This file is indexed.

/usr/src/castle-game-engine-4.1.1/3d/castlenurbs.pas is in castle-game-engine-src 4.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
{
  Copyright 2009-2013 Michalis Kamburelis.
  Parts based on white dune (GPL >= 2):
  Stephen F. White, J. "MUFTI" Scheurich, others.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software.

  Although most of the "Castle Game Engine" is available on terms of LGPL
  (see COPYING.txt in this distribution for detailed info), parts of this unit
  are an exception: they use white dune strict GPL >= 2 code.
  You can redistribute and/or modify *this unit, CastleNURBS.pas, as a whole*
  only under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  If the engine is compiled with CASTLE_ENGINE_LGPL symbol
  (see ../base/castleconf.inc), an alternative "dummy" implementation of
  this unit will be used, that doesn't depend on any GPL code.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ Common utilities for NURBS curves and surfaces. }
unit CastleNURBS;

{$I castleconf.inc}

interface

uses SysUtils, CastleUtils, CastleVectors, CastleBoxes;

{ Calculate the tessellation (number of NURBS points generated).
  This follows X3D spec for "an implementation subdividing
  the surface into an equal number of subdivision steps".
  Give value of tessellation field, and count of controlPoints.

  Returned value is for sure > 0 (never exactly 0). }
function ActualTessellation(const Tessellation: Integer;
  const Dimension: Cardinal): Cardinal;

{ Return point on NURBS curve.

  Requires:
  @unorderedList(
    @item PointsCount > 0 (not exactly 0).
    @item Order >= 2 (X3D and VRML 97 spec require this too).
    @item Knot must have exactly PointsCount + Order items.
  )

  Weight will be used only if it has the same length as PointsCount.
  Otherwise, weight = 1.0 (that is, defining non-rational curve) will be used
  (this follows X3D spec).

  Tangent, if non-nil, will be set to the direction at given point of the
  curve, pointing from the smaller to larger knot values.
  It will be normalized. This can be directly useful to generate
  orientations by X3D NurbsOrientationInterpolator node.

  @groupBegin }
function NurbsCurvePoint(const Points: PVector3Single;
  const PointsCount: Cardinal; const U: Single;
  const Order: Cardinal;
  Knot, Weight: TDoubleList;
  Tangent: PVector3Single): TVector3Single;
function NurbsCurvePoint(const Points: TVector3SingleList;
  const U: Single;
  const Order: Cardinal;
  Knot, Weight: TDoubleList;
  Tangent: PVector3Single): TVector3Single;
{ @groupEnd }

{ Return point on NURBS surface.

  Requires:
  @unorderedList(
    @item UDimension, VDimension > 0 (not exactly 0).
    @item Points.Count must match UDimension * VDimension.
    @item Order >= 2 (X3D and VRML 97 spec require this too).
    @item Each xKnot must have exactly xDimension + Order items.
  )

  Weight will be used only if it has the same length as PointsCount.
  Otherwise, weight = 1.0 (that is, defining non-rational curve) will be used
  (this follows X3D spec).

  Normal, if non-nil, will be set to the normal at given point of the
  surface. It will be normalized. You can use this to pass these normals
  to rendering. Or to generate normals for X3D NurbsSurfaceInterpolator node. }
function NurbsSurfacePoint(const Points: TVector3SingleList;
  const UDimension, VDimension: Cardinal;
  const U, V: Single;
  const UOrder, VOrder: Cardinal;
  UKnot, VKnot, Weight: TDoubleList;
  Normal: PVector3Single): TVector3Single;

type
  { Naming notes: what precisely is called a "uniform" knot vector seems
    to differ in literature / software.
    Blender calls nkPeriodicUniform as "Uniform",
    and nkEndpointUniform as "Endpoint".
    http://en.wiki.mcneel.com/default.aspx/McNeel/NURBSDoc.html
    calls nkEndpointUniform as "Uniform".
    "An introduction to NURBS: with historical perspective"
    (by David F. Rogers) calls nkEndpointUniform "open uniform" and
    nkPeriodicUniform "periodic uniform". }

  { Type of NURBS knot vector to generate. }
  TNurbsKnotKind = (
    { All knot values are evenly spaced, all knots are single.
      This is good for periodic curves. }
    nkPeriodicUniform,
    { Starting and ending knots have Order multiplicity, rest is evenly spaced.
      The curve hits endpoints. }
    nkEndpointUniform);

{ Calculate a default knot, if Knot doesn't already have required number of items.
  After this, it's guaranteed that Knot.Count is Dimension + Order
  (just as required by NurbsCurvePoint, NurbsSurfacePoint). }
procedure NurbsKnotIfNeeded(Knot: TDoubleList;
  const Dimension, Order: Cardinal; const Kind: TNurbsKnotKind);

function NurbsBoundingBox(Point: TVector3SingleList;
  Weight: TDoubleList): TBox3D;
function NurbsBoundingBox(Point: TVector3SingleList;
  Weight: TSingleList): TBox3D;

function NurbsBoundingBox(Point: TVector3SingleList;
  Weight: TDoubleList; const Transform: TMatrix4Single): TBox3D;
function NurbsBoundingBox(Point: TVector3SingleList;
  Weight: TSingleList; const Transform: TMatrix4Single): TBox3D;

implementation

function ActualTessellation(const Tessellation: Integer;
  const Dimension: Cardinal): Cardinal;
begin
  if Tessellation > 0 then
    Result := Tessellation else
  if Tessellation = 0 then
    Result := 2 * Dimension else
    Result := Cardinal(-Tessellation) * Dimension;
  Inc(Result);
end;

function NurbsCurvePoint(const Points: TVector3SingleList;
  const U: Single;
  const Order: Cardinal;
  Knot, Weight: TDoubleList;
  Tangent: PVector3Single): TVector3Single;
begin
  Result := NurbsCurvePoint(PVector3Single(Points.List), Points.Count,
    U, Order, Knot, Weight, Tangent);
end;

{$ifdef CASTLE_ENGINE_LGPL}

{ Dummy implementations }

function NurbsCurvePoint(const Points: PVector3Single;
  const PointsCount: Cardinal; const U: Single;
  const Order: Cardinal;
  Knot, Weight: TDoubleList;
  Tangent: PVector3Single): TVector3Single;
begin
  Result := ZeroVector3Single;
end;

function NurbsSurfacePoint(const Points: TVector3SingleList;
  const UDimension, VDimension: Cardinal;
  const U, V: Single;
  const UOrder, VOrder: Cardinal;
  UKnot, VKnot, Weight: TDoubleList;
  Normal: PVector3Single): TVector3Single;
begin
  Result := ZeroVector3Single;
end;

{$else CASTLE_ENGINE_LGPL}

{ findSpan and basisFuns is rewritten from white dune's C source code
  (almost identical methods of NodeNurbsCurve and NodeNurbsSurface).
  Also NurbsCurvePoint is based on NodeNurbsCurve::curvePoint.
  Also NurbsSurfacePoint is based on NodeNurbsSurface::surfacePoint.
  Also NurbsUniformKnotIfNeeded is based on NodeNurbsSurface::linearUknot.

  White dune:
  - http://vrml.cip.ica.uni-stuttgart.de/dune/
  - J. "MUFTI" Scheurich, Stephen F. White
  - GPL >= 2, so we're free to copy
  - findSpan and basisFuns were methods in NodeNurbsCurve
    (src/NodeNurbsCurve.cpp) and NodeNurbsSurface.
    *Almost* exactly identical, the only difference: NodeNurbsSurface
    had these two additional lines (safety check, included in my version):
      if ((right[r+1] + left[j-r]) == 0)
          return;
}
function findSpan(const dimension, order: LongInt;
  const u: Single; Knot: TDoubleList): LongInt;
var
  low, mid, high, oldLow, oldMid, oldHigh, n: LongInt;
begin
  n := dimension + order - 1;

  if u >= Knot[n] then
  begin
    Result := n - order;
    Exit;
  end;

  low := order - 1;
  high := n - order + 1;

  mid := (low + high) div 2;

  oldLow := low;
  oldHigh := high;
  oldMid := mid;
  while (u < Knot[mid]) or (u >= Knot[mid+1]) do
  begin
    if u < Knot[mid] then
      high := mid else
      low := mid;

    mid := (low+high) div 2;

    // emergency abort of loop, otherwise a endless loop can occure
    if (low = oldLow) and (high = oldHigh) and (mid = oldMid) then
      break;

    oldLow := low;
    oldHigh := high;
    oldMid := mid;
  end;
  Result := mid;
end;

procedure basisFuns(const span: LongInt; const u: Single; const order: LongInt;
  Knot, basis, deriv: TDoubleList);
var
  left, right: TDoubleList;
  j, r: LongInt;
  saved, dsaved, temp: Single;
begin
  left  := TDoubleList.Create; left .Count := order;
  right := TDoubleList.Create; right.Count := order;

  basis[0] := 1.0;
  for j := 1 to  order - 1 do
  begin
    left[j] := u - Knot[span+1-j];
    right[j] := Knot[span+j]-u;
    saved := 0.0;
    dsaved := 0.0;
    for r := 0 to j - 1 do
    begin
      if (right[r+1] + left[j-r]) = 0 then
      begin
        { Or we could use try..finally, at a (very very small) speed penalty. }
        FreeAndNil(left);
        FreeAndNil(right);
        Exit;
      end;
      temp := basis[r] / (right[r+1] + left[j-r]);
      basis[r] := saved + right[r+1] * temp;
      deriv[r] := dsaved - j * temp;
      saved := left[j-r] * temp;
      dsaved := j * temp;
    end;
    basis[j] := saved;
    deriv[j] := dsaved;
  end;

  FreeAndNil(left);
  FreeAndNil(right);
end;

function NurbsCurvePoint(const Points: PVector3Single;
  const PointsCount: Cardinal; const U: Single;
  const Order: Cardinal;
  Knot, Weight: TDoubleList;
  Tangent: PVector3Single): TVector3Single;
var
  i: Integer;
  w, duw: Single;
  span: LongInt;
  basis, deriv: TDoubleList;
  UseWeight: boolean;
  du: TVector3Single;
  index: Cardinal;
begin
  UseWeight := Cardinal(Weight.Count) = PointsCount;

  basis := TDoubleList.Create; basis.Count := order;
  deriv := TDoubleList.Create; deriv.Count := order;

  span := findSpan(PointsCount, order, u, Knot);

  basisFuns(span, u, order, Knot, basis, deriv);

  Result := ZeroVector3Single;
  du := ZeroVector3Single;

  w := 0.0;
  duw := 0.0;

  for i := 0 to order-1 do
  begin
    index := span-order+1+i;
    Result += Points[index] * basis[i];
    du += Points[index] * deriv[i];
    if UseWeight then
    begin
      w += weight[index] * basis[i];
      duw += weight[index] * deriv[i];
    end else
    begin
      w += basis[i];
      duw += deriv[i];
    end;
  end;

  Result /= w;

  if Tangent <> nil then
  begin
    Tangent^ := (du - Result * duw) / w;
    NormalizeTo1st(Tangent^);
  end;

  FreeAndNil(basis);
  FreeAndNil(deriv);
end;

function NurbsSurfacePoint(const Points: TVector3SingleList;
  const UDimension, VDimension: Cardinal;
  const U, V: Single;
  const UOrder, VOrder: Cardinal;
  UKnot, VKnot, Weight: TDoubleList;
  Normal: PVector3Single): TVector3Single;
var
  uBasis, vBasis, uDeriv, vDeriv: TDoubleList;
  uSpan, vSpan: LongInt;
  I, J: LongInt;
  uBase, vBase, index: Cardinal;
  du, dv, un, vn: TVector3Single;
  w, duw, dvw: Single;
  gain, dugain, dvgain: Single;
  P: TVector3Single;
  UseWeight: boolean;
begin
  UseWeight := Weight.Count = Points.Count;

  uBasis := TDoubleList.Create; uBasis.Count := UOrder;
  vBasis := TDoubleList.Create; vBasis.Count := VOrder;
  uDeriv := TDoubleList.Create; uDeriv.Count := UOrder;
  vDeriv := TDoubleList.Create; vDeriv.Count := VOrder;

  uSpan := findSpan(uDimension, uOrder, u, uKnot);
  vSpan := findSpan(vDimension, vOrder, v, vKnot);

  basisFuns(uSpan, u, uOrder, uKnot, uBasis, uDeriv);
  basisFuns(vSpan, v, vOrder, vKnot, vBasis, vDeriv);

  uBase := uSpan-uOrder+1;
  vBase := vSpan-vOrder+1;

  index := vBase*uDimension + uBase;
  Result := ZeroVector3Single;
  du := ZeroVector3Single;
  dv := ZeroVector3Single;

  w := 0.0;
  duw := 0.0;
  dvw := 0.0;

  for j := 0 to vOrder -1 do
  begin
    for i := 0 to uOrder - 1 do
    begin
      gain := uBasis[i] * vBasis[j];
      dugain := uDeriv[i] * vBasis[j];
      dvgain := uBasis[i] * vDeriv[j];

      P := Points.L[index];

      Result += P * gain;

      du += P * dugain;
      dv += P * dvgain;
      if UseWeight then
      begin
        w += weight[index] * gain;
        duw += weight[index] * dugain;
        dvw += weight[index] * dvgain;
      end else
      begin
        w += gain;
        duw += dugain;
        dvw += dvgain;
      end;
      Inc(index);
    end;
    index += uDimension - uOrder;
  end;

  Result /= w;

  if Normal <> nil then
  begin
    un := (du - Result * duw) / w;
    vn := (dv - Result * dvw) / w;
    normal^ := un >< vn;
    NormalizeTo1st(normal^);
  end;

  FreeAndNil(uBasis);
  FreeAndNil(vBasis);
  FreeAndNil(uDeriv);
  FreeAndNil(vDeriv);
end;

{$endif CASTLE_ENGINE_LGPL}

procedure NurbsKnotIfNeeded(Knot: TDoubleList;
  const Dimension, Order: Cardinal; const Kind: TNurbsKnotKind);
var
  I: Integer;
begin
  if Cardinal(Knot.Count) <> Dimension + Order then
  begin
    Knot.Count := Dimension + Order;

    case Kind of
      nkPeriodicUniform:
        begin
          for I := 0 to Knot.Count - 1 do
            Knot.L[I] := I;
        end;
      nkEndpointUniform:
        begin
          for I := 0 to Order - 1 do
          begin
            Knot.L[I] := 0;
            Knot.L[Cardinal(I) + Dimension] := Dimension - Order + 1;
          end;
          for I := 0 to Dimension - Order - 1 do
            Knot.L[Cardinal(I) + Order] := I + 1;
          for I := 0 to Order + Dimension - 1 do
            Knot.L[I] /= Dimension - Order + 1;
        end;
      else raise EInternalError.Create('NurbsKnotIfNeeded 594');
    end;
  end;
end;

function NurbsBoundingBox(Point: TVector3SingleList;
  Weight: TDoubleList): TBox3D;
var
  V: PVector3Single;
  W: Single;
  I: Integer;
begin
  if Weight.Count = Point.Count then
  begin
    if Point.Count = 0 then
      Result := EmptyBox3D else
    begin
      W := Weight.L[0];
      if W = 0 then W := 1;

      Result.Data[0] := Point.L[0] / W;
      Result.Data[1] := Result.Data[0];

      for I := 1 to Point.Count - 1 do
      begin
        V := Addr(Point.L[I]);
        W := Weight.L[I];
        if W = 0 then W := 1;

        MinTo1st(Result.Data[0][0], V^[0] / W);
        MinTo1st(Result.Data[0][1], V^[1] / W);
        MinTo1st(Result.Data[0][2], V^[2] / W);

        MaxTo1st(Result.Data[1][0], V^[0] / W);
        MaxTo1st(Result.Data[1][1], V^[1] / W);
        MaxTo1st(Result.Data[1][2], V^[2] / W);
      end;
    end;
  end else
  { Otherwise, all the weights are assumed 1.0 }
  begin
    Result := CalculateBoundingBox(PVector3Single(Point.List),
      Point.Count, 0);
  end;
end;

function NurbsBoundingBox(Point: TVector3SingleList;
  Weight: TSingleList): TBox3D;
var
  WeightDouble: TDoubleList;
begin
  { Direct implementation using single would be much faster...
    But not important, this is only for VRML 2.0. }
  WeightDouble := Weight.ToDouble;
  try
    Result := NurbsBoundingBox(Point, WeightDouble);
  finally FreeAndNil(WeightDouble) end;
end;

function NurbsBoundingBox(Point: TVector3SingleList;
  Weight: TDoubleList; const Transform: TMatrix4Single): TBox3D;
var
  V: TVector3Single;
  W: Single;
  I: Integer;
begin
  if Weight.Count = Point.Count then
  begin
    if Point.Count = 0 then
      Result := EmptyBox3D else
    begin
      W := Weight.L[0];
      if W = 0 then W := 1;

      Result.Data[0] := MatrixMultPoint(Transform, Point.L[0] / W);
      Result.Data[1] := Result.Data[0];

      for I := 1 to Point.Count - 1 do
      begin
        W := Weight.L[I];
        if W = 0 then W := 1;

        V := MatrixMultPoint(Transform, Point.L[I] / W);

        MinTo1st(Result.Data[0][0], V[0]);
        MinTo1st(Result.Data[0][1], V[1]);
        MinTo1st(Result.Data[0][2], V[2]);

        MaxTo1st(Result.Data[1][0], V[0]);
        MaxTo1st(Result.Data[1][1], V[1]);
        MaxTo1st(Result.Data[1][2], V[2]);
      end;
    end;
  end else
  { Otherwise, all the weights are assumed 1.0 }
  begin
    Result := CalculateBoundingBox(PVector3Single(Point.List),
      Point.Count, 0);
  end;
end;

function NurbsBoundingBox(Point: TVector3SingleList;
  Weight: TSingleList; const Transform: TMatrix4Single): TBox3D;
var
  WeightDouble: TDoubleList;
begin
  { Direct implementation using single would be much faster...
    But not important, this is only for VRML 2.0. }
  WeightDouble := Weight.ToDouble;
  try
    Result := NurbsBoundingBox(Point, WeightDouble, Transform);
  finally FreeAndNil(WeightDouble) end;
end;

end.