/usr/src/castle-game-engine-4.1.1/3d/castlenurbs.pas is in castle-game-engine-src 4.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | {
Copyright 2009-2013 Michalis Kamburelis.
Parts based on white dune (GPL >= 2):
Stephen F. White, J. "MUFTI" Scheurich, others.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software.
Although most of the "Castle Game Engine" is available on terms of LGPL
(see COPYING.txt in this distribution for detailed info), parts of this unit
are an exception: they use white dune strict GPL >= 2 code.
You can redistribute and/or modify *this unit, CastleNURBS.pas, as a whole*
only under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
If the engine is compiled with CASTLE_ENGINE_LGPL symbol
(see ../base/castleconf.inc), an alternative "dummy" implementation of
this unit will be used, that doesn't depend on any GPL code.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Common utilities for NURBS curves and surfaces. }
unit CastleNURBS;
{$I castleconf.inc}
interface
uses SysUtils, CastleUtils, CastleVectors, CastleBoxes;
{ Calculate the tessellation (number of NURBS points generated).
This follows X3D spec for "an implementation subdividing
the surface into an equal number of subdivision steps".
Give value of tessellation field, and count of controlPoints.
Returned value is for sure > 0 (never exactly 0). }
function ActualTessellation(const Tessellation: Integer;
const Dimension: Cardinal): Cardinal;
{ Return point on NURBS curve.
Requires:
@unorderedList(
@item PointsCount > 0 (not exactly 0).
@item Order >= 2 (X3D and VRML 97 spec require this too).
@item Knot must have exactly PointsCount + Order items.
)
Weight will be used only if it has the same length as PointsCount.
Otherwise, weight = 1.0 (that is, defining non-rational curve) will be used
(this follows X3D spec).
Tangent, if non-nil, will be set to the direction at given point of the
curve, pointing from the smaller to larger knot values.
It will be normalized. This can be directly useful to generate
orientations by X3D NurbsOrientationInterpolator node.
@groupBegin }
function NurbsCurvePoint(const Points: PVector3Single;
const PointsCount: Cardinal; const U: Single;
const Order: Cardinal;
Knot, Weight: TDoubleList;
Tangent: PVector3Single): TVector3Single;
function NurbsCurvePoint(const Points: TVector3SingleList;
const U: Single;
const Order: Cardinal;
Knot, Weight: TDoubleList;
Tangent: PVector3Single): TVector3Single;
{ @groupEnd }
{ Return point on NURBS surface.
Requires:
@unorderedList(
@item UDimension, VDimension > 0 (not exactly 0).
@item Points.Count must match UDimension * VDimension.
@item Order >= 2 (X3D and VRML 97 spec require this too).
@item Each xKnot must have exactly xDimension + Order items.
)
Weight will be used only if it has the same length as PointsCount.
Otherwise, weight = 1.0 (that is, defining non-rational curve) will be used
(this follows X3D spec).
Normal, if non-nil, will be set to the normal at given point of the
surface. It will be normalized. You can use this to pass these normals
to rendering. Or to generate normals for X3D NurbsSurfaceInterpolator node. }
function NurbsSurfacePoint(const Points: TVector3SingleList;
const UDimension, VDimension: Cardinal;
const U, V: Single;
const UOrder, VOrder: Cardinal;
UKnot, VKnot, Weight: TDoubleList;
Normal: PVector3Single): TVector3Single;
type
{ Naming notes: what precisely is called a "uniform" knot vector seems
to differ in literature / software.
Blender calls nkPeriodicUniform as "Uniform",
and nkEndpointUniform as "Endpoint".
http://en.wiki.mcneel.com/default.aspx/McNeel/NURBSDoc.html
calls nkEndpointUniform as "Uniform".
"An introduction to NURBS: with historical perspective"
(by David F. Rogers) calls nkEndpointUniform "open uniform" and
nkPeriodicUniform "periodic uniform". }
{ Type of NURBS knot vector to generate. }
TNurbsKnotKind = (
{ All knot values are evenly spaced, all knots are single.
This is good for periodic curves. }
nkPeriodicUniform,
{ Starting and ending knots have Order multiplicity, rest is evenly spaced.
The curve hits endpoints. }
nkEndpointUniform);
{ Calculate a default knot, if Knot doesn't already have required number of items.
After this, it's guaranteed that Knot.Count is Dimension + Order
(just as required by NurbsCurvePoint, NurbsSurfacePoint). }
procedure NurbsKnotIfNeeded(Knot: TDoubleList;
const Dimension, Order: Cardinal; const Kind: TNurbsKnotKind);
function NurbsBoundingBox(Point: TVector3SingleList;
Weight: TDoubleList): TBox3D;
function NurbsBoundingBox(Point: TVector3SingleList;
Weight: TSingleList): TBox3D;
function NurbsBoundingBox(Point: TVector3SingleList;
Weight: TDoubleList; const Transform: TMatrix4Single): TBox3D;
function NurbsBoundingBox(Point: TVector3SingleList;
Weight: TSingleList; const Transform: TMatrix4Single): TBox3D;
implementation
function ActualTessellation(const Tessellation: Integer;
const Dimension: Cardinal): Cardinal;
begin
if Tessellation > 0 then
Result := Tessellation else
if Tessellation = 0 then
Result := 2 * Dimension else
Result := Cardinal(-Tessellation) * Dimension;
Inc(Result);
end;
function NurbsCurvePoint(const Points: TVector3SingleList;
const U: Single;
const Order: Cardinal;
Knot, Weight: TDoubleList;
Tangent: PVector3Single): TVector3Single;
begin
Result := NurbsCurvePoint(PVector3Single(Points.List), Points.Count,
U, Order, Knot, Weight, Tangent);
end;
{$ifdef CASTLE_ENGINE_LGPL}
{ Dummy implementations }
function NurbsCurvePoint(const Points: PVector3Single;
const PointsCount: Cardinal; const U: Single;
const Order: Cardinal;
Knot, Weight: TDoubleList;
Tangent: PVector3Single): TVector3Single;
begin
Result := ZeroVector3Single;
end;
function NurbsSurfacePoint(const Points: TVector3SingleList;
const UDimension, VDimension: Cardinal;
const U, V: Single;
const UOrder, VOrder: Cardinal;
UKnot, VKnot, Weight: TDoubleList;
Normal: PVector3Single): TVector3Single;
begin
Result := ZeroVector3Single;
end;
{$else CASTLE_ENGINE_LGPL}
{ findSpan and basisFuns is rewritten from white dune's C source code
(almost identical methods of NodeNurbsCurve and NodeNurbsSurface).
Also NurbsCurvePoint is based on NodeNurbsCurve::curvePoint.
Also NurbsSurfacePoint is based on NodeNurbsSurface::surfacePoint.
Also NurbsUniformKnotIfNeeded is based on NodeNurbsSurface::linearUknot.
White dune:
- http://vrml.cip.ica.uni-stuttgart.de/dune/
- J. "MUFTI" Scheurich, Stephen F. White
- GPL >= 2, so we're free to copy
- findSpan and basisFuns were methods in NodeNurbsCurve
(src/NodeNurbsCurve.cpp) and NodeNurbsSurface.
*Almost* exactly identical, the only difference: NodeNurbsSurface
had these two additional lines (safety check, included in my version):
if ((right[r+1] + left[j-r]) == 0)
return;
}
function findSpan(const dimension, order: LongInt;
const u: Single; Knot: TDoubleList): LongInt;
var
low, mid, high, oldLow, oldMid, oldHigh, n: LongInt;
begin
n := dimension + order - 1;
if u >= Knot[n] then
begin
Result := n - order;
Exit;
end;
low := order - 1;
high := n - order + 1;
mid := (low + high) div 2;
oldLow := low;
oldHigh := high;
oldMid := mid;
while (u < Knot[mid]) or (u >= Knot[mid+1]) do
begin
if u < Knot[mid] then
high := mid else
low := mid;
mid := (low+high) div 2;
// emergency abort of loop, otherwise a endless loop can occure
if (low = oldLow) and (high = oldHigh) and (mid = oldMid) then
break;
oldLow := low;
oldHigh := high;
oldMid := mid;
end;
Result := mid;
end;
procedure basisFuns(const span: LongInt; const u: Single; const order: LongInt;
Knot, basis, deriv: TDoubleList);
var
left, right: TDoubleList;
j, r: LongInt;
saved, dsaved, temp: Single;
begin
left := TDoubleList.Create; left .Count := order;
right := TDoubleList.Create; right.Count := order;
basis[0] := 1.0;
for j := 1 to order - 1 do
begin
left[j] := u - Knot[span+1-j];
right[j] := Knot[span+j]-u;
saved := 0.0;
dsaved := 0.0;
for r := 0 to j - 1 do
begin
if (right[r+1] + left[j-r]) = 0 then
begin
{ Or we could use try..finally, at a (very very small) speed penalty. }
FreeAndNil(left);
FreeAndNil(right);
Exit;
end;
temp := basis[r] / (right[r+1] + left[j-r]);
basis[r] := saved + right[r+1] * temp;
deriv[r] := dsaved - j * temp;
saved := left[j-r] * temp;
dsaved := j * temp;
end;
basis[j] := saved;
deriv[j] := dsaved;
end;
FreeAndNil(left);
FreeAndNil(right);
end;
function NurbsCurvePoint(const Points: PVector3Single;
const PointsCount: Cardinal; const U: Single;
const Order: Cardinal;
Knot, Weight: TDoubleList;
Tangent: PVector3Single): TVector3Single;
var
i: Integer;
w, duw: Single;
span: LongInt;
basis, deriv: TDoubleList;
UseWeight: boolean;
du: TVector3Single;
index: Cardinal;
begin
UseWeight := Cardinal(Weight.Count) = PointsCount;
basis := TDoubleList.Create; basis.Count := order;
deriv := TDoubleList.Create; deriv.Count := order;
span := findSpan(PointsCount, order, u, Knot);
basisFuns(span, u, order, Knot, basis, deriv);
Result := ZeroVector3Single;
du := ZeroVector3Single;
w := 0.0;
duw := 0.0;
for i := 0 to order-1 do
begin
index := span-order+1+i;
Result += Points[index] * basis[i];
du += Points[index] * deriv[i];
if UseWeight then
begin
w += weight[index] * basis[i];
duw += weight[index] * deriv[i];
end else
begin
w += basis[i];
duw += deriv[i];
end;
end;
Result /= w;
if Tangent <> nil then
begin
Tangent^ := (du - Result * duw) / w;
NormalizeTo1st(Tangent^);
end;
FreeAndNil(basis);
FreeAndNil(deriv);
end;
function NurbsSurfacePoint(const Points: TVector3SingleList;
const UDimension, VDimension: Cardinal;
const U, V: Single;
const UOrder, VOrder: Cardinal;
UKnot, VKnot, Weight: TDoubleList;
Normal: PVector3Single): TVector3Single;
var
uBasis, vBasis, uDeriv, vDeriv: TDoubleList;
uSpan, vSpan: LongInt;
I, J: LongInt;
uBase, vBase, index: Cardinal;
du, dv, un, vn: TVector3Single;
w, duw, dvw: Single;
gain, dugain, dvgain: Single;
P: TVector3Single;
UseWeight: boolean;
begin
UseWeight := Weight.Count = Points.Count;
uBasis := TDoubleList.Create; uBasis.Count := UOrder;
vBasis := TDoubleList.Create; vBasis.Count := VOrder;
uDeriv := TDoubleList.Create; uDeriv.Count := UOrder;
vDeriv := TDoubleList.Create; vDeriv.Count := VOrder;
uSpan := findSpan(uDimension, uOrder, u, uKnot);
vSpan := findSpan(vDimension, vOrder, v, vKnot);
basisFuns(uSpan, u, uOrder, uKnot, uBasis, uDeriv);
basisFuns(vSpan, v, vOrder, vKnot, vBasis, vDeriv);
uBase := uSpan-uOrder+1;
vBase := vSpan-vOrder+1;
index := vBase*uDimension + uBase;
Result := ZeroVector3Single;
du := ZeroVector3Single;
dv := ZeroVector3Single;
w := 0.0;
duw := 0.0;
dvw := 0.0;
for j := 0 to vOrder -1 do
begin
for i := 0 to uOrder - 1 do
begin
gain := uBasis[i] * vBasis[j];
dugain := uDeriv[i] * vBasis[j];
dvgain := uBasis[i] * vDeriv[j];
P := Points.L[index];
Result += P * gain;
du += P * dugain;
dv += P * dvgain;
if UseWeight then
begin
w += weight[index] * gain;
duw += weight[index] * dugain;
dvw += weight[index] * dvgain;
end else
begin
w += gain;
duw += dugain;
dvw += dvgain;
end;
Inc(index);
end;
index += uDimension - uOrder;
end;
Result /= w;
if Normal <> nil then
begin
un := (du - Result * duw) / w;
vn := (dv - Result * dvw) / w;
normal^ := un >< vn;
NormalizeTo1st(normal^);
end;
FreeAndNil(uBasis);
FreeAndNil(vBasis);
FreeAndNil(uDeriv);
FreeAndNil(vDeriv);
end;
{$endif CASTLE_ENGINE_LGPL}
procedure NurbsKnotIfNeeded(Knot: TDoubleList;
const Dimension, Order: Cardinal; const Kind: TNurbsKnotKind);
var
I: Integer;
begin
if Cardinal(Knot.Count) <> Dimension + Order then
begin
Knot.Count := Dimension + Order;
case Kind of
nkPeriodicUniform:
begin
for I := 0 to Knot.Count - 1 do
Knot.L[I] := I;
end;
nkEndpointUniform:
begin
for I := 0 to Order - 1 do
begin
Knot.L[I] := 0;
Knot.L[Cardinal(I) + Dimension] := Dimension - Order + 1;
end;
for I := 0 to Dimension - Order - 1 do
Knot.L[Cardinal(I) + Order] := I + 1;
for I := 0 to Order + Dimension - 1 do
Knot.L[I] /= Dimension - Order + 1;
end;
else raise EInternalError.Create('NurbsKnotIfNeeded 594');
end;
end;
end;
function NurbsBoundingBox(Point: TVector3SingleList;
Weight: TDoubleList): TBox3D;
var
V: PVector3Single;
W: Single;
I: Integer;
begin
if Weight.Count = Point.Count then
begin
if Point.Count = 0 then
Result := EmptyBox3D else
begin
W := Weight.L[0];
if W = 0 then W := 1;
Result.Data[0] := Point.L[0] / W;
Result.Data[1] := Result.Data[0];
for I := 1 to Point.Count - 1 do
begin
V := Addr(Point.L[I]);
W := Weight.L[I];
if W = 0 then W := 1;
MinTo1st(Result.Data[0][0], V^[0] / W);
MinTo1st(Result.Data[0][1], V^[1] / W);
MinTo1st(Result.Data[0][2], V^[2] / W);
MaxTo1st(Result.Data[1][0], V^[0] / W);
MaxTo1st(Result.Data[1][1], V^[1] / W);
MaxTo1st(Result.Data[1][2], V^[2] / W);
end;
end;
end else
{ Otherwise, all the weights are assumed 1.0 }
begin
Result := CalculateBoundingBox(PVector3Single(Point.List),
Point.Count, 0);
end;
end;
function NurbsBoundingBox(Point: TVector3SingleList;
Weight: TSingleList): TBox3D;
var
WeightDouble: TDoubleList;
begin
{ Direct implementation using single would be much faster...
But not important, this is only for VRML 2.0. }
WeightDouble := Weight.ToDouble;
try
Result := NurbsBoundingBox(Point, WeightDouble);
finally FreeAndNil(WeightDouble) end;
end;
function NurbsBoundingBox(Point: TVector3SingleList;
Weight: TDoubleList; const Transform: TMatrix4Single): TBox3D;
var
V: TVector3Single;
W: Single;
I: Integer;
begin
if Weight.Count = Point.Count then
begin
if Point.Count = 0 then
Result := EmptyBox3D else
begin
W := Weight.L[0];
if W = 0 then W := 1;
Result.Data[0] := MatrixMultPoint(Transform, Point.L[0] / W);
Result.Data[1] := Result.Data[0];
for I := 1 to Point.Count - 1 do
begin
W := Weight.L[I];
if W = 0 then W := 1;
V := MatrixMultPoint(Transform, Point.L[I] / W);
MinTo1st(Result.Data[0][0], V[0]);
MinTo1st(Result.Data[0][1], V[1]);
MinTo1st(Result.Data[0][2], V[2]);
MaxTo1st(Result.Data[1][0], V[0]);
MaxTo1st(Result.Data[1][1], V[1]);
MaxTo1st(Result.Data[1][2], V[2]);
end;
end;
end else
{ Otherwise, all the weights are assumed 1.0 }
begin
Result := CalculateBoundingBox(PVector3Single(Point.List),
Point.Count, 0);
end;
end;
function NurbsBoundingBox(Point: TVector3SingleList;
Weight: TSingleList; const Transform: TMatrix4Single): TBox3D;
var
WeightDouble: TDoubleList;
begin
{ Direct implementation using single would be much faster...
But not important, this is only for VRML 2.0. }
WeightDouble := Weight.ToDouble;
try
Result := NurbsBoundingBox(Point, WeightDouble, Transform);
finally FreeAndNil(WeightDouble) end;
end;
end.
|