/usr/share/doc/axiom-doc/hypertex/calseries8.xhtml is in axiom-hypertex-data 20120501-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | <?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:m="http://www.w3.org/1998/Math/MathML">
<head>
<meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
<title>Axiom Documentation</title>
<style>
html {
background-color: #ECEA81;
}
body {
margin: 0px;
padding: 0px;
}
div.command {
color:red;
}
div.center {
color:blue;
}
div.reset {
visibility:hidden;
}
div.mathml {
color:blue;
}
input.subbut {
background-color:#ECEA81;
border: 0;
color:green;
font-family: "Courier New", Courier, monospace;
}
input.noresult {
background-color:#ECEA81;
border: 0;
color:black;
font-family: "Courier New", Courier, monospace;
}
span.cmd {
color:green;
font-family: "Courier New", Courier, monospace;
}
pre {
font-family: "Courier New", Courier, monospace;
}
</style>
<script type="text/javascript">
<![CDATA[
// This is a hash table of the values we've evaluated.
// This is indexed by a string argument.
// A value of 0 means we need to evaluate the expression
// A value of 1 means we have evaluated the expression
Evaled = new Array();
// this says we should modify the page
hiding = 'show';
// and this is the id of the div tag to modify (defaulted)
thediv = 'mathAns';
// commandline will mark that its arg has been evaled so we don't repeat
function commandline(arg) {
Evaled[arg] = 0; // remember that we have set this value
thediv='ans'+arg; // mark where we should put the output
var ans = document.getElementById(arg).value;
return(ans);
}
// the function only modifies the page if when we're showing the
// final result, otherwise it does nothing.
function showanswer(mathString,indiv) {
if (hiding == 'show') { // only do something useful if we're showing
indiv = thediv; // override the argument so we can change it
var mystr = mathString.split("</div>");
for (var i=0; i < mystr.length; i++) {
if (mystr[i].indexOf("mathml") > 0) {
var mymathstr = mystr[i].concat("</div>");
}
}
// this turns the string into a dom fragment
var mathRange = document.createRange();
var mathBox=
document.createElementNS('http://www.w3.org/1999/xhtml','div');
mathRange.selectNodeContents(mathBox);
var mymath = mathRange.createContextualFragment(mymathstr);
mathBox.appendChild(mymath);
// now we need to format it properly
// and we stick the result into the requested div block as a child.
var mathAns = document.getElementById(indiv);
mathAns.removeChild(mathAns.firstChild);
mathAns.appendChild(mathBox);
}
}
// this function takes a list of expressions ids to evaluate
// the list contains a list of "free" expression ids that need to
// be evaluated before the last expression.
// For each expression id, if it has not yet been evaluated we
// evaluate it "hidden" otherwise we can skip the expression.
// Once we have evaluated all of the free expressions we can
// evaluate the final expression and modify the page.
function handleFree(arg) {
var placename = arg.pop(); // last array val is real
var mycnt = arg.length; // remaining free vars
// we handle all of the prerequired expressions quietly
hiding = 'hide';
for (var i=0; i<mycnt; i++) { // for each of the free variables
if (Evaled[arg[i]] == null) { // if we haven't evaled it
Evaled[arg[i]] = 0; // remember we evaled it
makeRequest(arg[i]); // initialize the free values
}
}
// and now we start talking to the page again
hiding = 'show'; // we want to show this
thediv = 'ans'+placename; // at this div id
makeRequest(placename); // and we eval and show it
}
]]>
<![CDATA[
function ignoreResponse() {}
function resetvars() {
http_request = new XMLHttpRequest();
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = ignoreResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command=)clear all");
return(false);
}
]]>
function init() {
}
function makeRequest(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("command="+command);
return(false);
}
function lispcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("lispcall="+command);
return(false);
}
function showcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("showcall="+command);
return(false);
}
function interpcall(arg) {
http_request = new XMLHttpRequest();
var command = commandline(arg);
//alert(command);
http_request.open('POST', '127.0.0.1:8085', true);
http_request.onreadystatechange = handleResponse;
http_request.setRequestHeader('Content-Type', 'text/plain');
http_request.send("interpcall="+command);
return(false);
}
function handleResponse() {
if (http_request.readyState == 4) {
if (http_request.status == 200) {
showanswer(http_request.responseText,'mathAns');
} else
{
alert('There was a problem with the request.'+ http_request.statusText);
}
}
}
</script>
</head>
<body onload="resetvars();">
<div align="center"><img align="middle" src="doctitle.png"/></div>
<hr/>
<div align="center">Example: Bernoulli Polynomials and Sums of Powers</div>
<hr/>
Axiom provides operations for computing definite and indefinite sums.
You can compute the sum of the first ten fourth powers by evaluating this.
This creates a list whose entries are m^4 as m ranges from 1 to 10, and then
computes the sum of the entries of that list.
<ul>
<li>
<input type="submit" id="p1" class="subbut"
onclick="makeRequest('p1');"
value="reduce(+,[m^4 for m in 1..10])" />
<div id="ansp1"><div></div></div>
</li>
</ul>
You can also compute a formula for the sum of the first k fourth powers,
where k is an unspecified positive integer.
<ul>
<li>
<input type="submit" id="p2" class="subbut"
onclick="makeRequest('p2');"
value="sum4:=sum(m^4,m=1..k)" />
<div id="ansp2"><div></div></div>
</li>
</ul>
This formula is valid for any positive integer k. For instance, if we
replace k by 10, we obtain the number we computed earlier.
<ul>
<li>
<input type="submit" id="p3" class="subbut"
onclick="handleFree(['p2','p3']);"
value="eval(sum4,k=10)" />
<div id="ansp3"><div></div></div>
</li>
</ul>
You can compute a formula for the sum of the first k nth powers in a
similar fashion. Just replace the 4 in the definition of sum4 by any
expression not involving k. Axiom computes these formulas using Bernoulli
polynomials; we use the rest of this section to describe this method.
First consider this function of t and x.
<ul>
<li>
<input type="submit" id="p4" class="subbut"
onclick="makeRequest('p4');"
value="f:=t*exp(x*t)/(exp(t)-1)" />
<div id="ansp4"><div></div></div>
</li>
</ul>
Since the expressions involved get quite large, we tell Axiom to show us only
terms of degree up to 5.
<ul>
<li>
<input type="submit" id="p5" class="noresult"
onclick="makeRequest('p5');"
value=")set streams calculate 5" />
<div id="ansp5"><div></div></div>
</li>
</ul>
If we look at the Taylor expansion of f(x,t) about t=0, we see that the
coefficients of the powers of t are polynomials in x.
<ul>
<li>
<input type="submit" id="p6" class="subbut"
onclick="handleFree(['p4','p5','p6']);"
value="ff:=taylor(f,t=0)" />
<div id="ansp6"><div></div></div>
</li>
</ul>
In fact, the nth coefficient in this series is essentiall the nth Bernoulli
polynomial: the nth coefficient of the series is 1/n!*Bn(x), where Bn(x) is
the nth Bernoulli polynomial. Thus, to obtain the nth Bernoulli polynomial,
we multiply the nth coefficient of the series ff by n!. For example, the
sixth Bernoulli polynomial is this.
<ul>
<li>
<input type="submit" id="p7" class="subbut"
onclick="handleFree(['p4','p5','p6','p7']);"
value="factorial(6)*coefficient(ff,6)" />
<div id="ansp7"><div></div></div>
</li>
</ul>
We derive some properties of the function f(x,t). First we compute
f(x+1,t)-f(x-t).
<ul>
<li>
<input type="submit" id="p8" class="subbut"
onclick="handleFree(['p4','p8']);"
value="g:=eval(f,x=x+1)-f" />
<div id="ansp8"><div></div></div>
</li>
</ul>
If we normalize g, we see that it has a particularly simple form.
<ul>
<li>
<input type="submit" id="p9" class="subbut"
onclick="handleFree(['p4','p8','p9']);"
value="normalize(g)" />
<div id="ansp9"><div></div></div>
</li>
</ul>
From this it follows that the nth coefficient in the Taylor expansion of
g(x,t) at t=0 is 1/(n-1)!*x^(n-1). If you want to check this, evaluate the
next expression.
<ul>
<li>
<input type="submit" id="p10" class="subbut"
onclick="handleFree(['p4','p5','p8','p9','p10']);"
value="taylor(g,t=0)" />
<div id="ansp10"><div></div></div>
</li>
</ul>
However, since
<pre>
g(x,t)=f(x+1,t)-f(x,t)
</pre>
it follows that the nth coefficient
is
<pre>
1/n! * (Bn(x+1) - Bn(x))
</pre>
Equating coefficients, we see that
<pre>
1/(n-1)! * x^(n-1) = 1/n! * (Bn(x+1) - Bn(x))
</pre>
and, therefore
<pre>
x^(n-1) = 1/n * (Bn(x+1) - Bn(x))
</pre>
Let's apply this formula repeatedly, letting x vary between two integers
a and b, with a<b:
<pre>
a^(n-1) = 1/n * (Bn(a+1) - Bn(a))
(a+1)^(n-1) = 1/n * (Bn(a+2) - Bn(a+1))
(a+2)^(n-1) = 1/n * (Bn(a+3) - Bn(a+2))
.
.
(b-1)^(n-1) = 1/n * (Bn(b) - Bn(b-1))
b^(n-1) = 1/n * (Bn(b+1) - Bn(b))
</pre>
When we add these equations we find that the sum of the left-hand sides is
<pre>
sum(m=a..b,m^(n-1))
</pre>
the sum of the (n-1)-st powers from a to b. The sum
of the right-hand sides is a "telescoping series". After cancellation, the
sum is simply
<pre>
1/n*(Bn(b+1)-Bn(a))
</pre>
Replacing n by n+1, we have shown that
<pre>
sum(m=a..b,m^n) = 1/(n+1)*(B<n+1>(b+1)-B<n+1>(a))
</pre>
Let's use this to obtain the formula for the sum of fourth powers.
First we obtain the Bernoulli polynomial B5.
<ul>
<li>
<input type="submit" id="p11" class="subbut"
onclick="handleFree(['p4','p5','p6','p11']);"
value="B5:=factorial(5)*coefficient(ff,5)" />
<div id="ansp11"><div></div></div>
</li>
</ul>
To find the sum of the first k 4th powers, we multiply 1/5 by
B5(k+1)-B5(1)
<ul>
<li>
<input type="submit" id="p12" class="subbut"
onclick="handleFree(['p4','p5','p6','p11','p12']);"
value="1/5*(eval(B5,x=k+1)-eval(B5,x=1))" />
<div id="ansp12"><div></div></div>
</li>
</ul>
This is the same formula that we obtained via sum(m^4,m=1..k)
<ul>
<li>
<input type="submit" id="p13" class="subbut"
onclick="handleFree(['p2','p13']);"
value="sum4" />
<div id="ansp13"><div></div></div>
</li>
</ul>
At this point you may want to do the same computation, but with an exponent
other than 4. For example, you might try to find a formula for the sum of
the first k 20th powers.
</body>
</html>
|