/usr/share/agda-stdlib/Relation/Binary/Sum.agda is in agda-stdlib 0.7-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Sums of binary relations
------------------------------------------------------------------------
module Relation.Binary.Sum where
open import Data.Sum as Sum
open import Data.Product
open import Data.Unit using (⊤)
open import Data.Empty
open import Function
open import Function.Equality as F using (_⟶_; _⟨$⟩_)
open import Function.Equivalence as Eq
using (Equivalence; _⇔_; module Equivalence)
open import Function.Injection as Inj
using (Injection; _↣_; module Injection)
open import Function.Inverse as Inv
using (Inverse; _↔_; module Inverse)
open import Function.LeftInverse as LeftInv
using (LeftInverse; _↞_; module LeftInverse)
open import Function.Related
open import Function.Surjection as Surj
using (Surjection; _↠_; module Surjection)
open import Level
open import Relation.Nullary
open import Relation.Binary
import Relation.Binary.PropositionalEquality as P
module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} where
----------------------------------------------------------------------
-- Sums of relations
infixr 1 _⊎-Rel_ _⊎-<_
-- Generalised sum.
data ⊎ʳ {ℓ₁ ℓ₂} (P : Set) (_∼₁_ : Rel A₁ ℓ₁) (_∼₂_ : Rel A₂ ℓ₂) :
A₁ ⊎ A₂ → A₁ ⊎ A₂ → Set (a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where
₁∼₂ : ∀ {x y} (p : P) → ⊎ʳ P _∼₁_ _∼₂_ (inj₁ x) (inj₂ y)
₁∼₁ : ∀ {x y} (x∼₁y : x ∼₁ y) → ⊎ʳ P _∼₁_ _∼₂_ (inj₁ x) (inj₁ y)
₂∼₂ : ∀ {x y} (x∼₂y : x ∼₂ y) → ⊎ʳ P _∼₁_ _∼₂_ (inj₂ x) (inj₂ y)
-- Pointwise sum.
_⊎-Rel_ : ∀ {ℓ₁ ℓ₂} → Rel A₁ ℓ₁ → Rel A₂ ℓ₂ → Rel (A₁ ⊎ A₂) _
_⊎-Rel_ = ⊎ʳ ⊥
-- All things to the left are "smaller than" all things to the
-- right.
_⊎-<_ : ∀ {ℓ₁ ℓ₂} → Rel A₁ ℓ₁ → Rel A₂ ℓ₂ → Rel (A₁ ⊎ A₂) _
_⊎-<_ = ⊎ʳ ⊤
----------------------------------------------------------------------
-- Helpers
private
₁≁₂ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
∀ {x y} → ¬ (inj₁ x ⟨ ∼₁ ⊎-Rel ∼₂ ⟩ inj₂ y)
₁≁₂ (₁∼₂ ())
drop-inj₁ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
∀ {P x y} → inj₁ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩ inj₁ y → ∼₁ x y
drop-inj₁ (₁∼₁ x∼y) = x∼y
drop-inj₂ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
∀ {P x y} → inj₂ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩ inj₂ y → ∼₂ x y
drop-inj₂ (₂∼₂ x∼y) = x∼y
----------------------------------------------------------------------
-- Some properties which are preserved by the relation formers above
_⊎-reflexive_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {∼₂ : Rel A₂ ℓ₂′} →
≈₁ ⇒ ∼₁ → ≈₂ ⇒ ∼₂ →
∀ {P} → (≈₁ ⊎-Rel ≈₂) ⇒ (⊎ʳ P ∼₁ ∼₂)
refl₁ ⊎-reflexive refl₂ = refl
where
refl : (_ ⊎-Rel _) ⇒ (⊎ʳ _ _ _)
refl (₁∼₁ x₁≈y₁) = ₁∼₁ (refl₁ x₁≈y₁)
refl (₂∼₂ x₂≈y₂) = ₂∼₂ (refl₂ x₂≈y₂)
refl (₁∼₂ ())
_⊎-refl_ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
Reflexive ∼₁ → Reflexive ∼₂ → Reflexive (∼₁ ⊎-Rel ∼₂)
refl₁ ⊎-refl refl₂ = refl
where
refl : Reflexive (_ ⊎-Rel _)
refl {x = inj₁ _} = ₁∼₁ refl₁
refl {x = inj₂ _} = ₂∼₂ refl₂
_⊎-irreflexive_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
Irreflexive ≈₁ <₁ → Irreflexive ≈₂ <₂ →
∀ {P} → Irreflexive (≈₁ ⊎-Rel ≈₂) (⊎ʳ P <₁ <₂)
irrefl₁ ⊎-irreflexive irrefl₂ = irrefl
where
irrefl : Irreflexive (_ ⊎-Rel _) (⊎ʳ _ _ _)
irrefl (₁∼₁ x₁≈y₁) (₁∼₁ x₁<y₁) = irrefl₁ x₁≈y₁ x₁<y₁
irrefl (₂∼₂ x₂≈y₂) (₂∼₂ x₂<y₂) = irrefl₂ x₂≈y₂ x₂<y₂
irrefl (₁∼₂ ()) _
_⊎-symmetric_ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
Symmetric ∼₁ → Symmetric ∼₂ → Symmetric (∼₁ ⊎-Rel ∼₂)
sym₁ ⊎-symmetric sym₂ = sym
where
sym : Symmetric (_ ⊎-Rel _)
sym (₁∼₁ x₁∼y₁) = ₁∼₁ (sym₁ x₁∼y₁)
sym (₂∼₂ x₂∼y₂) = ₂∼₂ (sym₂ x₂∼y₂)
sym (₁∼₂ ())
_⊎-transitive_ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
Transitive ∼₁ → Transitive ∼₂ →
∀ {P} → Transitive (⊎ʳ P ∼₁ ∼₂)
trans₁ ⊎-transitive trans₂ = trans
where
trans : Transitive (⊎ʳ _ _ _)
trans (₁∼₁ x∼y) (₁∼₁ y∼z) = ₁∼₁ (trans₁ x∼y y∼z)
trans (₂∼₂ x∼y) (₂∼₂ y∼z) = ₂∼₂ (trans₂ x∼y y∼z)
trans (₁∼₂ p) (₂∼₂ _) = ₁∼₂ p
trans (₁∼₁ _) (₁∼₂ p) = ₁∼₂ p
_⊎-antisymmetric_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
Antisymmetric ≈₁ ≤₁ → Antisymmetric ≈₂ ≤₂ →
∀ {P} → Antisymmetric (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ≤₁ ≤₂)
antisym₁ ⊎-antisymmetric antisym₂ = antisym
where
antisym : Antisymmetric (_ ⊎-Rel _) (⊎ʳ _ _ _)
antisym (₁∼₁ x≤y) (₁∼₁ y≤x) = ₁∼₁ (antisym₁ x≤y y≤x)
antisym (₂∼₂ x≤y) (₂∼₂ y≤x) = ₂∼₂ (antisym₂ x≤y y≤x)
antisym (₁∼₂ _) ()
_⊎-asymmetric_ : ∀ {ℓ₁ ℓ₂} {<₁ : Rel A₁ ℓ₁} {<₂ : Rel A₂ ℓ₂} →
Asymmetric <₁ → Asymmetric <₂ →
∀ {P} → Asymmetric (⊎ʳ P <₁ <₂)
asym₁ ⊎-asymmetric asym₂ = asym
where
asym : Asymmetric (⊎ʳ _ _ _)
asym (₁∼₁ x<y) (₁∼₁ y<x) = asym₁ x<y y<x
asym (₂∼₂ x<y) (₂∼₂ y<x) = asym₂ x<y y<x
asym (₁∼₂ _) ()
_⊎-≈-respects₂_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {∼₂ : Rel A₂ ℓ₂′} →
∼₁ Respects₂ ≈₁ → ∼₂ Respects₂ ≈₂ →
∀ {P} → (⊎ʳ P ∼₁ ∼₂) Respects₂ (≈₁ ⊎-Rel ≈₂)
_⊎-≈-respects₂_ {≈₁ = ≈₁} {∼₁ = ∼₁}{≈₂ = ≈₂} {∼₂ = ∼₂}
resp₁ resp₂ {P} =
(λ {_ _ _} → resp¹) ,
(λ {_ _ _} → resp²)
where
resp¹ : ∀ {x} → ((⊎ʳ P ∼₁ ∼₂) x) Respects (≈₁ ⊎-Rel ≈₂)
resp¹ (₁∼₁ y≈y') (₁∼₁ x∼y) = ₁∼₁ (proj₁ resp₁ y≈y' x∼y)
resp¹ (₂∼₂ y≈y') (₂∼₂ x∼y) = ₂∼₂ (proj₁ resp₂ y≈y' x∼y)
resp¹ (₂∼₂ y≈y') (₁∼₂ p) = (₁∼₂ p)
resp¹ (₁∼₂ ()) _
resp² : ∀ {y}
→ (flip (⊎ʳ P ∼₁ ∼₂) y) Respects (≈₁ ⊎-Rel ≈₂)
resp² (₁∼₁ x≈x') (₁∼₁ x∼y) = ₁∼₁ (proj₂ resp₁ x≈x' x∼y)
resp² (₂∼₂ x≈x') (₂∼₂ x∼y) = ₂∼₂ (proj₂ resp₂ x≈x' x∼y)
resp² (₁∼₁ x≈x') (₁∼₂ p) = (₁∼₂ p)
resp² (₁∼₂ ()) _
_⊎-substitutive_ : ∀ {ℓ₁ ℓ₂ ℓ₃} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
Substitutive ∼₁ ℓ₃ → Substitutive ∼₂ ℓ₃ →
Substitutive (∼₁ ⊎-Rel ∼₂) ℓ₃
subst₁ ⊎-substitutive subst₂ = subst
where
subst : Substitutive (_ ⊎-Rel _) _
subst P (₁∼₁ x∼y) Px = subst₁ (λ z → P (inj₁ z)) x∼y Px
subst P (₂∼₂ x∼y) Px = subst₂ (λ z → P (inj₂ z)) x∼y Px
subst P (₁∼₂ ()) Px
⊎-decidable : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
Decidable ∼₁ → Decidable ∼₂ →
∀ {P} → (∀ {x y} → Dec (inj₁ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩ inj₂ y)) →
Decidable (⊎ʳ P ∼₁ ∼₂)
⊎-decidable {∼₁ = ∼₁} {∼₂ = ∼₂} dec₁ dec₂ {P} dec₁₂ = dec
where
dec : Decidable (⊎ʳ P ∼₁ ∼₂)
dec (inj₁ x) (inj₁ y) with dec₁ x y
... | yes x∼y = yes (₁∼₁ x∼y)
... | no x≁y = no (x≁y ∘ drop-inj₁)
dec (inj₂ x) (inj₂ y) with dec₂ x y
... | yes x∼y = yes (₂∼₂ x∼y)
... | no x≁y = no (x≁y ∘ drop-inj₂)
dec (inj₁ x) (inj₂ y) = dec₁₂
dec (inj₂ x) (inj₁ y) = no (λ())
_⊎-<-total_ : ∀ {ℓ₁ ℓ₂} {≤₁ : Rel A₁ ℓ₁} {≤₂ : Rel A₂ ℓ₂} →
Total ≤₁ → Total ≤₂ → Total (≤₁ ⊎-< ≤₂)
total₁ ⊎-<-total total₂ = total
where
total : Total (_ ⊎-< _)
total (inj₁ x) (inj₁ y) = Sum.map ₁∼₁ ₁∼₁ $ total₁ x y
total (inj₂ x) (inj₂ y) = Sum.map ₂∼₂ ₂∼₂ $ total₂ x y
total (inj₁ x) (inj₂ y) = inj₁ (₁∼₂ _)
total (inj₂ x) (inj₁ y) = inj₂ (₁∼₂ _)
_⊎-<-trichotomous_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
Trichotomous ≈₁ <₁ → Trichotomous ≈₂ <₂ →
Trichotomous (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂)
_⊎-<-trichotomous_ {≈₁ = ≈₁} {<₁ = <₁} {≈₂ = ≈₂} {<₂ = <₂}
tri₁ tri₂ = tri
where
tri : Trichotomous (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂)
tri (inj₁ x) (inj₂ y) = tri< (₁∼₂ _) ₁≁₂ (λ())
tri (inj₂ x) (inj₁ y) = tri> (λ()) (λ()) (₁∼₂ _)
tri (inj₁ x) (inj₁ y) with tri₁ x y
... | tri< x<y x≉y x≯y =
tri< (₁∼₁ x<y) (x≉y ∘ drop-inj₁) (x≯y ∘ drop-inj₁)
... | tri≈ x≮y x≈y x≯y =
tri≈ (x≮y ∘ drop-inj₁) (₁∼₁ x≈y) (x≯y ∘ drop-inj₁)
... | tri> x≮y x≉y x>y =
tri> (x≮y ∘ drop-inj₁) (x≉y ∘ drop-inj₁) (₁∼₁ x>y)
tri (inj₂ x) (inj₂ y) with tri₂ x y
... | tri< x<y x≉y x≯y =
tri< (₂∼₂ x<y) (x≉y ∘ drop-inj₂) (x≯y ∘ drop-inj₂)
... | tri≈ x≮y x≈y x≯y =
tri≈ (x≮y ∘ drop-inj₂) (₂∼₂ x≈y) (x≯y ∘ drop-inj₂)
... | tri> x≮y x≉y x>y =
tri> (x≮y ∘ drop-inj₂) (x≉y ∘ drop-inj₂) (₂∼₂ x>y)
----------------------------------------------------------------------
-- Some collections of properties which are preserved
_⊎-isEquivalence_ : ∀ {ℓ₁ ℓ₂} {≈₁ : Rel A₁ ℓ₁} {≈₂ : Rel A₂ ℓ₂} →
IsEquivalence ≈₁ → IsEquivalence ≈₂ →
IsEquivalence (≈₁ ⊎-Rel ≈₂)
eq₁ ⊎-isEquivalence eq₂ = record
{ refl = refl eq₁ ⊎-refl refl eq₂
; sym = sym eq₁ ⊎-symmetric sym eq₂
; trans = trans eq₁ ⊎-transitive trans eq₂
}
where open IsEquivalence
_⊎-isPreorder_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {∼₂ : Rel A₂ ℓ₂′} →
IsPreorder ≈₁ ∼₁ → IsPreorder ≈₂ ∼₂ →
∀ {P} → IsPreorder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ∼₁ ∼₂)
pre₁ ⊎-isPreorder pre₂ = record
{ isEquivalence = isEquivalence pre₁ ⊎-isEquivalence
isEquivalence pre₂
; reflexive = reflexive pre₁ ⊎-reflexive reflexive pre₂
; trans = trans pre₁ ⊎-transitive trans pre₂
}
where open IsPreorder
_⊎-isDecEquivalence_ : ∀ {ℓ₁ ℓ₂} {≈₁ : Rel A₁ ℓ₁} {≈₂ : Rel A₂ ℓ₂} →
IsDecEquivalence ≈₁ → IsDecEquivalence ≈₂ →
IsDecEquivalence (≈₁ ⊎-Rel ≈₂)
eq₁ ⊎-isDecEquivalence eq₂ = record
{ isEquivalence = isEquivalence eq₁ ⊎-isEquivalence
isEquivalence eq₂
; _≟_ = ⊎-decidable (_≟_ eq₁) (_≟_ eq₂) (no ₁≁₂)
}
where open IsDecEquivalence
_⊎-isPartialOrder_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
IsPartialOrder ≈₁ ≤₁ → IsPartialOrder ≈₂ ≤₂ →
∀ {P} → IsPartialOrder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ≤₁ ≤₂)
po₁ ⊎-isPartialOrder po₂ = record
{ isPreorder = isPreorder po₁ ⊎-isPreorder isPreorder po₂
; antisym = antisym po₁ ⊎-antisymmetric antisym po₂
}
where open IsPartialOrder
_⊎-isStrictPartialOrder_ :
∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
IsStrictPartialOrder ≈₁ <₁ → IsStrictPartialOrder ≈₂ <₂ →
∀ {P} → IsStrictPartialOrder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P <₁ <₂)
spo₁ ⊎-isStrictPartialOrder spo₂ = record
{ isEquivalence = isEquivalence spo₁ ⊎-isEquivalence
isEquivalence spo₂
; irrefl = irrefl spo₁ ⊎-irreflexive irrefl spo₂
; trans = trans spo₁ ⊎-transitive trans spo₂
; <-resp-≈ = <-resp-≈ spo₁ ⊎-≈-respects₂ <-resp-≈ spo₂
}
where open IsStrictPartialOrder
_⊎-<-isTotalOrder_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
IsTotalOrder ≈₁ ≤₁ → IsTotalOrder ≈₂ ≤₂ →
IsTotalOrder (≈₁ ⊎-Rel ≈₂) (≤₁ ⊎-< ≤₂)
to₁ ⊎-<-isTotalOrder to₂ = record
{ isPartialOrder = isPartialOrder to₁ ⊎-isPartialOrder
isPartialOrder to₂
; total = total to₁ ⊎-<-total total to₂
}
where open IsTotalOrder
_⊎-<-isDecTotalOrder_ :
∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
IsDecTotalOrder ≈₁ ≤₁ → IsDecTotalOrder ≈₂ ≤₂ →
IsDecTotalOrder (≈₁ ⊎-Rel ≈₂) (≤₁ ⊎-< ≤₂)
to₁ ⊎-<-isDecTotalOrder to₂ = record
{ isTotalOrder = isTotalOrder to₁ ⊎-<-isTotalOrder isTotalOrder to₂
; _≟_ = ⊎-decidable (_≟_ to₁) (_≟_ to₂) (no ₁≁₂)
; _≤?_ = ⊎-decidable (_≤?_ to₁) (_≤?_ to₂) (yes (₁∼₂ _))
}
where open IsDecTotalOrder
_⊎-<-isStrictTotalOrder_ :
∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
IsStrictTotalOrder ≈₁ <₁ → IsStrictTotalOrder ≈₂ <₂ →
IsStrictTotalOrder (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂)
sto₁ ⊎-<-isStrictTotalOrder sto₂ = record
{ isEquivalence = isEquivalence sto₁ ⊎-isEquivalence
isEquivalence sto₂
; trans = trans sto₁ ⊎-transitive trans sto₂
; compare = compare sto₁ ⊎-<-trichotomous compare sto₂
; <-resp-≈ = <-resp-≈ sto₁ ⊎-≈-respects₂ <-resp-≈ sto₂
}
where open IsStrictTotalOrder
------------------------------------------------------------------------
-- The game can be taken even further...
_⊎-setoid_ : ∀ {s₁ s₂ s₃ s₄} →
Setoid s₁ s₂ → Setoid s₃ s₄ → Setoid _ _
s₁ ⊎-setoid s₂ = record
{ isEquivalence = isEquivalence s₁ ⊎-isEquivalence isEquivalence s₂
} where open Setoid
_⊎-preorder_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
Preorder p₁ p₂ p₃ → Preorder p₄ p₅ p₆ → Preorder _ _ _
p₁ ⊎-preorder p₂ = record
{ _∼_ = _∼_ p₁ ⊎-Rel _∼_ p₂
; isPreorder = isPreorder p₁ ⊎-isPreorder isPreorder p₂
} where open Preorder
_⊎-decSetoid_ : ∀ {s₁ s₂ s₃ s₄} →
DecSetoid s₁ s₂ → DecSetoid s₃ s₄ → DecSetoid _ _
ds₁ ⊎-decSetoid ds₂ = record
{ isDecEquivalence = isDecEquivalence ds₁ ⊎-isDecEquivalence
isDecEquivalence ds₂
} where open DecSetoid
_⊎-poset_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
Poset p₁ p₂ p₃ → Poset p₄ p₅ p₆ → Poset _ _ _
po₁ ⊎-poset po₂ = record
{ _≤_ = _≤_ po₁ ⊎-Rel _≤_ po₂
; isPartialOrder = isPartialOrder po₁ ⊎-isPartialOrder
isPartialOrder po₂
} where open Poset
_⊎-<-poset_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
Poset p₁ p₂ p₃ → Poset p₄ p₅ p₆ → Poset _ _ _
po₁ ⊎-<-poset po₂ = record
{ _≤_ = _≤_ po₁ ⊎-< _≤_ po₂
; isPartialOrder = isPartialOrder po₁ ⊎-isPartialOrder
isPartialOrder po₂
} where open Poset
_⊎-<-strictPartialOrder_ :
∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
StrictPartialOrder p₁ p₂ p₃ → StrictPartialOrder p₄ p₅ p₆ →
StrictPartialOrder _ _ _
spo₁ ⊎-<-strictPartialOrder spo₂ = record
{ _<_ = _<_ spo₁ ⊎-< _<_ spo₂
; isStrictPartialOrder = isStrictPartialOrder spo₁
⊎-isStrictPartialOrder
isStrictPartialOrder spo₂
} where open StrictPartialOrder
_⊎-<-totalOrder_ :
∀ {t₁ t₂ t₃ t₄ t₅ t₆} →
TotalOrder t₁ t₂ t₃ → TotalOrder t₄ t₅ t₆ → TotalOrder _ _ _
to₁ ⊎-<-totalOrder to₂ = record
{ isTotalOrder = isTotalOrder to₁ ⊎-<-isTotalOrder isTotalOrder to₂
} where open TotalOrder
_⊎-<-decTotalOrder_ :
∀ {t₁ t₂ t₃ t₄ t₅ t₆} →
DecTotalOrder t₁ t₂ t₃ → DecTotalOrder t₄ t₅ t₆ → DecTotalOrder _ _ _
to₁ ⊎-<-decTotalOrder to₂ = record
{ isDecTotalOrder = isDecTotalOrder to₁ ⊎-<-isDecTotalOrder
isDecTotalOrder to₂
} where open DecTotalOrder
_⊎-<-strictTotalOrder_ :
∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
StrictTotalOrder p₁ p₂ p₃ → StrictTotalOrder p₄ p₅ p₆ →
StrictTotalOrder _ _ _
sto₁ ⊎-<-strictTotalOrder sto₂ = record
{ _<_ = _<_ sto₁ ⊎-< _<_ sto₂
; isStrictTotalOrder = isStrictTotalOrder sto₁
⊎-<-isStrictTotalOrder
isStrictTotalOrder sto₂
} where open StrictTotalOrder
------------------------------------------------------------------------
-- Some properties related to "relatedness"
⊎-Rel↔≡ : ∀ {a b} (A : Set a) (B : Set b) →
Inverse (P.setoid A ⊎-setoid P.setoid B) (P.setoid (A ⊎ B))
⊎-Rel↔≡ _ _ = record
{ to = record { _⟨$⟩_ = id; cong = to-cong }
; from = record { _⟨$⟩_ = id; cong = from-cong }
; inverse-of = record
{ left-inverse-of = λ _ → P.refl ⊎-refl P.refl
; right-inverse-of = λ _ → P.refl
}
}
where
to-cong : (P._≡_ ⊎-Rel P._≡_) ⇒ P._≡_
to-cong (₁∼₂ ())
to-cong (₁∼₁ P.refl) = P.refl
to-cong (₂∼₂ P.refl) = P.refl
from-cong : P._≡_ ⇒ (P._≡_ ⊎-Rel P._≡_)
from-cong P.refl = P.refl ⊎-refl P.refl
_⊎-⟶_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
A ⟶ B → C ⟶ D → (A ⊎-setoid C) ⟶ (B ⊎-setoid D)
_⊎-⟶_ {A = A} {B} {C} {D} f g = record
{ _⟨$⟩_ = fg
; cong = fg-cong
}
where
open Setoid (A ⊎-setoid C) using () renaming (_≈_ to _≈AC_)
open Setoid (B ⊎-setoid D) using () renaming (_≈_ to _≈BD_)
fg = Sum.map (_⟨$⟩_ f) (_⟨$⟩_ g)
fg-cong : _≈AC_ =[ fg ]⇒ _≈BD_
fg-cong (₁∼₂ ())
fg-cong (₁∼₁ x∼₁y) = ₁∼₁ $ F.cong f x∼₁y
fg-cong (₂∼₂ x∼₂y) = ₂∼₂ $ F.cong g x∼₂y
_⊎-equivalence_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Equivalence A B → Equivalence C D →
Equivalence (A ⊎-setoid C) (B ⊎-setoid D)
A⇔B ⊎-equivalence C⇔D = record
{ to = to A⇔B ⊎-⟶ to C⇔D
; from = from A⇔B ⊎-⟶ from C⇔D
} where open Equivalence
_⊎-⇔_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ⇔ B → C ⇔ D → (A ⊎ C) ⇔ (B ⊎ D)
_⊎-⇔_ {A = A} {B} {C} {D} A⇔B C⇔D =
Inverse.equivalence (⊎-Rel↔≡ B D) ⟨∘⟩
A⇔B ⊎-equivalence C⇔D ⟨∘⟩
Eq.sym (Inverse.equivalence (⊎-Rel↔≡ A C))
where open Eq using () renaming (_∘_ to _⟨∘⟩_)
_⊎-injection_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Injection A B → Injection C D →
Injection (A ⊎-setoid C) (B ⊎-setoid D)
_⊎-injection_ {A = A} {B} {C} {D} A↣B C↣D = record
{ to = to A↣B ⊎-⟶ to C↣D
; injective = inj _ _
}
where
open Injection
open Setoid (A ⊎-setoid C) using () renaming (_≈_ to _≈AC_)
open Setoid (B ⊎-setoid D) using () renaming (_≈_ to _≈BD_)
inj : ∀ x y →
(to A↣B ⊎-⟶ to C↣D) ⟨$⟩ x ≈BD (to A↣B ⊎-⟶ to C↣D) ⟨$⟩ y →
x ≈AC y
inj (inj₁ x) (inj₁ y) (₁∼₁ x∼₁y) = ₁∼₁ (injective A↣B x∼₁y)
inj (inj₂ x) (inj₂ y) (₂∼₂ x∼₂y) = ₂∼₂ (injective C↣D x∼₂y)
inj (inj₁ x) (inj₂ y) (₁∼₂ ())
inj (inj₂ x) (inj₁ y) ()
_⊎-↣_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↣ B → C ↣ D → (A ⊎ C) ↣ (B ⊎ D)
_⊎-↣_ {A = A} {B} {C} {D} A↣B C↣D =
Inverse.injection (⊎-Rel↔≡ B D) ⟨∘⟩
A↣B ⊎-injection C↣D ⟨∘⟩
Inverse.injection (Inv.sym (⊎-Rel↔≡ A C))
where open Inj using () renaming (_∘_ to _⟨∘⟩_)
_⊎-left-inverse_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
LeftInverse A B → LeftInverse C D →
LeftInverse (A ⊎-setoid C) (B ⊎-setoid D)
A↞B ⊎-left-inverse C↞D = record
{ to = Equivalence.to eq
; from = Equivalence.from eq
; left-inverse-of = [ ₁∼₁ ∘ left-inverse-of A↞B
, ₂∼₂ ∘ left-inverse-of C↞D
]
}
where
open LeftInverse
eq = LeftInverse.equivalence A↞B ⊎-equivalence
LeftInverse.equivalence C↞D
_⊎-↞_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↞ B → C ↞ D → (A ⊎ C) ↞ (B ⊎ D)
_⊎-↞_ {A = A} {B} {C} {D} A↞B C↞D =
Inverse.left-inverse (⊎-Rel↔≡ B D) ⟨∘⟩
A↞B ⊎-left-inverse C↞D ⟨∘⟩
Inverse.left-inverse (Inv.sym (⊎-Rel↔≡ A C))
where open LeftInv using () renaming (_∘_ to _⟨∘⟩_)
_⊎-surjection_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Surjection A B → Surjection C D →
Surjection (A ⊎-setoid C) (B ⊎-setoid D)
A↠B ⊎-surjection C↠D = record
{ to = LeftInverse.from inv
; surjective = record
{ from = LeftInverse.to inv
; right-inverse-of = LeftInverse.left-inverse-of inv
}
}
where
open Surjection
inv = right-inverse A↠B ⊎-left-inverse right-inverse C↠D
_⊎-↠_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↠ B → C ↠ D → (A ⊎ C) ↠ (B ⊎ D)
_⊎-↠_ {A = A} {B} {C} {D} A↠B C↠D =
Inverse.surjection (⊎-Rel↔≡ B D) ⟨∘⟩
A↠B ⊎-surjection C↠D ⟨∘⟩
Inverse.surjection (Inv.sym (⊎-Rel↔≡ A C))
where open Surj using () renaming (_∘_ to _⟨∘⟩_)
_⊎-inverse_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Inverse A B → Inverse C D → Inverse (A ⊎-setoid C) (B ⊎-setoid D)
A↔B ⊎-inverse C↔D = record
{ to = Surjection.to surj
; from = Surjection.from surj
; inverse-of = record
{ left-inverse-of = LeftInverse.left-inverse-of inv
; right-inverse-of = Surjection.right-inverse-of surj
}
}
where
open Inverse
surj = Inverse.surjection A↔B ⊎-surjection
Inverse.surjection C↔D
inv = Inverse.left-inverse A↔B ⊎-left-inverse
Inverse.left-inverse C↔D
_⊎-↔_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↔ B → C ↔ D → (A ⊎ C) ↔ (B ⊎ D)
_⊎-↔_ {A = A} {B} {C} {D} A↔B C↔D =
⊎-Rel↔≡ B D ⟨∘⟩ A↔B ⊎-inverse C↔D ⟨∘⟩ Inv.sym (⊎-Rel↔≡ A C)
where open Inv using () renaming (_∘_ to _⟨∘⟩_)
_⊎-cong_ : ∀ {k a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ∼[ k ] B → C ∼[ k ] D → (A ⊎ C) ∼[ k ] (B ⊎ D)
_⊎-cong_ {implication} = Sum.map
_⊎-cong_ {reverse-implication} = λ f g → lam (Sum.map (app-← f) (app-← g))
_⊎-cong_ {equivalence} = _⊎-⇔_
_⊎-cong_ {injection} = _⊎-↣_
_⊎-cong_ {reverse-injection} = λ f g → lam (app-↢ f ⊎-↣ app-↢ g)
_⊎-cong_ {left-inverse} = _⊎-↞_
_⊎-cong_ {surjection} = _⊎-↠_
_⊎-cong_ {bijection} = _⊎-↔_
|