1 - SourceYFrac);
Colors[3] := Pointer(Source1Row + SourceX2 * PixelSize);
MixColors(Pointer(DestinRow + DestinX * PixelSize), Weights, Colors);
end;
end;
type
TMakeLineFunction = procedure is nested;
var
MakeLine: TMakeLineFunction;
begin
case Interpolation of
riNearest : MakeLine := @MakeLineNearest;
riBilinear: MakeLine := @MakeLineBilinear;
else raise EInternalError.Create('Unknown Interpolation for InternalResize');
end;
if ProgressTitle = '' then
begin
for DestinY := 0 to DestinHeight - 1 do MakeLine;
end else
begin
Progress.Init(DestinHeight, ProgressTitle);
try
for DestinY := 0 to DestinHeight - 1 do
begin
MakeLine;
Progress.Step;
end;
finally Progress.Fini end;
end;
end;
procedure TCastleImage.Resize(ResizeToX, ResizeToY: Cardinal;
const Interpolation: TResizeInterpolation;
const ProgressTitle: string);
var
NewPixels: Pointer;
begin
if ((ResizeToX <> 0) and (ResizeToX <> Width)) or
((ResizeToY <> 0) and (ResizeToY <> Height)) then
begin
{ Make both ResizeTo* non-zero. }
if ResizeToX = 0 then ResizeToX := Width;
if ResizeToY = 0 then ResizeToY := Height;
NewPixels := GetMem(ResizeToX * ResizeToY * PixelSize);
InternalResize(PixelSize, RawPixels, Width, Height,
NewPixels, ResizeToX, ResizeToY, Interpolation, @MixColors, ProgressTitle);
FreeMemNiling(FRawPixels);
FRawPixels := NewPixels;
FWidth := ResizeToX;
FHeight := ResizeToY;
end;
end;
function TCastleImage.MakeResized(ResizeToX, ResizeToY: Cardinal;
const Interpolation: TResizeInterpolation;
const ProgressTitle: string): TCastleImage;
begin
{ Make both ResizeTo* non-zero. }
if ResizeToX = 0 then ResizeToX := Width;
if ResizeToY = 0 then ResizeToY := Height;
Result := TCastleImageClass(ClassType).Create(ResizeToX, ResizeToY);
try
if not IsEmpty then
InternalResize(PixelSize,
RawPixels, Width, Height,
Result.RawPixels, Result.Width, Result.Height,
Interpolation, @MixColors, ProgressTitle);
except Result.Free; raise end;
end;
function TCastleImage.MakeRotated(Angle: Integer): TCastleImage;
procedure Rotate90;
var
X, Y: Integer;
begin
Result := TCastleImageClass(ClassType).Create(Height, Width);
for X := 0 to Width - 1 do
for Y := 0 to Height - 1 do
Move(PixelPtr(X, Y)^, Result.PixelPtr(Y, Width - 1 - X)^, PixelSize);
end;
procedure Rotate180;
var
X, Y: Integer;
begin
Result := TCastleImageClass(ClassType).Create(Width, Height);
for X := 0 to Width - 1 do
for Y := 0 to Height - 1 do
Move(PixelPtr(X, Y)^, Result.PixelPtr(Width - 1 - X, Height - 1 - Y)^, PixelSize);
end;
procedure Rotate270;
var
X, Y: Integer;
begin
Result := TCastleImageClass(ClassType).Create(Height, Width);
for X := 0 to Width - 1 do
for Y := 0 to Height - 1 do
Move(PixelPtr(X, Y)^, Result.PixelPtr(Height - 1 - Y, X)^, PixelSize);
end;
begin
{ convert Angle to 0..3 range }
Angle := Angle mod 4;
if Angle < 0 then Angle += 4;
case Angle of
1: Rotate90;
2: Rotate180;
3: Rotate270;
{ else Angle = 0, nothing to do }
end;
end;
procedure TCastleImage.Rotate(const Angle: Integer);
var
New: TCastleImage;
begin
New := MakeRotated(Angle);
try
SetSize(New.Width, New.Height);
Move(New.RawPixels^, RawPixels^, New.Width * New.Height * PixelSize);
finally FreeAndNil(New) end;
end;
procedure TCastleImage.FlipHorizontal;
var
ImageRow, TmpPixel, Pix1, Pix2: Pointer;
x, y: Integer;
begin
TmpPixel := GetMem(PixelSize);
try
for y := 0 to Height-1 do
begin
ImageRow := RowPtr(y);
for x := 0 to (Width-1) div 2 do
begin
Pix1 := PointerAdd(ImageRow, Cardinal(x) * PixelSize);
Pix2 := PointerAdd(ImageRow, (Width-1-Cardinal(x)) * PixelSize);
Move(Pix1^, TmpPixel^, PixelSize);
Move(Pix2^, Pix1^, PixelSize);
Move(TmpPixel^, Pix2^, PixelSize);
end;
end;
finally FreeMem(TmpPixel) end;
end;
function TCastleImage.MakeTiled(TileX, TileY: Cardinal): TCastleImage;
var
i, j: Cardinal;
begin
Result := TCastleImageClass(ClassType).Create(TileX * Width, TileY * Height);
try
{ Correct but naive version:
for i := 0 to result.Width-1 do
for j := 0 to result.Height-1 do
move(Image.PixelPtr(i mod Image.Width, j mod Image.Height)^,
Result.PixelPtr( i, j)^,
Result.PixelSize );
This can be speeded up copying whole rows at once: }
for i := 0 to TileX - 1 do
for j := 0 to Result.Height - 1 do
Move(PixelPtr(0, j mod Height)^,
Result.PixelPtr(i * Width, j)^,
PixelSize * Width );
except Result.Free; raise end;
end;
function TCastleImage.MakeExtracted(X0, Y0, ExtractWidth, ExtractHeight: Cardinal): TCastleImage;
var
y: Cardinal;
begin
if x0 + ExtractWidth > Width then
raise EImagePosOutOfRange.Create('x0 in MakeExtracted out of range');
if y0 + ExtractHeight > Height then
raise EImagePosOutOfRange.Create('y0 in MakeExtracted out of range');
Result := TCastleImageClass(ClassType).Create(ExtractWidth, ExtractHeight);
try
for y := 0 to ExtractHeight - 1 do
Move(PixelPtr(x0, y + y0)^, Result.RowPtr(y)^, PixelSize * ExtractWidth);
except Result.Free; raise end;
end;
procedure TCastleImage.Clear(const Pixel: TVector4Byte);
begin
NotImplemented('Clear');
end;
function TCastleImage.IsClear(const Pixel: TVector4Byte): boolean;
begin
NotImplemented('IsClear');
{ code will never get here (NotImplemented always raises an exception),
and code "Result := false;" below is only to avoid compiler warning
that function result is undefined. }
Result := false;
end;
procedure TCastleImage.TransformRGB(const Matrix: TMatrix3Single);
begin
NotImplemented('TransformRGB');
end;
procedure TCastleImage.ModulateRGB(const ColorModulator: TColorModulatorByteFunc);
begin
NotImplemented('ModulateRGB');
end;
function TCastleImage.MakeModulatedRGB(
const ColorModulator: TColorModulatorByteFunc): TCastleImage;
begin
Result := MakeCopy;
Result.ModulateRGB(ColorModulator);
end;
procedure TCastleImage.Grayscale;
begin
ModulateRGB(@ColorGrayscaleByte);
end;
procedure TCastleImage.ConvertToChannelRGB(Channel: Integer);
begin
case Channel of
0: ModulateRGB(@ColorRedConvertByte);
1: ModulateRGB(@ColorGreenConvertByte);
2: ModulateRGB(@ColorBlueConvertByte);
else raise EInternalError.Create(
'ConvertToChannelRGB: Channel must be 0, 1 or 2');
end;
end;
procedure TCastleImage.StripToChannelRGB(Channel: Integer);
begin
case Channel of
0: ModulateRGB(@ColorRedStripByte);
1: ModulateRGB(@ColorGreenStripByte);
2: ModulateRGB(@ColorBlueStripByte);
else raise EInternalError.Create(
'StripToChannelRGB: Channel must be 0, 1 or 2');
end;
end;
function TCastleImage.IsEqual(Image: TCastleImage): boolean;
begin
Result :=
(Image.ClassType = ClassType) and
(Image.Width = Width) and
(Image.Height = Height) and
(Image.Depth = Depth) and
(CompareMem(Image.RawPixels, RawPixels, Width * Height * PixelSize));
end;
function TCastleImage.ArePartsEqual(
const SelfX0, SelfY0, SelfWidth, SelfHeight: Cardinal;
Image: TCastleImage;
const ImageX0, ImageY0, ImageWidth, ImageHeight: Cardinal): boolean;
var
Y: Integer;
SelfPtr: Pointer;
ImagePtr: Pointer;
SelfRowByteWidth, ImageRowByteWidth, RowByteWidth: Cardinal;
begin
Result :=
(Image.ClassType = ClassType) and
(SelfWidth = ImageWidth) and
(SelfHeight = ImageHeight);
if Result then
begin
SelfPtr := PixelPtr(SelfX0, SelfY0);
ImagePtr := Image.PixelPtr(ImageX0, ImageY0);
RowByteWidth := ImageWidth * PixelSize;
SelfRowByteWidth := Self.Width * PixelSize;
ImageRowByteWidth := Image.Width * Image.PixelSize;
for Y := 0 to Integer(ImageHeight) - 1 do
begin
if not CompareMem(SelfPtr, ImagePtr, RowByteWidth) then
begin
Result := false;
Exit;
end;
PtrUInt(SelfPtr) := PtrUInt(SelfPtr) + SelfRowByteWidth;
PtrUInt(ImagePtr) := PtrUInt(ImagePtr) + ImageRowByteWidth;
end;
end;
end;
function TCastleImage.ArePartsEqual(
Image: TCastleImage;
const ImageX0, ImageY0, ImageWidth, ImageHeight: Cardinal): boolean;
begin
Result := ArePartsEqual(
0, 0, Width, Height,
Image,
ImageX0, ImageY0, ImageWidth, ImageHeight);
end;
function TCastleImage.ArePartsEqual(
const SelfX0, SelfY0, SelfWidth, SelfHeight: Cardinal;
Image: TCastleImage): boolean;
begin
Result := ArePartsEqual(
SelfX0, SelfY0, SelfWidth, SelfHeight,
Image,
0, 0, Image.Width, Image.Height);
end;
procedure TCastleImage.CopyFrom(Image: TCastleImage; const X0, Y0: Cardinal;
const SourceX0, SourceY0, SourceWidth, SourceHeight: Cardinal);
var
Y: Integer;
SelfPtr: Pointer;
ImagePtr: Pointer;
SelfRowByteWidth, ImageRowByteWidth, CopyRowByteWidth: Cardinal;
begin
if Image.ClassType <> ClassType then
raise Exception.Create('Cannot copy pixels from one image to another:' +
' different image classes');
SelfPtr := PixelPtr(X0, Y0);
ImagePtr := Image.PixelPtr(SourceX0, SourceY0);
SelfRowByteWidth := Self.Width * PixelSize;
ImageRowByteWidth := Image.Width * Image.PixelSize;
CopyRowByteWidth := SourceWidth * Image.PixelSize;
for Y := 0 to Integer(SourceHeight) - 1 do
begin
Move(ImagePtr^, SelfPtr^, CopyRowByteWidth);
PtrUInt(SelfPtr) := PtrUInt(SelfPtr) + SelfRowByteWidth;
PtrUInt(ImagePtr) := PtrUInt(ImagePtr) + ImageRowByteWidth;
end;
end;
procedure TCastleImage.CopyFrom(Image: TCastleImage; const X0, Y0: Cardinal);
begin
CopyFrom(Image, X0, Y0, 0, 0, Image.Width, Image.Height);
end;
procedure TCastleImage.CopyTo(Image: TCastleImage; const X0, Y0: Cardinal);
begin
Image.CopyFrom(Self, X0, Y0);
end;
procedure TCastleImage.LerpSimpleCheckConditions(SecondImage: TCastleImage);
begin
if (Width <> SecondImage.Width) or
(Height <> SecondImage.Height) then
raise EImageLerpDifferentSizes.CreateFmt('Linear interpolation not possible, images have different sizes: first has %d x %d, second has %d x %d',
[Width, Height, SecondImage.Width, SecondImage.Height]);
if not (SecondImage is Self.ClassType) then
raise EImageLerpInvalidClasses.CreateFmt('Linear interpolation between %s and %s class not possible',
[ClassName, SecondImage.ClassName]);
end;
procedure TCastleImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
begin
raise EImageLerpInvalidClasses.Create('Linear interpolation (TCastleImage.LerpWith) not possible with the base TCastleImage class');
end;
class procedure TCastleImage.MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer);
begin
raise EImageLerpInvalidClasses.Create('Mixing colors (TCastleImage.MixColors) not possible with the base TCastleImage class');
end;
{ TS3TCImage ----------------------------------------------------------------- }
constructor TS3TCImage.Create(const AWidth, AHeight: Cardinal;
const ADepth: Cardinal;
const ACompression: TS3TCCompression);
begin
inherited Create;
FWidth := AWidth;
FHeight := AHeight;
FDepth := ADepth;
FCompression := ACompression;
{ All DXT* compression methods compress 4x4 pixels into some constant size.
When Width / Height is not divisible by 4, we have to round up.
This matches what MSDN docs say about DDS with mipmaps:
http://msdn.microsoft.com/en-us/library/bb205578(VS.85).aspx
When mipmaps are used, DDS Width/Height must be power-of-two,
so the base level is usually divisible by 4. But on the following mipmap
levels the size decreases, eventually to 1x1, so this still matters.
And MSDN says then explicitly that with DXT1, you have always
minimum 8 bytes, and with DXT2-5 minimum 16 bytes.
}
case Compression of
s3tcDxt1_RGB,
s3tcDxt1_RGBA: FSize := Depth * DivRoundUp(Width, 4) * DivRoundUp(Height, 4) * 8 { 8 bytes for each 16 pixels };
s3tcDxt3,
s3tcDxt5: FSize := Depth * DivRoundUp(Width, 4) * DivRoundUp(Height, 4) * 16 { 16 bytes for each 16 pixels };
else EInternalError.Create('TS3TCImage.Create-Compression?');
end;
FRawPixels := GetMem(FSize);
end;
function TS3TCImage.HasAlpha: boolean;
begin
Result := Compression in [s3tcDxt1_RGBA, s3tcDxt3, s3tcDxt5];
end;
function TS3TCImage.AlphaChannel(
const AlphaTolerance: Byte;
const WrongPixelsTolerance: Single): TAlphaChannel;
begin
{ S3TCImage doesn't analyze for alpha channel, instead simply assumes
image is always full-range alpha it if has alpha channel. }
case Compression of
s3tcDxt1_RGB : Result := acNone;
s3tcDxt1_RGBA: Result := acSimpleYesNo;
s3tcDxt3, s3tcDxt5: Result := acFullRange;
end;
end;
{$I images_s3tc_flip_vertical.inc}
function TS3TCImage.Decompress: TCastleImage;
begin
if Assigned(DecompressS3TC) then
Result := DecompressS3TC(Self) else
raise ECannotDecompressS3TC.Create('Cannot decompress S3TC image: no decompressor initialized');
end;
function TS3TCImage.MakeCopy: TS3TCImage;
begin
Result := TS3TCImage.Create(Width, Height, Depth, Compression);
Assert(Result.Size = Size);
Move(RawPixels^, Result.RawPixels^, Size);
end;
{ TCastleImageClass and arrays of TCastleImageClasses ----------------------------- }
function InImageClasses(ImageClass: TCastleImageClass;
const ImageClasses: array of TCastleImageClass): boolean;
var
i: Integer;
begin
for i := 0 to High(ImageClasses) do
if ImageClass.InheritsFrom(ImageClasses[i]) then
begin
Result := true;
Exit;
end;
Result := false;
end;
function InImageClasses(Image: TCastleImage;
const ImageClasses: array of TCastleImageClass): boolean;
begin
Result := InImageClasses(TCastleImageClass(Image.ClassType), ImageClasses);
end;
function ImageClassesEqual(const Ar1, Ar2: array of TCastleImageClass): boolean;
var
i: Integer;
begin
if High(Ar1) <> High(Ar2) then
begin
Result := false;
Exit;
end;
for i := 0 to High(Ar1) do
if Ar1[I] <> Ar2[I] then
begin
Result := false;
Exit;
end;
Result := true;
end;
procedure ImageClassesAssign(var Variable: TDynArrayImageClasses;
const NewValue: array of TCastleImageClass);
var
i: Integer;
begin
SetLength(Variable, High(NewValue) + 1);
for i := 0 to High(NewValue) do
Variable[i] := NewValue[i];
end;
{ TRGBImage ------------------------------------------------------------ }
constructor TRGBImage.CreateCombined(const MapImage: TRGBImage;
var ReplaceWhiteImage, ReplaceBlackImage: TRGBImage);
var
Map, White, Black, Res: PVector3Byte;
s: single;
i: integer;
begin
Create(MapImage.Width, MapImage.Height);
ReplaceWhiteImage.Resize(MapImage.Width, MapImage.Height);
ReplaceBlackImage.Resize(MapImage.Width, MapImage.Height);
Map := MapImage.RGBPixels;
White := ReplaceWhiteImage.RGBPixels;
Black := ReplaceBlackImage.RGBPixels;
Res := RGBPixels;
for i := 1 to Width * Height do
begin
s := (Map^[0] + Map^[1] + Map^[2]) / 255 / 3;
Res^[0] := Round(s * White^[0] + (1-s) * Black^[0]);
Res^[1] := Round(s * White^[1] + (1-s) * Black^[1]);
Res^[2] := Round(s * White^[2] + (1-s) * Black^[2]);
Inc(Map);
Inc(White);
Inc(Black);
Inc(Res);
end;
end;
function TRGBImage.GetRGBPixels: PVector3Byte;
begin
Result := PVector3Byte(RawPixels);
end;
class function TRGBImage.PixelSize: Cardinal;
begin
Result := 3;
end;
class function TRGBImage.ColorComponentsCount: Cardinal;
begin
Result := 3;
end;
function TRGBImage.PixelPtr(const X, Y, Z: Cardinal): PVector3Byte;
begin
Result := PVector3Byte(inherited PixelPtr(X, Y, Z));
end;
function TRGBImage.RowPtr(const Y, Z: Cardinal): PArray_Vector3Byte;
begin
Result := PArray_Vector3Byte(inherited RowPtr(Y, Z));
end;
procedure TRGBImage.InvertRGBColors;
var
i: Cardinal;
prgb: PVector3byte;
begin
prgb := RGBPixels;
for i := 1 to Width * Height do
begin
prgb^[0] := High(byte)-prgb^[0];
prgb^[1] := High(byte)-prgb^[1];
prgb^[2] := High(byte)-prgb^[2];
Inc(prgb);
end;
end;
procedure TRGBImage.SetColorRGB(const x, y: Integer; const v: TVector3Single);
begin
PVector3Byte(PixelPtr(x, y))^ := Vector3Byte(v);
end;
procedure TRGBImage.Clear(const Pixel: TVector4Byte);
var
P: PVector3Byte;
I: Cardinal;
begin
P := RGBPixels;
for I := 1 to Width * Height do
begin
Move(Pixel, P^, SizeOf(TVector3Byte));
Inc(P);
end;
end;
function TRGBImage.IsClear(const Pixel: TVector4Byte): boolean;
var
P: PVector3Byte;
I: Cardinal;
begin
P := RGBPixels;
for I := 1 to Width * Height do
begin
if not CompareMem(@Pixel, P, SizeOf(TVector3Byte)) then
begin
Result := false;
Exit;
end;
Inc(P);
end;
Result := true;
end;
procedure TRGBImage.TransformRGB(const Matrix: TMatrix3Single);
type PPixel = PVector3Byte;
{$I images_transformrgb_implement.inc}
procedure TRGBImage.ModulateRGB(const ColorModulator: TColorModulatorByteFunc);
type PPixel = PVector3Byte;
{$I images_modulatergb_implement.inc}
function TRGBImage.ToRGBAlphaImage_AlphaDontCare: TRGBAlphaImage;
var
pi: PVector3Byte;
pa: PVector4Byte;
i: Cardinal;
begin
Result := TRGBAlphaImage.Create(Width, Height);
pi := RGBPixels;
pa := Result.AlphaPixels;
for i := 1 to Width * Height do
begin
Move(pi^, pa^, SizeOf(TVector3Byte));
{pa^[3] := <dont_care_about_this_value>}
Inc(pi);
Inc(pa);
end;
end;
function TRGBImage.ToRGBAlphaImage_AlphaConst(Alpha: byte): TRGBAlphaImage;
{ Note: implementation of this *could* use ToRGBAlphaImage_AlphaDontCare,
but doesn't, to be faster. }
var
pi: PVector3Byte;
pa: PVector4Byte;
i: Cardinal;
begin
Result := TRGBAlphaImage.Create(Width, Height);
pi := RGBPixels;
pa := Result.AlphaPixels;
for i := 1 to Width * Height do
begin
Move(pi^, pa^, SizeOf(TVector3Byte));
pa^[3] := Alpha;
Inc(pi);
Inc(pa);
end;
end;
function TRGBImage.ToRGBAlphaImage_AlphaDecide(
const AlphaColor: TVector3Byte;
Tolerance: byte; AlphaOnColor: byte; AlphaOnNoColor: byte): TRGBAlphaImage;
begin
Result := ToRGBAlphaImage_AlphaDontCare;
Result.AlphaDecide(AlphaColor, Tolerance, AlphaOnColor, AlphaOnNoColor);
end;
function TRGBImage.ToRGBFloat: TRGBFloatImage;
var
PFloat: PVector3Single;
PByte: PVector3Byte;
i: Cardinal;
begin
result := TRGBFloatImage.Create(Width, Height);
try
PByte := RGBPixels;
PFloat := Result.RGBFloatPixels;
for i := 1 to Width * Height do
begin
PFloat^ := Vector3Single(PByte^);
Inc(PByte);
Inc(PFloat);
end;
except Result.Free; raise end;
end;
function TRGBImage.ToGrayscale: TGrayscaleImage;
var
pRGB: PVector3Byte;
pGrayscale: PByte;
I: Cardinal;
begin
Result := TGrayscaleImage.Create(Width, Height);
try
pRGB := RGBPixels;
pGrayscale := Result.GrayscalePixels;
for i := 1 to Width * Height do
begin
pGrayscale^ := GrayscaleValue(pRGB^);
Inc(pRGB);
Inc(pGrayscale);
end;
except Result.Free; raise end;
end;
procedure TRGBImage.HorizontalLine(const x1, x2, y: Integer;
const Color: TVector3Byte);
var
P: PVector3Byte;
i: Integer;
begin
P := PixelPtr(x1, y);
for i := 0 to x2 - x1 do begin P^ := Color; Inc(P) end;
end;
procedure TRGBImage.VerticalLine(const x, y1, y2: Integer;
const Color: TVector3Byte);
var P: PVector3Byte;
i: Integer;
begin
P := PixelPtr(x, y1);
for i := 0 to y2 - y1 do
begin
P^ := Color;
P := PointerAdd(P, SizeOf(TVector3Byte) * Width);
end;
end;
procedure TRGBImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
var
SelfPtr: PVector3Byte;
SecondPtr: PVector3Byte;
I: Cardinal;
begin
LerpSimpleCheckConditions(SecondImage);
SelfPtr := RGBPixels;
SecondPtr := TRGBImage(SecondImage).RGBPixels;
for I := 1 to Width * Height do
begin
SelfPtr^ := Lerp(Value, SelfPtr^, SecondPtr^);
Inc(SelfPtr);
Inc(SecondPtr);
end;
end;
class procedure TRGBImage.MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer);
var
OutputCol: PVector3Byte absolute OutputColor;
Cols: array [0..3] of PVector3Byte absolute Colors;
begin
OutputCol^[0] := Clamped(Round(Weights[0] * Cols[0]^[0] + Weights[1] * Cols[1]^[0] + Weights[2] * Cols[2]^[0] + Weights[3] * Cols[3]^[0]), 0, High(Byte));
OutputCol^[1] := Clamped(Round(Weights[0] * Cols[0]^[1] + Weights[1] * Cols[1]^[1] + Weights[2] * Cols[2]^[1] + Weights[3] * Cols[3]^[1]), 0, High(Byte));
OutputCol^[2] := Clamped(Round(Weights[0] * Cols[0]^[2] + Weights[1] * Cols[1]^[2] + Weights[2] * Cols[2]^[2] + Weights[3] * Cols[3]^[2]), 0, High(Byte));
end;
{ TRGBAlphaImage ------------------------------------------------------------ }
function TRGBAlphaImage.GetAlphaPixels: PVector4Byte;
begin
Result := PVector4Byte(RawPixels);
end;
class function TRGBAlphaImage.PixelSize: Cardinal;
begin
Result := 4;
end;
class function TRGBAlphaImage.ColorComponentsCount: Cardinal;
begin
Result := 4;
end;
function TRGBAlphaImage.PixelPtr(const X, Y, Z: Cardinal): PVector4Byte;
begin
Result := PVector4Byte(inherited PixelPtr(X, Y, Z));
end;
function TRGBAlphaImage.RowPtr(const Y, Z: Cardinal): PArray_Vector4Byte;
begin
Result := PArray_Vector4Byte(inherited RowPtr(Y, Z));
end;
procedure TRGBAlphaImage.InvertRGBColors;
var
i: Cardinal;
palpha: PVector4byte;
begin
palpha := AlphaPixels;
for i := 1 to Width * Height do
begin
palpha^[0] := High(byte)-palpha^[0];
palpha^[1] := High(byte)-palpha^[1];
palpha^[2] := High(byte)-palpha^[2];
Inc(palpha);
end;
end;
procedure TRGBAlphaImage.SetColorRGB(const x, y: Integer; const v: TVector3Single);
begin
PVector3Byte(PixelPtr(x, y))^ := Vector3Byte(v);
end;
procedure TRGBAlphaImage.Clear(const Pixel: TVector4Byte);
begin
FillDWord(RawPixels^, Width*Height, LongWord(Pixel));
end;
procedure TRGBAlphaImage.ClearAlpha(const Alpha: Byte);
var
i: Cardinal;
palpha: PVector4byte;
begin
palpha := AlphaPixels;
for i := 1 to Width * Height do
begin
palpha^[3] := Alpha;
Inc(palpha);
end;
end;
function TRGBAlphaImage.IsClear(const Pixel: TVector4Byte): boolean;
begin
Result := IsMemDWordFilled(RawPixels^, Width*Height, LongWord(Pixel));
end;
procedure TRGBAlphaImage.TransformRGB(const Matrix: TMatrix3Single);
type PPixel = PVector4Byte;
{$I images_transformrgb_implement.inc}
procedure TRGBAlphaImage.ModulateRGB(const ColorModulator: TColorModulatorByteFunc);
type PPixel = PVector4Byte;
{$I images_modulatergb_implement.inc}
procedure TRGBAlphaImage.AlphaDecide(const AlphaColor: TVector3Byte;
Tolerance: Byte; AlphaOnColor: Byte; AlphaOnNoColor: Byte);
var
pa: PVector4Byte;
i: Cardinal;
begin
pa := AlphaPixels;
for i := 1 to Width * Height do
begin
if EqualRGB(AlphaColor, PVector3Byte(pa)^, Tolerance) then
pa^[3] := AlphaOnColor else
pa^[3] := AlphaOnNoColor;
Inc(pa);
end;
end;
procedure TRGBAlphaImage.Compose(RGB: TRGBImage; AGrayscale: TGrayscaleImage);
var
PtrAlpha: PVector4Byte;
PtrRGB: PVector3Byte;
PtrGrayscale: PByte;
I: Cardinal;
begin
Check( (RGB.Width = AGrayscale.Width) and
(RGB.Height = AGrayscale.Height),
'For TRGBAlphaImage.Compose, RGB and alpha images must have the same sizes');
SetSize(RGB.Width, RGB.Height);
PtrAlpha := AlphaPixels;
PtrRGB := RGB.RGBPixels;
PtrGrayscale := AGrayscale.GrayscalePixels;
for I := 1 to Width * Height do
begin
System.Move(PtrRGB^, PtrAlpha^, SizeOf(TVector3Byte));
PtrAlpha^[3] := PtrGrayscale^;
Inc(PtrAlpha);
Inc(PtrRGB);
Inc(PtrGrayscale);
end;
end;
function TRGBAlphaImage.HasAlpha: boolean;
begin
Result := true;
end;
function TRGBAlphaImage.AlphaChannel(
const AlphaTolerance: Byte;
const WrongPixelsTolerance: Single): TAlphaChannel;
var
PtrAlpha: PVector4Byte;
I, WrongPixels, AllPixels: Cardinal;
begin
WrongPixels := 0;
AllPixels := Width * Height;
PtrAlpha := AlphaPixels;
if WrongPixelsTolerance = 0 then
begin
for I := 1 to AllPixels do
begin
if (PtrAlpha^[3] > AlphaTolerance) and
(PtrAlpha^[3] < 255 - AlphaTolerance) then
{ Special case for WrongPixelsTolerance = exactly 0.
Avoids the cases when float "WrongPixels / AllPixels"
may be so small that it's equal to 0, which would
cause some wrong pixels to "slip" even with
WrongPixelsTolerance = 0. }
Exit(acFullRange);
Inc(PtrAlpha);
end;
end else
begin
for I := 1 to AllPixels do
begin
if (PtrAlpha^[3] > AlphaTolerance) and
(PtrAlpha^[3] < 255 - AlphaTolerance) then
begin
Inc(WrongPixels);
{ From the speed point of view, is it sensible to test
WrongPixelsTolerance at each WrongPixels increment?
On one hand, we can Exit with false faster.
On the other hand, we lose time for checking it many times,
if WrongPixelsTolerance is larger.
Well, sensible WrongPixelsTolerance are very small --- so I
think this is Ok to check this every time. }
if WrongPixels / AllPixels > WrongPixelsTolerance then
Exit(acFullRange);
end;
Inc(PtrAlpha);
end;
end;
Result := acSimpleYesNo;
end;
procedure TRGBAlphaImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
var
SelfPtr: PVector4Byte;
SecondPtr: PVector4Byte;
I: Cardinal;
begin
LerpSimpleCheckConditions(SecondImage);
SelfPtr := AlphaPixels;
SecondPtr := TRGBAlphaImage(SecondImage).AlphaPixels;
for I := 1 to Width * Height do
begin
SelfPtr^ := Lerp(Value, SelfPtr^, SecondPtr^);
Inc(SelfPtr);
Inc(SecondPtr);
end;
end;
class procedure TRGBAlphaImage.MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer);
var
OutputCol: PVector4Byte absolute OutputColor;
Cols: array [0..3] of PVector4Byte absolute Colors;
begin
OutputCol^[0] := Clamped(Round(Weights[0] * Cols[0]^[0] + Weights[1] * Cols[1]^[0] + Weights[2] * Cols[2]^[0] + Weights[3] * Cols[3]^[0]), 0, High(Byte));
OutputCol^[1] := Clamped(Round(Weights[0] * Cols[0]^[1] + Weights[1] * Cols[1]^[1] + Weights[2] * Cols[2]^[1] + Weights[3] * Cols[3]^[1]), 0, High(Byte));
OutputCol^[2] := Clamped(Round(Weights[0] * Cols[0]^[2] + Weights[1] * Cols[1]^[2] + Weights[2] * Cols[2]^[2] + Weights[3] * Cols[3]^[2]), 0, High(Byte));
OutputCol^[3] := Clamped(Round(Weights[0] * Cols[0]^[3] + Weights[1] * Cols[1]^[3] + Weights[2] * Cols[2]^[3] + Weights[3] * Cols[3]^[3]), 0, High(Byte));
end;
function TRGBAlphaImage.ToRGBImage: TRGBImage;
var
SelfPtr: PVector4Byte;
ResultPtr: PVector3Byte;
I: Cardinal;
begin
Result := TRGBImage.Create(Width, Height);
SelfPtr := AlphaPixels;
ResultPtr := Result.RGBPixels;
for I := 1 to Width * Height do
begin
Move(SelfPtr^, ResultPtr^, SizeOf(TVector3Byte));
Inc(SelfPtr);
Inc(ResultPtr);
end;
end;
{ TRGBFloatImage ------------------------------------------------------------ }
function TRGBFloatImage.GetRGBFloatPixels: PVector3Single;
begin
Result := PVector3Single(RawPixels);
end;
class function TRGBFloatImage.PixelSize: Cardinal;
begin
Result := SizeOf(TVector3Single);
end;
class function TRGBFloatImage.ColorComponentsCount: Cardinal;
begin
Result := 3;
end;
function TRGBFloatImage.PixelPtr(const X, Y, Z: Cardinal): PVector3Single;
begin
Result := PVector3Single(inherited PixelPtr(X, Y, Z));
end;
function TRGBFloatImage.RowPtr(const Y, Z: Cardinal): PArray_Vector3Single;
begin
Result := PArray_Vector3Single(inherited RowPtr(Y, Z));
end;
procedure TRGBFloatImage.SetColorRGB(const x, y: Integer; const V: TVector3Single);
begin
PVector3Single(PixelPtr(x, y))^ := V;
end;
procedure TRGBFloatImage.Clear(const Pixel: TVector3Single);
var
P: PVector3Single;
I: Cardinal;
begin
P := RGBFloatPixels;
for I := 1 to Width * Height do
begin
Move(Pixel, P^, SizeOf(TVector3Single));
Inc(P);
end;
end;
function TRGBFloatImage.IsClear(const Pixel: TVector3Single): boolean;
var
P: PVector3Single;
I: Cardinal;
begin
P := RGBFloatPixels;
for I := 1 to Width * Height do
begin
if not CompareMem(@Pixel, P, SizeOf(TVector3Single)) then
begin
Result := false;
Exit;
end;
Inc(P);
end;
Result := true;
end;
function TRGBFloatImage.ToRGBImage: TRGBImage;
var
PFloat: PVector3Single;
PByte: PVector3Byte;
i: Cardinal;
begin
Result := TRGBImage.Create(Width, Height);
try
PByte := Result.RGBPixels;
PFloat := RGBFloatPixels;
for i := 1 to Width * Height do
begin
PByte^ := Vector3Byte(PFloat^);
Inc(PByte);
Inc(PFloat);
end;
except Result.Free; raise end;
end;
procedure TRGBFloatImage.ScaleColors(const Scale: Single);
var
pFloat: PVector3Single;
i: Cardinal;
begin
PFloat := RGBFloatPixels;
for i := 1 to Width * Height do
begin
PFloat^ := VectorScale(PFloat^, Scale);
Inc(PFloat);
end;
end;
procedure TRGBFloatImage.ExpColors(const Exp: Single);
var
pFloat: PVector3Single;
i: Cardinal;
begin
PFloat := RGBFloatPixels;
for i := 1 to Width * Height do
begin
PFloat^ := VectorPowerComponents(PFloat^, Exp);
Inc(PFloat);
end;
end;
procedure TRGBFloatImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
var
SelfPtr: PVector3Single;
SecondPtr: PVector3Single;
I: Cardinal;
begin
LerpSimpleCheckConditions(SecondImage);
SelfPtr := RGBFloatPixels;
SecondPtr := TRGBFloatImage(SecondImage).RGBFloatPixels;
for I := 1 to Width * Height do
begin
SelfPtr^ := Lerp(Value, SelfPtr^, SecondPtr^);
Inc(SelfPtr);
Inc(SecondPtr);
end;
end;
class procedure TRGBFloatImage.MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer);
var
OutputCol: PVector3Single absolute OutputColor;
Cols: array [0..3] of PVector3Single absolute Colors;
begin
OutputCol^[0] := Weights[0] * Cols[0]^[0] + Weights[1] * Cols[1]^[0] + Weights[2] * Cols[2]^[0] + Weights[3] * Cols[3]^[0];
OutputCol^[1] := Weights[0] * Cols[0]^[1] + Weights[1] * Cols[1]^[1] + Weights[2] * Cols[2]^[1] + Weights[3] * Cols[3]^[1];
OutputCol^[2] := Weights[0] * Cols[0]^[2] + Weights[1] * Cols[1]^[2] + Weights[2] * Cols[2]^[2] + Weights[3] * Cols[3]^[2];
end;
{ TGrayscaleImage ------------------------------------------------------------ }
function TGrayscaleImage.GetGrayscalePixels: PByte;
begin
Result := PByte(RawPixels);
end;
class function TGrayscaleImage.PixelSize: Cardinal;
begin
Result := 1;
end;
class function TGrayscaleImage.ColorComponentsCount: Cardinal;
begin
Result := 1;
end;
function TGrayscaleImage.PixelPtr(const X, Y, Z: Cardinal): PByte;
begin
Result := PByte(inherited PixelPtr(X, Y, Z));
end;
function TGrayscaleImage.RowPtr(const Y, Z: Cardinal): PByteArray;
begin
Result := PByteArray(inherited RowPtr(Y, Z));
end;
procedure TGrayscaleImage.Clear(const Pixel: Byte);
begin
FillChar(RawPixels^, Width * Height, Pixel);
end;
function TGrayscaleImage.IsClear(const Pixel: Byte): boolean;
begin
Result := IsMemCharFilled(RawPixels^, Width * Height, Char(Pixel));
end;
procedure TGrayscaleImage.HalfColors;
var
P: PByte;
I: Cardinal;
begin
P := GrayscalePixels;
for I := 1 to Width * Height do
begin
P^ := P^ shr 1;
Inc(P);
end;
end;
procedure TGrayscaleImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
var
SelfPtr: PByte;
SecondPtr: PByte;
I: Cardinal;
begin
LerpSimpleCheckConditions(SecondImage);
SelfPtr := GrayscalePixels;
SecondPtr := TGrayscaleImage(SecondImage).GrayscalePixels;
for I := 1 to Width * Height do
begin
SelfPtr^ := Clamped(Round(Lerp(Value, SelfPtr^, SecondPtr^)), 0, High(Byte));
Inc(SelfPtr);
Inc(SecondPtr);
end;
end;
class procedure TGrayscaleImage.MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer);
var
OutputCol: PByte absolute OutputColor;
Cols: array [0..3] of PByte absolute Colors;
begin
OutputCol^ := Clamped(Round(Weights[0] * Cols[0]^ + Weights[1] * Cols[1]^ + Weights[2] * Cols[2]^ + Weights[3] * Cols[3]^), 0, High(Byte));
end;
function TGrayscaleImage.ToGrayscaleAlphaImage_AlphaConst(Alpha: byte): TGrayscaleAlphaImage;
var
pg: PByte;
pa: PVector2Byte;
I: Cardinal;
begin
Result := TGrayscaleAlphaImage.Create(Width, Height);
pg := GrayscalePixels;
pa := Result.GrayscaleAlphaPixels;
for i := 1 to Width * Height do
begin
pa^[0] := pg^;
pa^[1] := Alpha;
Inc(pg);
Inc(pa);
end;
end;
{ TGrayscaleAlphaImage ------------------------------------------------------------ }
function TGrayscaleAlphaImage.GetGrayscaleAlphaPixels: PVector2Byte;
begin
Result := PVector2Byte(RawPixels);
end;
class function TGrayscaleAlphaImage.PixelSize: Cardinal;
begin
Result := 2;
end;
class function TGrayscaleAlphaImage.ColorComponentsCount: Cardinal;
begin
Result := 2;
end;
function TGrayscaleAlphaImage.PixelPtr(const X, Y, Z: Cardinal): PVector2Byte;
begin
Result := PVector2Byte(inherited PixelPtr(X, Y, Z));
end;
function TGrayscaleAlphaImage.RowPtr(const Y, Z: Cardinal): PArray_Vector2Byte;
begin
Result := PArray_Vector2Byte(inherited RowPtr(Y, Z));
end;
procedure TGrayscaleAlphaImage.Clear(const Pixel: TVector2Byte);
var
P: PVector2Byte;
I: Cardinal;
begin
P := GrayscaleAlphaPixels;
for I := 1 to Width * Height do
begin
Move(Pixel, P^, SizeOf(Pixel));
Inc(P);
end;
end;
function TGrayscaleAlphaImage.IsClear(const Pixel: TVector2Byte): boolean;
var
P: PVector2Byte;
I: Cardinal;
begin
P := GrayscaleAlphaPixels;
for I := 1 to Width * Height do
begin
if not CompareMem(@Pixel, P, SizeOf(Pixel)) then
begin
Result := false;
Exit;
end;
Inc(P);
end;
Result := true;
end;
function TGrayscaleAlphaImage.HasAlpha: boolean;
begin
Result := true;
end;
function TGrayscaleAlphaImage.AlphaChannel(
const AlphaTolerance: Byte;
const WrongPixelsTolerance: Single): TAlphaChannel;
var
PtrAlpha: PVector2Byte;
I, WrongPixels, AllPixels: Cardinal;
begin
WrongPixels := 0;
AllPixels := Width * Height;
PtrAlpha := GrayscaleAlphaPixels;
if WrongPixelsTolerance = 0 then
begin
for I := 1 to AllPixels do
begin
if (PtrAlpha^[1] > AlphaTolerance) and
(PtrAlpha^[1] < 255 - AlphaTolerance) then
{ Special case for WrongPixelsTolerance = exactly 0.
Avoids the cases when float "WrongPixels / AllPixels"
may be so small that it's equal to 0, which would
cause some wrong pixels to "slip" even with
WrongPixelsTolerance = 0. }
Exit(acFullRange);
Inc(PtrAlpha);
end;
end else
begin
for I := 1 to AllPixels do
begin
if (PtrAlpha^[1] > AlphaTolerance) and
(PtrAlpha^[1] < 255 - AlphaTolerance) then
begin
Inc(WrongPixels);
{ From the speed point of view, is it sensible to test
WrongPixelsTolerance at each WrongPixels increment?
On one hand, we can Exit with false faster.
On the other hand, we lose time for checking it many times,
if WrongPixelsTolerance is larger.
Well, sensible WrongPixelsTolerance are very small --- so I
think this is Ok to check this every time. }
if WrongPixels / AllPixels > WrongPixelsTolerance then
Exit(acFullRange);
end;
Inc(PtrAlpha);
end;
end;
Result := acSimpleYesNo;
end;
procedure TGrayscaleAlphaImage.LerpWith(const Value: Single; SecondImage: TCastleImage);
var
SelfPtr: PVector2Byte;
SecondPtr: PVector2Byte;
I: Cardinal;
begin
LerpSimpleCheckConditions(SecondImage);
SelfPtr := GrayscaleAlphaPixels;
SecondPtr := TGrayscaleAlphaImage(SecondImage).GrayscaleAlphaPixels;
for I := 1 to Width * Height do
begin
SelfPtr^ := Lerp(Value, SelfPtr^, SecondPtr^);
Inc(SelfPtr);
Inc(SecondPtr);
end;
end;
class procedure TGrayscaleAlphaImage.MixColors(const OutputColor: Pointer;
const Weights: TVector4Single; const Colors: TVector4Pointer);
var
OutputCol: PVector2Byte absolute OutputColor;
Cols: array [0..3] of PVector2Byte absolute Colors;
begin
OutputCol^[0] := Clamped(Round(Weights[0] * Cols[0]^[0] + Weights[1] * Cols[1]^[0] + Weights[2] * Cols[2]^[0] + Weights[3] * Cols[3]^[0]), 0, High(Byte));
OutputCol^[1] := Clamped(Round(Weights[0] * Cols[0]^[1] + Weights[1] * Cols[1]^[1] + Weights[2] * Cols[2]^[1] + Weights[3] * Cols[3]^[1]), 0, High(Byte));
end;
{ RGBE <-> 3 Single color convertion --------------------------------- }
const
{ do signed Exponent dodaj RGBEExponentOffset zeby zapisac exponent jako Byte }
RGBEExponentOffset = 128;
{ RGBEMin/MaxExponent = min i max wartosci dla exponent ktore moga dac
(Exponent + RGBEExponentOffset) w zakresie Byte.
Czyli RGBEMinExponent + RGBEExponentOffset = 0,
RGBEMaxExponent + RGBEExponentOffset = High(Byte),
stad RGBEMinExponent = -RGBEExponentOffset,
RGBEMaxExponent = High(Byte) - RGBEExponentOffset }
RGBEMinExponent = -RGBEExponentOffset;
RGBEMaxExponent = High(Byte) - RGBEExponentOffset;
{ zero musi byc reprezentowane w specjalny sposob w formacie RGBE,
podobnie jak w kazdym formacie zmiennoprzec. }
RGBEZero: TVector4Byte=(0, 0, 0, 0);
RGBELow :TVector4Byte=(0, 0, 0, 0); { = RGBEZero }
RGBEHigh: TVector4Byte=(High(Byte), High(Byte), High(Byte), High(Byte));
function Vector3ToRGBE(const v: TVector3Single): TVector4Byte;
{ implementacja : jak Graphic Gems II.5 ale z poprawkami -
- nazwy MaxVal i V sa osobne (dla czytelnosci),
- checki czy Exponent jest w granicach RGBEMin/MaxExponent }
{ uwagi : moznaby sadzic ze Multiplier powinien byc liczony jako
Mantissa * 255 / MaxVal (255 = High(Byte) zamiast 256),
zeby poprawnie mapowac zakres 0..1 na zakres bajta.
Ale,
- po pierwsze, specyfikacja formatu RGBE (czyli Graphic Gems II.5)
mowi zeby uzywac 256
- po drugie, uzywanie 256 podaje nam prosty warunek na sprawdzenie
czy czworka bajtow jest poprawnym RGBE : mianowicie, przynajmniej
jeden z pierwszych trzech bajtow musi byc >= 128
(czyli musi miec najstarszy bit = 1). Tym samym ten bajt jest >= 0.5
a wiec jest poprawna mantysa. Ten prosty test na poprawnosc ma zastosowanie
przy kodowaniu plikow rgbe przy uzyciu prostego RLE, gdzie wykorzystujemy
takie niepoprawne czworki RGBE to kodowania specjalnych informacji.
- po trzecie i chyba najwazniejsze, gdyby uzywac 256 to wartosc
mantysy = 255 byla bezuzyteczna bo odpowiadalaby wartosci float = 1.0
a mantysa zawsze musi byc ostro mniejsza od 1, z definicji.
I to jest chyba koronny argument za mnozeniem tutaj przez 256.
}
var
MaxVal, Multiplier: Single;
Mantissa: Extended;
Exponent: Integer;
begin
MaxVal := CastleUtils.max(v[0], CastleUtils.max(v[1], v[2]));
{ rozpatrujemy tu nie tylko przypadek gdy liczba jest = 0 ale takze
gdy jest bliska zeru. To jest standardowe zachowanie, ale uwaga -
- w tym przypadku mogloby sie (blednie) wydawac ze mozemy tutaj zrobic
wyjatek i sprawdzac ponizej tylko MaxVal = 0.0 (dokladna rownosc)
a sprawdzanie bliskosci do zera zrzucic na test Exponent < RGBEMinExponent
ponizej. ALE to nie jest prawda - test Exponent < RGBEMinExponent przejdzie
dopiero dla niesamowicie mikroskopijnych liczb (< 1 / 2^127) podczas gdy liczby
pomiedzy tymi "mikroskopijnie malymi" a SINGLE_EQUALITY_EPSILON ciagle
beda powodowac problemy (bo przy liczeniu Multiplier dzielimy przez MaxVal
wiec male MaxVal -> Float overflow). }
if MaxVal < SingleEqualityEpsilon then begin result := RGBEZero; Exit end;
Frexp(MaxVal, Mantissa, Exponent);
if Exponent < RGBEMinExponent then begin result := RGBELow; Exit end;
if Exponent > RGBEMaxExponent then begin result := RGBEHigh; Exit end;
Multiplier := Mantissa * 256 / MaxVal;
{ MaxVal * Multiplier daje Mantissa * High(byte) a wiec cos w zakresie
0 .. High(Byte) bo Mantissa <= 1 (de facto, Mantissa >= 0.5 wiec
mozna podac dokladniejsze ograniczenie na Mantissa * High(byte)).
Wszystkie pozostale v[] sa mniejsze od MaxVal wiec one tez dadza cos
w zakresie bajta. }
result[0] := Clamped(Round(v[0]*Multiplier), 0, High(Byte));
result[1] := Clamped(Round(v[1]*Multiplier), 0, High(Byte));
result[2] := Clamped(Round(v[2]*Multiplier), 0, High(Byte));
{ sprawdzajac czy Exponent in RGBEMin/MaxExponent wczesniej juz zapewnilem
sobie ze ponizsze przypisanie jest Ok, wynik zmiesci sie w zakresie bajta. }
result[3] := Exponent + RGBEExponentOffset;
end;
function VectorRGBETo3Single(const v: TVector4Byte): TVector3Single;
{ implementacja : jak Graphic Gems II.5.
Multiplier wychodzi od 1/256 (a nie 1/255), nalezaloby tu wiec poczynic
podobne uwagi co przy konwersji w druga strone, Vector3ToRGBE.
Patrz tamtejszy komentarz. }
var
Multiplier: Single;
begin
if v[3] = 0 then begin result := ZeroVector3Single; Exit end;
Multiplier := Ldexp(1/256, Integer(v[3])-RGBEExponentOffset);
result[0] := v[0]*Multiplier;
result[1] := v[1]*Multiplier;
result[2] := v[2]*Multiplier;
end;
{ file formats managing ---------------------------------------------------------------- }
function MimeTypeToImageFormat(const MimeType: string;
const OnlyLoadable, OnlySaveable: boolean; out ImgFormat: TImageFormat): boolean;
var
I: TImageFormat;
M: TImageFormatInfoMimeTypesCount;
begin
for I := Low(I) to High(I) do
begin
if ((not OnlyLoadable) or Assigned(ImageFormatInfos[I].Load)) and
((not OnlySaveable) or Assigned(ImageFormatInfos[I].Save)) then
for M := 1 to ImageFormatInfos[I].MimeTypesCount do
if MimeType = ImageFormatInfos[I].MimeTypes[M] then
begin
ImgFormat := I;
Exit(true);
end;
end;
Result := false;
end;
function ListImageExtsLong(OnlyLoadable, OnlySaveable: boolean; const LinePrefix: string): string;
var
iff: TImageFormat;
i: integer;
begin
result := '';
for iff := Low(iff) to High(iff) do
if ((not OnlyLoadable) or Assigned(ImageFormatInfos[iff].Load)) and
((not OnlySaveable) or Assigned(ImageFormatInfos[iff].Save)) then
begin
{ zwrocmy uwage ze nie chcemy doklejac nl na koncu (bo zalatwieniu
sprawy z formatem iff) bo tam nie byloby zbyt wygodnie rozpoznawac
czy jestesmy ostatnia linia czy nie (na skutek OnlySaveable/OnlyLoadable
nie mozna tego rozpoznac prostym sprawdzeniem iff < High(iff) }
if result <> '' then result := result + nl;
result := result +LinePrefix +ImageFormatInfos[iff].exts[1];
for i := 2 to ImageFormatInfos[iff].extsCount do
result := result + ', ' +ImageFormatInfos[iff].exts[i];
result := result + ' - '+ImageFormatInfos[iff].formatName;
end;
end;
function ListImageExtsShort(OnlyLoadable, OnlySaveable: boolean): string;
var
iff: TImageFormat;
i: integer;
begin
result := '';
for iff := Low(iff) to High(iff) do
if ((not OnlyLoadable) or Assigned(ImageFormatInfos[iff].Load)) and
((not OnlySaveable) or Assigned(ImageFormatInfos[iff].Save)) then
begin
for i := 1 to ImageFormatInfos[iff].extsCount do
begin
if result <> '' then result := result + ', ';
result := result + ImageFormatInfos[iff].exts[i];
end;
end;
end;
{ LoadImage --------------------------------------------------------------- }
function LoadImage(Stream: TStream; const StreamFormat: TImageFormat;
const AllowedImageClasses: array of TCastleImageClass)
:TCastleImage;
{ ClassAllowed is only a shortcut to global utility. }
function ClassAllowed(ImageClass: TCastleImageClass): boolean;
begin
Result := CastleImages.ClassAllowed(ImageClass, AllowedImageClasses);
end;
{ On input, Image must be TRGBImage and on output it will be TGrayscaleImage. }
procedure ImageGrayscaleTo1st(var Image: TCastleImage);
var
NewImage: TGrayscaleImage;
begin
NewImage := (Image as TRGBImage).ToGrayscale;
FreeAndNil(Image);
Image := NewImage;
end;
procedure ImageRGBToFloatTo1st(var Image: TCastleImage);
var
NewResult: TCastleImage;
begin
NewResult := (Image as TRGBImage).ToRGBFloat;
Image.Free;
Image := NewResult;
end;
const
DummyDefaultAlpha = High(Byte);
var
Load: TImageLoadFunc;
begin
Result := nil;
try
if Assigned(ImageFormatInfos[StreamFormat].Load) then
begin
Load := ImageFormatInfos[StreamFormat].Load;
case ImageFormatInfos[StreamFormat].LoadedClasses of
lcG_GA_RGB_RGBA:
begin
if ClassAllowed(TRGBImage) or
ClassAllowed(TRGBAlphaImage) or
ClassAllowed(TGrayscaleImage) or
ClassAllowed(TGrayscaleAlphaImage) then
Result := Load(Stream, AllowedImageClasses) else
if ClassAllowed(TRGBFloatImage) then
begin
Result := Load(Stream, [TRGBImage]);
ImageRGBToFloatTo1st(result);
end else
raise EUnableToLoadImage.CreateFmt('LoadImage cannot load this image file format to %s', [LoadImageParams(AllowedImageClasses)]);
end;
lcRGB_RGBA:
begin
if ClassAllowed(TRGBImage) or
ClassAllowed(TRGBAlphaImage) then
Result := Load(Stream, AllowedImageClasses) else
{TODO: if ClassAllowed(TGrayscaleImage) or
ClassAllowed(TGrayscaleAlphaImage) }
if ClassAllowed(TRGBFloatImage) then
begin
Result := Load(Stream, [TRGBImage]);
ImageRGBToFloatTo1st(result);
end else
raise EUnableToLoadImage.CreateFmt('LoadImage cannot load this image file format to %s', [LoadImageParams(AllowedImageClasses)]);
end;
lcRGB:
begin
Result := Load(Stream, [TRGBImage]);
Assert(Result is TRGBImage);
if not (ClassAllowed(TRGBImage)) then
begin
if ClassAllowed(TRGBAlphaImage) then
begin
ImageAlphaConstTo1st(Result, DummyDefaultAlpha);
end else
if ClassAllowed(TGrayscaleImage) then
begin
ImageGrayscaleTo1st(Result);
end else
{ TODO:
if ClassAllowed(TGrayscaleAlphaImage) then
begin
ImageAlphaConstTo1st(Result, DummyDefaultAlpha);
ImageGrayscaleAlphaTo1st(Result);
end else }
if ClassAllowed(TRGBFloatImage) then
begin
ImageRGBToFloatTo1st(result);
end else
raise EUnableToLoadImage.CreateFmt('LoadImage cannot load this image file format to %s', [LoadImageParams(AllowedImageClasses)]);
end;
end;
lcRGB_RGBFloat:
begin
if ClassAllowed(TRGBFloatImage) or
ClassAllowed(TRGBImage) then
Result := LoadRGBE(Stream, AllowedImageClasses) else
begin
Result := LoadRGBE(Stream, [TRGBImage]);
if ClassAllowed(TRGBAlphaImage) then
begin
ImageAlphaConstTo1st(result, DummyDefaultAlpha);
end else
if ClassAllowed(TGrayscaleImage) then
begin
ImageGrayscaleTo1st(Result);
end else
if ClassAllowed(TGrayscaleAlphaImage) then
begin
ImageGrayscaleTo1st(Result);
ImageAlphaConstTo1st(result, DummyDefaultAlpha);
end else
raise EUnableToLoadImage.CreateFmt('LoadImage: RGBE format cannot be loaded to %s', [LoadImageParams(AllowedImageClasses)]);
end;
end;
else raise EInternalError.Create('LoadImage: LoadedClasses?');
end;
end else
raise EImageFormatNotSupported.Create('Can''t load image format "'+
ImageFormatInfos[StreamFormat].FormatName+'"');
except Result.Free; raise end;
end;
function LoadImage(Stream: TStream; const MimeType: string;
const AllowedImageClasses: array of TCastleImageClass)
:TCastleImage;
var
iff: TImageFormat;
begin
if MimeTypeToImageFormat(MimeType, true, false, iff) then
result := LoadImage(Stream, iff, AllowedImageClasses) else
raise EImageFormatNotSupported.Create('Unrecognized image MIME type: "'+MimeType+'"');
end;
function LoadImage(const URL: string;
const AllowedImageClasses: array of TCastleImageClass): TCastleImage;
const
SLoadError = 'Error loading image from URL "%s": %s';
var
f: TStream;
MimeType: string;
begin
try
try
f := Download(URL, [soForceMemoryStream], MimeType);
except
on E: EReadError do raise EImageLoadError.Create(E.Message);
end;
try
result := LoadImage(f, MimeType, AllowedImageClasses);
finally f.Free end;
except
{ capture some exceptions to add URL to exception message }
on E: EImageLoadError do
begin
E.Message := Format(SLoadError, [URIDisplay(URL), E.Message]);
raise;
end;
on E: EImageFormatNotSupported do
begin
E.Message := Format(SLoadError, [URIDisplay(URL), E.Message]);
raise;
end;
end;
end;
function LoadImage(const URL: string;
const AllowedImageClasses: array of TCastleImageClass;
const ResizeToX, ResizeToY: Cardinal;
const Interpolation: TResizeInterpolation): TCastleImage;
begin
result := LoadImage(URL, AllowedImageClasses);
Result.Resize(ResizeToX, ResizeToY, Interpolation);
end;
{ SaveImage na TCastleImage ---------------------------------------------------- }
procedure SaveImage(const Img: TCastleImage; const Format: TImageFormat; Stream: TStream);
var
ImgRGB: TRGBImage;
Save: TImageSaveFunc;
begin
if Assigned(ImageFormatInfos[Format].Save) then
begin
Save := ImageFormatInfos[Format].Save;
case ImageFormatInfos[Format].SavedClasses of
scRGB:
begin
if Img is TRGBImage then
Save(Img, Stream) else
if Img is TRGBFloatImage then
begin
ImgRGB := TRGBFloatImage(Img).ToRGBImage;
try
SaveImage(ImgRGB, Format, Stream);
finally ImgRGB.Free end;
end else
raise EImageSaveError.CreateFmt('Saving image not possible: Cannot save image class %s to this format', [Img.ClassName]);
end;
scG_GA_RGB_RGBA:
begin
if (Img is TRGBImage) or
(Img is TRGBAlphaImage) or
(Img is TGrayscaleImage) or
(Img is TGrayscaleAlphaImage) then
Save(Img, Stream) else
if Img is TRGBFloatImage then
begin
ImgRGB := TRGBFloatImage(Img).ToRGBImage;
try
SaveImage(ImgRGB, Format, Stream);
finally ImgRGB.Free end;
end else
raise EImageSaveError.CreateFmt('Saving image not possible: Cannot save image class %s to this format', [Img.ClassName]);
end;
scRGB_RGBFloat:
begin
if (Img is TRGBImage) or
(Img is TRGBFloatImage) then
Save(Img, Stream) else
raise EImageSaveError.CreateFmt('Saving image not possible: Cannot save image class %s to this format', [Img.ClassName]);
end;
else raise EInternalError.Create('SaveImage: SavedClasses?');
end;
end else
raise EImageSaveError.CreateFmt('Saving image class %s not implemented', [Img.ClassName]);
end;
procedure SaveImage(const img: TCastleImage; const MimeType: string; Stream: TStream);
var
Format: TImageFormat;
begin
if not MimeTypeToImageFormat(MimeType, false, true, Format) then
raise EImageSaveError.CreateFmt('Unknown image MIME type "%s", cannot save. Make sure the filename/URL you want to save has one of the recognized extensions',
[MimeType]);
SaveImage(Img, Format, Stream);
end;
procedure SaveImage(const Img: TCastleImage; const URL: string);
var
Stream: TStream;
Format: TImageFormat;
MimeType: string;
begin
{ Do not call SaveImage with MimeType: string parameter, instead calculate
Format here. This way we can make better error messaage. }
MimeType := URIMimeType(URL);
if not MimeTypeToImageFormat(MimeType, false, true, Format) then
raise EImageSaveError.CreateFmt('Unknown image MIME type "%s", cannot save URL "%s". Make sure the filename/URL you want to save has one of the recognized extensions',
[MimeType, URL]);
Stream := URLSaveStream(URL);
try
SaveImage(Img, Format, Stream);
finally FreeAndNil(Stream) end;
end;
{ other image processing ------------------------------------------- }
procedure ImageAlphaConstTo1st(var Img: TCastleImage; const AlphaConst: byte);
var
NewImg: TCastleImage;
begin
if Img is TRGBImage then
begin
NewImg := TRGBImage(Img).ToRGBAlphaImage_AlphaConst(AlphaConst);
FreeAndNil(Img);
Img := NewImg;
end else
if Img is TGrayscaleImage then
begin
NewImg := TGrayscaleImage(Img).ToGrayscaleAlphaImage_AlphaConst(AlphaConst);
FreeAndNil(Img);
Img := NewImg;
end;
if not ((Img is TRGBAlphaImage) or
(Img is TGrayscaleAlphaImage)) then
raise EInternalError.Create(
'ImageAlphaConstTo1st not possible for this TCastleImage descendant: ' + Img.ClassName);
end;
function ImageClassBestForSavingToFormat(const URL: string): TCastleImageClass;
var
Format: TImageFormat;
begin
if not MimeTypeToImageFormat(URIMimeType(URL), false, true, Format) then
Exit(TRGBImage);
Result := ImageClassBestForSavingToFormat(Format);
end;
function ImageClassBestForSavingToFormat(const Format: TImageFormat): TCastleImageClass;
begin
if Format = ifRGBE then
Result := TRGBFloatImage else
Result := TRGBImage;
end;
{ unit initialization / finalization ----------------------------------------- }
procedure InitializeImagesFileFilters;
function CreateImagesFilters: TFileFilterList;
begin
Result := TFileFilterList.Create(true);
Result.AddFilter('All Files', ['*']);
Result.AddFilter('All Images', []);
Result.DefaultFilter := 1;
end;
procedure AddImageFormat(Filters: TFileFilterList; Format: TImageFormatInfo);
var
F: TFileFilter;
ExtIndex: Integer;
Pattern: string;
begin
F := TFileFilter.Create;
Filters.Add(F);
F.Name := Format.FormatName + ' (';
for ExtIndex := 1 to Format.ExtsCount do
begin
Pattern := '*.' + Format.Exts[ExtIndex];
{ add to "All images" filter }
Filters[Filters.DefaultFilter].Patterns.Append(Pattern);
{ add to this filter }
F.Patterns.Append(Pattern);
{ add to this filter visible name }
if ExtIndex <> 1 then F.Name := F.Name + ', ';
F.Name := F.Name + Pattern;
end;
F.Name := F.Name + ')';
end;
var
Format: TImageFormat;
begin
LoadImage_FileFilters := CreateImagesFilters;
SaveImage_FileFilters := CreateImagesFilters;
for Format := Low(Format) to High(Format) do
begin
if Assigned(ImageFormatInfos[Format].Load) then
AddImageFormat(LoadImage_FileFilters, ImageFormatInfos[Format]);
if Assigned(ImageFormatInfos[Format].Save) then
AddImageFormat(SaveImage_FileFilters, ImageFormatInfos[Format]);
end;
end;
procedure AlphaMaxTo1st(var A: TAlphaChannel; const B: TAlphaChannel);
begin
if B > A then A := B;
end;
initialization
InitializeImagesFileFilters;
InitializePNG;
finalization
FreeAndNil(LoadImage_FileFilters);
FreeAndNil(SaveImage_FileFilters);
end.
(* ----------------------------------------------------------------------------------
stare comments do LoadImage :
{ w result.data zwracaja bitmape w formacie GL_RGB na GL_UNSIGNED_BYTE, bez alignowania !
Tzn. powinno byc PixelStorei(GL_UNPACK_ALIGNMENT, 1) aby dzialaly w kazdej sytuacji.
LoadImageData zwraca tylko wskaznik result.data.
Jesli resizeTo[] <> 0 to dany wymiar bedzie resizowany.
UWAGA ! Przydzielony pointer data ZAWSZE nalezy zwolnic z pamieci przez FreeMem
(polecam moje FreeMemNiling).
ImageProc, jesli <> nil, jest wywolywane dla zaladowanego image'a PRZED wykonaniem
ewentualnego skalowania. Ma to zastosowanie np. gdy chcesz zaladowac stosunkowo
maly obrazek z pliku, zamienic go np. na czarno-bialy i potem przeskalowac na
bardzo duzy rozmiar. W takiej sytuacji duzo bardziej ekonomiczne jest wywolanie
konwersji na black&white jeszcze PRZED skalowaniem, a wiec najlepiej przekaz
MakeBlackAndWhite jako ImageProc. Acha, jesli chcesz to mozesz w ImageProc
zmienic rozmiary obrazka. (chociaz dla typowego resizu pewnie wygodniej bedzie
uzyc parametrow resizeToX, resizeToY)
}
*)
|