This file is indexed.

/usr/share/doc/axiom-doc/hypertex/calseries8.xhtml is in axiom-hypertex-data 20120501-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>

   html {
     background-color: #ECEA81;
   }

   body { 
     margin: 0px;
     padding: 0px;
   }

   div.command { 
     color:red;
   }

   div.center {
     color:blue;
   }

   div.reset {
     visibility:hidden;
   }

   div.mathml { 
     color:blue;
   }

   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }

   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }

   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
  <script type="text/javascript">
<![CDATA[
     // This is a hash table of the values we've evaluated.
     // This is indexed by a string argument. 
     // A value of 0 means we need to evaluate the expression
     // A value of 1 means we have evaluated the expression
   Evaled = new Array();
     // this says we should modify the page
   hiding = 'show';
     // and this is the id of the div tag to modify (defaulted)
   thediv = 'mathAns';
     // commandline will mark that its arg has been evaled so we don't repeat
   function commandline(arg) {
     Evaled[arg] = 0;  // remember that we have set this value
     thediv='ans'+arg; // mark where we should put the output
     var ans = document.getElementById(arg).value;
     return(ans);
   }
   // the function only modifies the page if when we're showing the
   // final result, otherwise it does nothing.
   function showanswer(mathString,indiv) {
     if (hiding == 'show') { // only do something useful if we're showing
       indiv = thediv;  // override the argument so we can change it
       var mystr = mathString.split("</div>");
       for (var i=0; i < mystr.length; i++) {
         if (mystr[i].indexOf("mathml") > 0) {
           var mymathstr = mystr[i].concat("</div>");
         }
       }
       // this turns the string into a dom fragment
       var mathRange = document.createRange();
       var mathBox=
               document.createElementNS('http://www.w3.org/1999/xhtml','div');
       mathRange.selectNodeContents(mathBox);
       var mymath = mathRange.createContextualFragment(mymathstr);
       mathBox.appendChild(mymath);
       // now we need to format it properly
       // and we stick the result into the requested div block as a child.
       var mathAns = document.getElementById(indiv);
       mathAns.removeChild(mathAns.firstChild);
       mathAns.appendChild(mathBox);
     }
   }
   // this function takes a list of expressions ids to evaluate
   // the list contains a list of "free" expression ids that need to
   // be evaluated before the last expression. 
   // For each expression id, if it has not yet been evaluated we
   // evaluate it "hidden" otherwise we can skip the expression.
   // Once we have evaluated all of the free expressions we can
   // evaluate the final expression and modify the page.
   function handleFree(arg) {
     var placename = arg.pop();      // last array val is real
     var mycnt = arg.length;         // remaining free vars
       // we handle all of the prerequired expressions quietly
     hiding = 'hide';
     for (var i=0; i<mycnt; i++) {   // for each of the free variables
       if (Evaled[arg[i]] == null) { // if we haven't evaled it
         Evaled[arg[i]] = 0;         // remember we evaled it
         makeRequest(arg[i]);        // initialize the free values
       }
     }
       // and now we start talking to the page again
     hiding = 'show';                // we want to show this
     thediv = 'ans'+placename;       // at this div id
     makeRequest(placename);         // and we eval and show it
   }
]]>
<![CDATA[
  function ignoreResponse() {}
  function resetvars() {
    http_request = new XMLHttpRequest();         
    http_request.open('POST', '127.0.0.1:8085', true);
    http_request.onreadystatechange = ignoreResponse;
    http_request.setRequestHeader('Content-Type', 'text/plain');
    http_request.send("command=)clear all");
    return(false);
  }
]]>
 function init() {
 }
 function makeRequest(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("command="+command);
   return(false);
 }
 function lispcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("lispcall="+command);
   return(false);
 }
 function showcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("showcall="+command);
   return(false);
 }
 function interpcall(arg) {
   http_request = new XMLHttpRequest();         
   var command = commandline(arg);
   //alert(command);
   http_request.open('POST', '127.0.0.1:8085', true);
   http_request.onreadystatechange = handleResponse;
   http_request.setRequestHeader('Content-Type', 'text/plain');
   http_request.send("interpcall="+command);
   return(false);
 }
 function handleResponse() {
  if (http_request.readyState == 4) {
   if (http_request.status == 200) {
    showanswer(http_request.responseText,'mathAns');
   } else
   {
     alert('There was a problem with the request.'+ http_request.statusText);
   }
  }
 }

  </script>
 </head>
 <body onload="resetvars();">
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
  <div align="center">Example: Bernoulli Polynomials and Sums of Powers</div>
  <hr/>
Axiom provides operations for computing definite and indefinite sums.

You can compute the sum of the first ten fourth powers by evaluating this.
This creates a list whose entries are m^4 as m ranges from 1 to 10, and then
computes the sum of the entries of that list.
<ul>
 <li>
  <input type="submit" id="p1" class="subbut" 
    onclick="makeRequest('p1');"
    value="reduce(+,[m^4 for m in 1..10])" />
  <div id="ansp1"><div></div></div>
 </li>
</ul>
You can also compute a formula for the sum of the first k fourth powers, 
where k is an unspecified positive integer.
<ul>
 <li>
  <input type="submit" id="p2" class="subbut" 
    onclick="makeRequest('p2');"
    value="sum4:=sum(m^4,m=1..k)" />
  <div id="ansp2"><div></div></div>
 </li>
</ul>
This formula is valid for any positive integer k. For instance, if we 
replace k by 10, we obtain the number we computed earlier.
<ul>
 <li>
  <input type="submit" id="p3" class="subbut" 
    onclick="handleFree(['p2','p3']);"
    value="eval(sum4,k=10)" />
  <div id="ansp3"><div></div></div>
 </li>
</ul>
You can compute a formula for the sum of the first k nth powers in a
similar fashion. Just replace the 4 in the definition of sum4 by any
expression not involving k. Axiom computes these formulas using Bernoulli 
polynomials; we use the rest of this section to describe this method.

First consider this function of t and x.
<ul>
 <li>
  <input type="submit" id="p4" class="subbut" 
    onclick="makeRequest('p4');"
    value="f:=t*exp(x*t)/(exp(t)-1)" />
  <div id="ansp4"><div></div></div>
 </li>
</ul>
Since the expressions involved get quite large, we tell Axiom to show us only
terms of degree up to 5.
<ul>
 <li>
  <input type="submit" id="p5" class="noresult" 
    onclick="makeRequest('p5');"
    value=")set streams calculate 5" />
  <div id="ansp5"><div></div></div>
 </li>
</ul>
If we look at the Taylor expansion of f(x,t) about t=0, we see that the 
coefficients of the powers of t are polynomials in x.
<ul>
 <li>
  <input type="submit" id="p6" class="subbut" 
    onclick="handleFree(['p4','p5','p6']);"
    value="ff:=taylor(f,t=0)" />
  <div id="ansp6"><div></div></div>
 </li>
</ul>
In fact, the nth coefficient in this series is essentiall the nth Bernoulli
polynomial: the nth coefficient of the series is 1/n!*Bn(x), where Bn(x) is
the nth Bernoulli polynomial. Thus, to obtain the nth Bernoulli polynomial,
we multiply the nth coefficient of the series ff by n!. For example, the
sixth Bernoulli polynomial is this.
<ul>
 <li>
  <input type="submit" id="p7" class="subbut" 
    onclick="handleFree(['p4','p5','p6','p7']);"
    value="factorial(6)*coefficient(ff,6)" />
  <div id="ansp7"><div></div></div>
 </li>
</ul>
We derive some properties of the function f(x,t). First we compute
f(x+1,t)-f(x-t).
<ul>
 <li>
  <input type="submit" id="p8" class="subbut" 
    onclick="handleFree(['p4','p8']);"
    value="g:=eval(f,x=x+1)-f" />
  <div id="ansp8"><div></div></div>
 </li>
</ul>
If we normalize g, we see that it has a particularly simple form.
<ul>
 <li>
  <input type="submit" id="p9" class="subbut" 
    onclick="handleFree(['p4','p8','p9']);"
    value="normalize(g)" />
  <div id="ansp9"><div></div></div>
 </li>
</ul>
From this it follows that the nth coefficient in the Taylor expansion of
g(x,t) at t=0 is 1/(n-1)!*x^(n-1). If you want to check this, evaluate the
next expression.
<ul>
 <li>
  <input type="submit" id="p10" class="subbut" 
    onclick="handleFree(['p4','p5','p8','p9','p10']);"
    value="taylor(g,t=0)" />
  <div id="ansp10"><div></div></div>
 </li>
</ul>
However, since 
<pre>
  g(x,t)=f(x+1,t)-f(x,t)
</pre> 
it follows that the nth coefficient
is 
<pre>
   1/n! * (Bn(x+1) - Bn(x))
</pre> 
Equating coefficients, we see that 
<pre>
   1/(n-1)! * x^(n-1) = 1/n! * (Bn(x+1) - Bn(x))
</pre>
and, therefore
<pre>
   x^(n-1) = 1/n * (Bn(x+1) - Bn(x))
</pre>
Let's apply this formula repeatedly, letting x vary between two integers
a and b, with a&#60;b:
<pre>
       a^(n-1) = 1/n * (Bn(a+1) - Bn(a))
   (a+1)^(n-1) = 1/n * (Bn(a+2) - Bn(a+1))
   (a+2)^(n-1) = 1/n * (Bn(a+3) - Bn(a+2))
               .
               .
   (b-1)^(n-1) = 1/n * (Bn(b)   - Bn(b-1))
       b^(n-1) = 1/n * (Bn(b+1) - Bn(b))
</pre>
When we add these equations we find that the sum of the left-hand sides is
<pre>
   sum(m=a..b,m^(n-1)) 
</pre>
the sum of the (n-1)-st powers from a to b. The sum
of the right-hand sides is a "telescoping series". After cancellation, the
sum is simply 
<pre>
   1/n*(Bn(b+1)-Bn(a))
</pre>

Replacing n by n+1, we have shown that
<pre>
   sum(m=a..b,m^n) = 1/(n+1)*(B&#60;n+1>(b+1)-B&#60;n+1>(a))
</pre>

Let's use this to obtain the formula for the sum of fourth powers. 
First we obtain the Bernoulli polynomial B5.
<ul>
 <li>
  <input type="submit" id="p11" class="subbut" 
    onclick="handleFree(['p4','p5','p6','p11']);"
    value="B5:=factorial(5)*coefficient(ff,5)" />
  <div id="ansp11"><div></div></div>
 </li>
</ul>
To find the sum of the first k 4th powers, we multiply 1/5 by 
B5(k+1)-B5(1)
<ul>
 <li>
  <input type="submit" id="p12" class="subbut" 
    onclick="handleFree(['p4','p5','p6','p11','p12']);"
    value="1/5*(eval(B5,x=k+1)-eval(B5,x=1))" />
  <div id="ansp12"><div></div></div>
 </li>
</ul>
This is the same formula that we obtained via sum(m^4,m=1..k)
<ul>
 <li>
  <input type="submit" id="p13" class="subbut" 
    onclick="handleFree(['p2','p13']);"
    value="sum4" />
  <div id="ansp13"><div></div></div>
 </li>
</ul>
At this point you may want to do the same computation, but with an exponent
other than 4. For example, you might try to find a formula for the sum of
the first k 20th powers.
 </body>
</html>