/usr/include/bm/bmsse2.h is in bmagic 3.7.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 | #ifndef BMSSE2__H__INCLUDED__
#define BMSSE2__H__INCLUDED__
/*
Copyright(c) 2002-2009 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com)
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information please visit: http://bmagic.sourceforge.net
*/
// Header implements processor specific intrinsics declarations for SSE2
// instruction set
#include<mmintrin.h>
#include<emmintrin.h>
#include "bmdef.h"
#include "bmsse_util.h"
namespace bm
{
/*!
SSE2 optimized bitcounting function implements parallel bitcounting
algorithm for SSE2 instruction set.
<pre>
unsigned CalcBitCount32(unsigned b)
{
b = (b & 0x55555555) + (b >> 1 & 0x55555555);
b = (b & 0x33333333) + (b >> 2 & 0x33333333);
b = (b + (b >> 4)) & 0x0F0F0F0F;
b = b + (b >> 8);
b = (b + (b >> 16)) & 0x0000003F;
return b;
}
</pre>
@ingroup SSE2
*/
inline
bm::id_t sse2_bit_count(const __m128i* block, const __m128i* block_end)
{
const unsigned mu1 = 0x55555555;
const unsigned mu2 = 0x33333333;
const unsigned mu3 = 0x0F0F0F0F;
const unsigned mu4 = 0x0000003F;
// Loading masks
__m128i m1 = _mm_set_epi32 (mu1, mu1, mu1, mu1);
__m128i m2 = _mm_set_epi32 (mu2, mu2, mu2, mu2);
__m128i m3 = _mm_set_epi32 (mu3, mu3, mu3, mu3);
__m128i m4 = _mm_set_epi32 (mu4, mu4, mu4, mu4);
__m128i mcnt;
mcnt = _mm_xor_si128(m1, m1); // cnt = 0
__m128i tmp1, tmp2;
do
{
__m128i b = _mm_load_si128(block);
++block;
// b = (b & 0x55555555) + (b >> 1 & 0x55555555);
tmp1 = _mm_srli_epi32(b, 1); // tmp1 = (b >> 1 & 0x55555555)
tmp1 = _mm_and_si128(tmp1, m1);
tmp2 = _mm_and_si128(b, m1); // tmp2 = (b & 0x55555555)
b = _mm_add_epi32(tmp1, tmp2); // b = tmp1 + tmp2
// b = (b & 0x33333333) + (b >> 2 & 0x33333333);
tmp1 = _mm_srli_epi32(b, 2); // (b >> 2 & 0x33333333)
tmp1 = _mm_and_si128(tmp1, m2);
tmp2 = _mm_and_si128(b, m2); // (b & 0x33333333)
b = _mm_add_epi32(tmp1, tmp2); // b = tmp1 + tmp2
// b = (b + (b >> 4)) & 0x0F0F0F0F;
tmp1 = _mm_srli_epi32(b, 4); // tmp1 = b >> 4
b = _mm_add_epi32(b, tmp1); // b = b + (b >> 4)
b = _mm_and_si128(b, m3); // & 0x0F0F0F0F
// b = b + (b >> 8);
tmp1 = _mm_srli_epi32 (b, 8); // tmp1 = b >> 8
b = _mm_add_epi32(b, tmp1); // b = b + (b >> 8)
// b = (b + (b >> 16)) & 0x0000003F;
tmp1 = _mm_srli_epi32 (b, 16); // b >> 16
b = _mm_add_epi32(b, tmp1); // b + (b >> 16)
b = _mm_and_si128(b, m4); // (b >> 16) & 0x0000003F;
mcnt = _mm_add_epi32(mcnt, b); // mcnt += b
} while (block < block_end);
bm::id_t BM_ALIGN16 tcnt[4] BM_ALIGN16ATTR;
_mm_store_si128((__m128i*)tcnt, mcnt);
return tcnt[0] + tcnt[1] + tcnt[2] + tcnt[3];
}
template<class Func>
bm::id_t sse2_bit_count_op(const __m128i* BMRESTRICT block,
const __m128i* BMRESTRICT block_end,
const __m128i* BMRESTRICT mask_block,
Func sse2_func)
{
const unsigned mu1 = 0x55555555;
const unsigned mu2 = 0x33333333;
const unsigned mu3 = 0x0F0F0F0F;
const unsigned mu4 = 0x0000003F;
// Loading masks
__m128i m1 = _mm_set_epi32 (mu1, mu1, mu1, mu1);
__m128i m2 = _mm_set_epi32 (mu2, mu2, mu2, mu2);
__m128i m3 = _mm_set_epi32 (mu3, mu3, mu3, mu3);
__m128i m4 = _mm_set_epi32 (mu4, mu4, mu4, mu4);
__m128i mcnt;
mcnt = _mm_xor_si128(m1, m1); // cnt = 0
do
{
__m128i tmp1, tmp2;
__m128i b = _mm_load_si128(block++);
tmp1 = _mm_load_si128(mask_block++);
b = sse2_func(b, tmp1);
// b = (b & 0x55555555) + (b >> 1 & 0x55555555);
tmp1 = _mm_srli_epi32(b, 1); // tmp1 = (b >> 1 & 0x55555555)
tmp1 = _mm_and_si128(tmp1, m1);
tmp2 = _mm_and_si128(b, m1); // tmp2 = (b & 0x55555555)
b = _mm_add_epi32(tmp1, tmp2); // b = tmp1 + tmp2
// b = (b & 0x33333333) + (b >> 2 & 0x33333333);
tmp1 = _mm_srli_epi32(b, 2); // (b >> 2 & 0x33333333)
tmp1 = _mm_and_si128(tmp1, m2);
tmp2 = _mm_and_si128(b, m2); // (b & 0x33333333)
b = _mm_add_epi32(tmp1, tmp2); // b = tmp1 + tmp2
// b = (b + (b >> 4)) & 0x0F0F0F0F;
tmp1 = _mm_srli_epi32(b, 4); // tmp1 = b >> 4
b = _mm_add_epi32(b, tmp1); // b = b + (b >> 4)
b = _mm_and_si128(b, m3); // & 0x0F0F0F0F
// b = b + (b >> 8);
tmp1 = _mm_srli_epi32 (b, 8); // tmp1 = b >> 8
b = _mm_add_epi32(b, tmp1); // b = b + (b >> 8)
// b = (b + (b >> 16)) & 0x0000003F;
tmp1 = _mm_srli_epi32 (b, 16); // b >> 16
b = _mm_add_epi32(b, tmp1); // b + (b >> 16)
b = _mm_and_si128(b, m4); // (b >> 16) & 0x0000003F;
mcnt = _mm_add_epi32(mcnt, b); // mcnt += b
} while (block < block_end);
bm::id_t BM_ALIGN16 tcnt[4] BM_ALIGN16ATTR;
_mm_store_si128((__m128i*)tcnt, mcnt);
return tcnt[0] + tcnt[1] + tcnt[2] + tcnt[3];
}
#define VECT_XOR_ARR_2_MASK(dst, src, src_end, mask)\
sse2_xor_arr_2_mask((__m128i*)(dst), (__m128i*)(src), (__m128i*)(src_end), mask)
#define VECT_ANDNOT_ARR_2_MASK(dst, src, src_end, mask)\
sse2_andnot_arr_2_mask((__m128i*)(dst), (__m128i*)(src), (__m128i*)(src_end), mask)
#define VECT_BITCOUNT(first, last) \
sse2_bit_count((__m128i*) (first), (__m128i*) (last))
#define VECT_BITCOUNT_AND(first, last, mask) \
sse2_bit_count_op((__m128i*) (first), (__m128i*) (last), (__m128i*) (mask), sse2_and)
#define VECT_BITCOUNT_OR(first, last, mask) \
sse2_bit_count_op((__m128i*) (first), (__m128i*) (last), (__m128i*) (mask), sse2_or)
#define VECT_BITCOUNT_XOR(first, last, mask) \
sse2_bit_count_op((__m128i*) (first), (__m128i*) (last), (__m128i*) (mask), sse2_xor)
#define VECT_BITCOUNT_SUB(first, last, mask) \
sse2_bit_count_op((__m128i*) (first), (__m128i*) (last), (__m128i*) (mask), sse2_sub)
#define VECT_INVERT_ARR(first, last) \
sse2_invert_arr(first, last);
#define VECT_AND_ARR(dst, src, src_end) \
sse2_and_arr((__m128i*) dst, (__m128i*) (src), (__m128i*) (src_end))
#define VECT_OR_ARR(dst, src, src_end) \
sse2_or_arr((__m128i*) dst, (__m128i*) (src), (__m128i*) (src_end))
#define VECT_SUB_ARR(dst, src, src_end) \
sse2_sub_arr((__m128i*) dst, (__m128i*) (src), (__m128i*) (src_end))
#define VECT_XOR_ARR(dst, src, src_end) \
sse2_xor_arr((__m128i*) dst, (__m128i*) (src), (__m128i*) (src_end))
#define VECT_COPY_BLOCK(dst, src, src_end) \
sse2_copy_block((__m128i*) dst, (__m128i*) (src), (__m128i*) (src_end))
#define VECT_SET_BLOCK(dst, dst_end, value) \
sse2_set_block((__m128i*) dst, (__m128i*) (dst_end), (value))
inline
bm::id_t sse2_bit_block_calc_count_change(const __m128i* BMRESTRICT block,
const __m128i* BMRESTRICT block_end,
unsigned* BMRESTRICT bit_count)
{
const unsigned mu1 = 0x55555555;
const unsigned mu2 = 0x33333333;
const unsigned mu3 = 0x0F0F0F0F;
const unsigned mu4 = 0x0000003F;
// Loading masks
__m128i m1 = _mm_set_epi32 (mu1, mu1, mu1, mu1);
__m128i m2 = _mm_set_epi32 (mu2, mu2, mu2, mu2);
__m128i m3 = _mm_set_epi32 (mu3, mu3, mu3, mu3);
__m128i m4 = _mm_set_epi32 (mu4, mu4, mu4, mu4);
__m128i mcnt, ccnt;
mcnt = _mm_xor_si128(m1, m1); // bit_cnt = 0
ccnt = _mm_xor_si128(m1, m1); // change_cnt = 0
__m128i tmp1, tmp2;
int count = (block_end - block)*4; //0;//1;
bm::word_t w, w0, w_prev;//, w_l;
const int w_shift = sizeof(w) * 8 - 1;
bool first_word = true;
// first word
{
const bm::word_t* blk = (const bm::word_t*) block;
w = w0 = blk[0];
w ^= (w >> 1);
BM_INCWORD_BITCOUNT(count, w);
count -= (w_prev = (w0 >> w_shift)); // negative value correction
}
bm::id_t BM_ALIGN16 tcnt[4] BM_ALIGN16ATTR;
do
{
// compute bit-count
// ---------------------------------------------------------------------
{
__m128i b = _mm_load_si128(block);
// w ^(w >> 1)
tmp1 = _mm_srli_epi32(b, 1); // tmp1 = b >> 1
tmp2 = _mm_xor_si128(b, tmp1); // tmp2 = tmp1 ^ b;
_mm_store_si128((__m128i*)tcnt, tmp2);
// compare with zero
{
// b = (b & 0x55555555) + (b >> 1 & 0x55555555);
//tmp1 = _mm_srli_epi32(b, 1); // tmp1 = (b >> 1 & 0x55555555)
tmp1 = _mm_and_si128(tmp1, m1);
tmp2 = _mm_and_si128(b, m1); // tmp2 = (b & 0x55555555)
b = _mm_add_epi32(tmp1, tmp2); // b = tmp1 + tmp2
// b = (b & 0x33333333) + (b >> 2 & 0x33333333);
tmp1 = _mm_srli_epi32(b, 2); // (b >> 2 & 0x33333333)
tmp1 = _mm_and_si128(tmp1, m2);
tmp2 = _mm_and_si128(b, m2); // (b & 0x33333333)
b = _mm_add_epi32(tmp1, tmp2); // b = tmp1 + tmp2
// b = (b + (b >> 4)) & 0x0F0F0F0F;
tmp1 = _mm_srli_epi32(b, 4); // tmp1 = b >> 4
b = _mm_add_epi32(b, tmp1); // b = b + (b >> 4)
b = _mm_and_si128(b, m3); //& 0x0F0F0F0F
// b = b + (b >> 8);
tmp1 = _mm_srli_epi32 (b, 8); // tmp1 = b >> 8
b = _mm_add_epi32(b, tmp1); // b = b + (b >> 8)
// b = (b + (b >> 16)) & 0x0000003F;
tmp1 = _mm_srli_epi32 (b, 16); // b >> 16
b = _mm_add_epi32(b, tmp1); // b + (b >> 16)
b = _mm_and_si128(b, m4); // (b >> 16) & 0x0000003F;
mcnt = _mm_add_epi32(mcnt, b); // mcnt += b
}
}
// ---------------------------------------------------------------------
{
//__m128i b = _mm_load_si128(block);
const bm::word_t* BMRESTRICT blk = (const bm::word_t*) block;
if (first_word)
{
first_word = false;
}
else
{
if ((w0=blk[0]))
{
BM_INCWORD_BITCOUNT(count, tcnt[0]);
count -= !(w_prev ^ (w0 & 1));
count -= w_prev = (w0 >> w_shift);
}
else
{
count -= !w_prev; w_prev ^= w_prev;
}
}
if ((w0=blk[1]))
{
BM_INCWORD_BITCOUNT(count, tcnt[1]);
count -= !(w_prev ^ (w0 & 1));
count -= w_prev = (w0 >> w_shift);
}
else
{
count -= !w_prev; w_prev ^= w_prev;
}
if ((w0=blk[2]))
{
BM_INCWORD_BITCOUNT(count, tcnt[2]);
count -= !(w_prev ^ (w0 & 1));
count -= w_prev = (w0 >> w_shift);
}
else
{
count -= !w_prev; w_prev ^= w_prev;
}
if ((w0=blk[3]))
{
BM_INCWORD_BITCOUNT(count, tcnt[3]);
count -= !(w_prev ^ (w0 & 1));
count -= w_prev = (w0 >> w_shift);
}
else
{
count -= !w_prev; w_prev ^= w_prev;
}
}
} while (++block < block_end);
_mm_store_si128((__m128i*)tcnt, mcnt);
*bit_count = tcnt[0] + tcnt[1] + tcnt[2] + tcnt[3];
return count;
}
} // namespace
#endif
|