/usr/src/castle-game-engine-4.1.1/3d/castlesphericalharmonics.pas is in castle-game-engine-src 4.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | {
Copyright 2008-2013 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Spherical harmonic basis functions. }
unit CastleSphericalHarmonics;
interface
uses CastleVectors, CastleUtils, Math, CastleCubeMaps;
const
{ How many basis can SHBasis calculate. LM for SHBasis must be within
0 .. SHBasesCount - 1. }
MaxSHBasis = 25;
{ The first SH basis function is actually constant.
This is sometimes useful. }
SHBasis0 = 1 / (2 * Sqrt(Pi));
{ Calculate spherical harmonic basis function for given arguments.
LM indicates (L, M) that specify which SH basis to use.
LM determines a pair (L, M) in the natural order: for each L,
take for each M from -L to L.
That is, LM = (0, 1, 2, 3, ...) indicate
@preformatted(
(L, M) =
( (0, 0),
(1, -1), (1, 0), (1, 1),
(2, -2), (2, -1), (2, 0), (2, 1), (2, 2),
... )
) ) }
function SHBasis(const LM: Cardinal; const PhiTheta: TVector2Single): Float;
procedure LMDecode(const LM: Cardinal; out L: Cardinal; out M: Integer);
var
(*For each SHBasis function (first index of the array is LM of this function),
a precalculated results of basic spherical harmonic functions.
Multiplied by solid angle of this cube map pixel, since this is what
you usually need.
For each side of the cube, and for each pixel on this side (pixels are
arranged same as in TGrayscaleImage, that is row-by-row from
lower to higher, from left to right) this gives the result of SHBasis
for this direction. Multiplied by solid angle.
You have to initialize this (once, like at the beginning of your
program) by InitializeSHBasisMap.
This is useful for calculating sh basis vector from given cube map:
since you can just project any function on any basis, so if you have
a particular cube map you can project it on each SH basis function.
See SHVectorFromCubeMap implementation for code how to use SHBasisMap
for this, and in simple cases you can just call SHVectorFromCubeMap. *)
SHBasisMap: array [0..MaxSHBasis - 1] of TCubeMapFloat;
procedure InitializeSHBasisMap;
type
TSHVectorSingle = array [0..MaxSHBasis - 1] of Single;
PSHVectorSingle = ^TSHVectorSingle;
{ Calculate SH basis coefficients that approximate function in Map.
This uses SHBasisMap, so be sure to initialize it first. }
procedure SHVectorFromCubeMap(var SHVector: array of Single;
const Map: TCubeMapByte);
implementation
uses CastleSphereSampling;
function SHBasis(const LM: Cardinal; const PhiTheta: TVector2Single): Float;
{ Taken from http://www.sjbrown.co.uk/2004/10/16/spherical-harmonic-basis/ }
var
SinPhi, CosPhi, SinTheta, CosTheta: Float;
function Sin2Theta: Float;
begin
Result := Sqr(SinTheta);
end;
function Sin3Theta: Float;
begin
Result := Sqr(SinTheta)*SinTheta;
end;
function Sin4Theta: Float;
begin
Result := Sqr(Sqr(SinTheta));
end;
function Cos2Theta: Float;
begin
Result := Sqr(CosTheta);
end;
function Cos3Theta: Float;
begin
Result := Sqr(CosTheta)*CosTheta;
end;
function Cos4Theta: Float;
begin
Result := Sqr(Sqr(CosTheta));
end;
function Sin2Phi: Float;
begin
Result := Sqr(SinPhi);
end;
function Sin3Phi: Float;
begin
Result := Sqr(SinPhi)*SinPhi;
end;
function Sin4Phi: Float;
begin
Result := Sqr(Sqr(SinPhi));
end;
function Cos2Phi: Float;
begin
Result := Sqr(CosPhi);
end;
function Cos3Phi: Float;
begin
Result := Sqr(CosPhi)*CosPhi;
end;
function Cos4Phi: Float;
begin
Result := Sqr(Sqr(CosPhi));
end;
begin
SinCos(PhiTheta[0], SinPhi, CosPhi);
SinCos(PhiTheta[1], SinTheta, CosTheta);
{ Fear not, this case should be converted to lookup table by FPC. }
case LM of
0: Result := SHBasis0;
1: Result := Sqrt(3) / (2 * Sqrt(Pi)) * CosPhi * SinTheta;
2: Result := Sqrt(3) / (2 * Sqrt(Pi)) * CosTheta;
3: Result := Sqrt(3) / (2 * Sqrt(Pi)) * SinPhi * SinTheta;
4: Result := Sqrt(15) / (2 * Sqrt(Pi)) * CosPhi * SinPhi * Sin2Theta;
5: Result := Sqrt(15) / (2 * Sqrt(Pi)) * SinPhi * CosTheta * SinTheta;
6: Result := Sqrt(15) / (4 * Sqrt(Pi)) * (3 * Cos2Theta - 1);
7: Result := Sqrt(15) / (2 * Sqrt(Pi)) * CosPhi * CosTheta * SinTheta;
8: Result := Sqrt(15) / (4 * Sqrt(Pi)) * (Cos2Phi - Sin2Phi) * Sin2Theta;
9 : Result := Sqrt(35) / (4 * Sqrt(2*Pi) ) * (3 * Cos2Phi - Sin2Phi) * SinPhi * Sin3Theta;
10: Result := Sqrt(105) / (2 * Sqrt(Pi ) ) * CosPhi * SinPhi * CosTheta * Sin2Theta;
11: Result := Sqrt(21) / (4 * Sqrt(2*Pi) ) * (5 * Cos2Theta - 1) * SinPhi * SinTheta;
12: Result := Sqrt(7) / (4 * Sqrt(Pi ) ) * (5 * Cos3Theta - 3 * CosTheta);
13: Result := Sqrt(21) / (4 * Sqrt(2*Pi) ) * (5 * Cos2Theta - 1) * CosPhi * SinTheta;
14: Result := Sqrt(105) / (4 * Sqrt(Pi ) ) * (Cos2Phi - Sin2Phi) * CosTheta * Sin2Theta;
15: Result := Sqrt(35) / (4 * Sqrt(2*Pi) ) * (Cos2Phi - 3 * Sin2Phi) * CosPhi * Sin3Theta;
16: Result := 3 * Sqrt(35) / (4 * Sqrt(Pi ) ) * ( Cos2Phi - Sin2Phi) * CosPhi * SinPhi * Sin4Theta;
17: Result := 3 * Sqrt(35) / (4 * Sqrt(2*Pi) ) * (3 * Cos2Phi - Sin2Phi) * SinPhi * CosTheta * Sin3Theta;
18: Result := 3 * Sqrt(5) / (4 * Sqrt(Pi ) ) * (7 * Cos2Theta - 1) * CosPhi * SinPhi * Sin2Theta;
19: Result := 3 * Sqrt(5) / (4 * Sqrt(2*Pi) ) * (7 * Cos2Theta - 3) * SinPhi * CosTheta * SinTheta;
20: Result := 3 / (16 * Sqrt(Pi ) ) * (3 - 30 * Cos2Theta + 35 * Cos4Theta);
21: Result := 3 * Sqrt(5) / (4 * Sqrt(2*Pi) ) * (7 * Cos2Theta - 3) * CosPhi * CosTheta * SinTheta;
22: Result := 3 * Sqrt(5) / (8 * Sqrt(Pi ) ) * (7 * Cos2Theta - 1) * (Cos2Phi - Sin2Phi) * Sin2Theta;
23: Result := 3 * Sqrt(35) / (4 * Sqrt(2*Pi) ) * (Cos2Phi - 3 * Sin2Phi) * CosPhi * CosTheta * Sin3Theta;
24: Result := 3 * Sqrt(35) / (16 * Sqrt(Pi ) ) * (Sin4Phi - 6 * Cos2Phi * Sin2Phi + Cos4Phi) * Sin4Theta;
else raise EInternalError.Create('SHBasis LM out');
end
end;
procedure LMDecode(const LM: Cardinal; out L: Cardinal; out M: Integer);
var
ReachedLM: Integer;
begin
L := 0;
ReachedLM := -1;
repeat
if ReachedLM + Integer(2*L+1) >= Integer(LM) then
begin
M := LM - ReachedLM - L - 1;
Break;
end;
ReachedLM += Integer(2*L+1);
Inc(L);
until false;
end;
var
SHBasisMapInitialized: boolean = false;
procedure InitializeSHBasisMap;
var
LM: Cardinal;
Side: TCubeMapSide;
Pixel: Cardinal;
begin
if SHBasisMapInitialized then Exit;
for LM := 0 to MaxSHBasis - 1 do
for Side := Low(Side) to High(Side) do
for Pixel := 0 to Sqr(CubeMapSize) - 1 do
begin
SHBasisMap[LM][Side][Pixel] :=
SHBasis(LM, XYZToPhiTheta(CubeMapDirection(Side, Pixel))) *
CubeMapSolidAngle(Side, Pixel);
end;
SHBasisMapInitialized := true;
end;
procedure SHVectorFromCubeMap(var SHVector: array of Single;
const Map: TCubeMapByte);
var
LM: Cardinal;
Side: TCubeMapSide;
Pixel: Cardinal;
begin
Assert(SHBasisMapInitialized);
for LM := 0 to High(SHVector) do
begin
SHVector[LM] := 0;
for Side := Low(Side) to High(Side) do
for Pixel := 0 to Sqr(CubeMapSize) - 1 do
SHVector[LM] += (Map[Side, Pixel]/255) * SHBasisMap[LM, Side, Pixel];
{ SHVector[LM] is now calculated for all sphere points.
We want this to be integral over a sphere, so normalize now.
Since SHBasisMap contains result of SH function * solid angle of pixel
(on cube map, pixels have different solid angles),
so below we divide by 4*Pi (sphere area, sum of solid angles for every
pixel). }
SHVector[LM] /= 4 * Pi;
end;
end;
end.
|