This file is indexed.

/usr/share/agda-stdlib/Relation/Binary/Sum.agda is in agda-stdlib 0.7-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
------------------------------------------------------------------------
-- The Agda standard library
--
-- Sums of binary relations
------------------------------------------------------------------------

module Relation.Binary.Sum where

open import Data.Sum as Sum
open import Data.Product
open import Data.Unit using (⊤)
open import Data.Empty
open import Function
open import Function.Equality as F using (_⟶_; _⟨$⟩_)
open import Function.Equivalence as Eq
  using (Equivalence; _⇔_; module Equivalence)
open import Function.Injection as Inj
  using (Injection; _↣_; module Injection)
open import Function.Inverse as Inv
  using (Inverse; _↔_; module Inverse)
open import Function.LeftInverse as LeftInv
  using (LeftInverse; _↞_; module LeftInverse)
open import Function.Related
open import Function.Surjection as Surj
  using (Surjection; _↠_; module Surjection)
open import Level
open import Relation.Nullary
open import Relation.Binary
import Relation.Binary.PropositionalEquality as P

module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} where

  ----------------------------------------------------------------------
  -- Sums of relations

  infixr 1 _⊎-Rel_ _⊎-<_

  -- Generalised sum.

  data ⊎ʳ {ℓ₁ ℓ₂} (P : Set) (_∼₁_ : Rel A₁ ℓ₁) (_∼₂_ : Rel A₂ ℓ₂) :
          A₁ ⊎ A₂ → A₁ ⊎ A₂ → Set (a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where
    ₁∼₂ : ∀ {x y} (p : P)         → ⊎ʳ P _∼₁_ _∼₂_ (inj₁ x) (inj₂ y)
    ₁∼₁ : ∀ {x y} (x∼₁y : x ∼₁ y) → ⊎ʳ P _∼₁_ _∼₂_ (inj₁ x) (inj₁ y)
    ₂∼₂ : ∀ {x y} (x∼₂y : x ∼₂ y) → ⊎ʳ P _∼₁_ _∼₂_ (inj₂ x) (inj₂ y)

  -- Pointwise sum.

  _⊎-Rel_ : ∀ {ℓ₁ ℓ₂} → Rel A₁ ℓ₁ → Rel A₂ ℓ₂ → Rel (A₁ ⊎ A₂) _
  _⊎-Rel_ = ⊎ʳ ⊥

  -- All things to the left are "smaller than" all things to the
  -- right.

  _⊎-<_ : ∀ {ℓ₁ ℓ₂} → Rel A₁ ℓ₁ → Rel A₂ ℓ₂ → Rel (A₁ ⊎ A₂) _
  _⊎-<_ = ⊎ʳ ⊤

  ----------------------------------------------------------------------
  -- Helpers

  private

    ₁≁₂ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
          ∀ {x y} → ¬ (inj₁ x ⟨ ∼₁ ⊎-Rel ∼₂ ⟩ inj₂ y)
    ₁≁₂ (₁∼₂ ())

    drop-inj₁ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
                ∀ {P x y} → inj₁ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩ inj₁ y → ∼₁ x y
    drop-inj₁ (₁∼₁ x∼y) = x∼y

    drop-inj₂ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
                ∀ {P x y} → inj₂ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩ inj₂ y → ∼₂ x y
    drop-inj₂ (₂∼₂ x∼y) = x∼y

  ----------------------------------------------------------------------
  -- Some properties which are preserved by the relation formers above

  _⊎-reflexive_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₁′}
                    {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {∼₂ : Rel A₂ ℓ₂′} →
                  ≈₁ ⇒ ∼₁ → ≈₂ ⇒ ∼₂ →
                  ∀ {P} → (≈₁ ⊎-Rel ≈₂) ⇒ (⊎ʳ P ∼₁ ∼₂)
  refl₁ ⊎-reflexive refl₂ = refl
    where
    refl : (_ ⊎-Rel _) ⇒ (⊎ʳ _ _ _)
    refl (₁∼₁ x₁≈y₁) = ₁∼₁ (refl₁ x₁≈y₁)
    refl (₂∼₂ x₂≈y₂) = ₂∼₂ (refl₂ x₂≈y₂)
    refl (₁∼₂ ())

  _⊎-refl_ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
             Reflexive ∼₁ → Reflexive ∼₂ → Reflexive (∼₁ ⊎-Rel ∼₂)
  refl₁ ⊎-refl refl₂ = refl
    where
    refl : Reflexive (_ ⊎-Rel _)
    refl {x = inj₁ _} = ₁∼₁ refl₁
    refl {x = inj₂ _} = ₂∼₂ refl₂

  _⊎-irreflexive_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
                      {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
                    Irreflexive ≈₁ <₁ → Irreflexive ≈₂ <₂ →
                    ∀ {P} → Irreflexive (≈₁ ⊎-Rel ≈₂) (⊎ʳ P <₁ <₂)
  irrefl₁ ⊎-irreflexive irrefl₂ = irrefl
    where
    irrefl : Irreflexive (_ ⊎-Rel _) (⊎ʳ _ _ _)
    irrefl (₁∼₁ x₁≈y₁) (₁∼₁ x₁<y₁) = irrefl₁ x₁≈y₁ x₁<y₁
    irrefl (₂∼₂ x₂≈y₂) (₂∼₂ x₂<y₂) = irrefl₂ x₂≈y₂ x₂<y₂
    irrefl (₁∼₂ ())    _

  _⊎-symmetric_ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
                  Symmetric ∼₁ → Symmetric ∼₂ → Symmetric (∼₁ ⊎-Rel ∼₂)
  sym₁ ⊎-symmetric sym₂ = sym
    where
    sym : Symmetric (_ ⊎-Rel _)
    sym (₁∼₁ x₁∼y₁) = ₁∼₁ (sym₁ x₁∼y₁)
    sym (₂∼₂ x₂∼y₂) = ₂∼₂ (sym₂ x₂∼y₂)
    sym (₁∼₂ ())

  _⊎-transitive_ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
                   Transitive ∼₁ → Transitive ∼₂ →
                   ∀ {P} → Transitive (⊎ʳ P ∼₁ ∼₂)
  trans₁ ⊎-transitive trans₂ = trans
    where
    trans : Transitive (⊎ʳ _ _ _)
    trans (₁∼₁ x∼y) (₁∼₁ y∼z) = ₁∼₁ (trans₁ x∼y y∼z)
    trans (₂∼₂ x∼y) (₂∼₂ y∼z) = ₂∼₂ (trans₂ x∼y y∼z)
    trans (₁∼₂ p)   (₂∼₂ _)     = ₁∼₂ p
    trans (₁∼₁ _)   (₁∼₂ p)     = ₁∼₂ p

  _⊎-antisymmetric_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
                        {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
                      Antisymmetric ≈₁ ≤₁ → Antisymmetric ≈₂ ≤₂ →
                      ∀ {P} → Antisymmetric (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ≤₁ ≤₂)
  antisym₁ ⊎-antisymmetric antisym₂ = antisym
    where
    antisym : Antisymmetric (_ ⊎-Rel _) (⊎ʳ _ _ _)
    antisym (₁∼₁ x≤y) (₁∼₁ y≤x) = ₁∼₁ (antisym₁ x≤y y≤x)
    antisym (₂∼₂ x≤y) (₂∼₂ y≤x) = ₂∼₂ (antisym₂ x≤y y≤x)
    antisym (₁∼₂ _)   ()

  _⊎-asymmetric_ : ∀ {ℓ₁ ℓ₂} {<₁ : Rel A₁ ℓ₁} {<₂ : Rel A₂ ℓ₂} →
                   Asymmetric <₁ → Asymmetric <₂ →
                   ∀ {P} → Asymmetric (⊎ʳ P <₁ <₂)
  asym₁ ⊎-asymmetric asym₂ = asym
    where
    asym : Asymmetric (⊎ʳ _ _ _)
    asym (₁∼₁ x<y) (₁∼₁ y<x) = asym₁ x<y y<x
    asym (₂∼₂ x<y) (₂∼₂ y<x) = asym₂ x<y y<x
    asym (₁∼₂ _)   ()

  _⊎-≈-respects₂_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₁′}
                      {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {∼₂ : Rel A₂ ℓ₂′} →
                    ∼₁ Respects₂ ≈₁ → ∼₂ Respects₂ ≈₂ →
                    ∀ {P} → (⊎ʳ P ∼₁ ∼₂) Respects₂ (≈₁ ⊎-Rel ≈₂)
  _⊎-≈-respects₂_ {≈₁ = ≈₁} {∼₁ = ∼₁}{≈₂ = ≈₂} {∼₂ = ∼₂}
                  resp₁ resp₂ {P} =
    (λ {_ _ _} → resp¹) ,
    (λ {_ _ _} → resp²)
    where
    resp¹ : ∀ {x} → ((⊎ʳ P ∼₁ ∼₂) x) Respects (≈₁ ⊎-Rel ≈₂)
    resp¹ (₁∼₁ y≈y') (₁∼₁ x∼y) = ₁∼₁ (proj₁ resp₁ y≈y' x∼y)
    resp¹ (₂∼₂ y≈y') (₂∼₂ x∼y) = ₂∼₂ (proj₁ resp₂ y≈y' x∼y)
    resp¹ (₂∼₂ y≈y') (₁∼₂ p)   = (₁∼₂ p)
    resp¹ (₁∼₂ ())   _

    resp² :  ∀ {y}
          → (flip (⊎ʳ P ∼₁ ∼₂) y) Respects (≈₁ ⊎-Rel ≈₂)
    resp² (₁∼₁ x≈x') (₁∼₁ x∼y) = ₁∼₁ (proj₂ resp₁ x≈x' x∼y)
    resp² (₂∼₂ x≈x') (₂∼₂ x∼y) = ₂∼₂ (proj₂ resp₂ x≈x' x∼y)
    resp² (₁∼₁ x≈x') (₁∼₂ p)   = (₁∼₂ p)
    resp² (₁∼₂ ())   _

  _⊎-substitutive_ : ∀ {ℓ₁ ℓ₂ ℓ₃} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
                     Substitutive ∼₁ ℓ₃ → Substitutive ∼₂ ℓ₃ →
                     Substitutive (∼₁ ⊎-Rel ∼₂) ℓ₃
  subst₁ ⊎-substitutive subst₂ = subst
    where
    subst : Substitutive (_ ⊎-Rel _) _
    subst P (₁∼₁ x∼y) Px = subst₁ (λ z → P (inj₁ z)) x∼y Px
    subst P (₂∼₂ x∼y) Px = subst₂ (λ z → P (inj₂ z)) x∼y Px
    subst P (₁∼₂ ())  Px

  ⊎-decidable : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
                Decidable ∼₁ → Decidable ∼₂ →
                ∀ {P} → (∀ {x y} → Dec (inj₁ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩ inj₂ y)) →
                Decidable (⊎ʳ P ∼₁ ∼₂)
  ⊎-decidable {∼₁ = ∼₁} {∼₂ = ∼₂} dec₁ dec₂ {P} dec₁₂ = dec
    where
    dec : Decidable (⊎ʳ P ∼₁ ∼₂)
    dec (inj₁ x) (inj₁ y) with dec₁ x y
    ...                   | yes x∼y = yes (₁∼₁ x∼y)
    ...                   | no  x≁y = no (x≁y ∘ drop-inj₁)
    dec (inj₂ x) (inj₂ y) with dec₂ x y
    ...                   | yes x∼y = yes (₂∼₂ x∼y)
    ...                   | no  x≁y = no (x≁y ∘ drop-inj₂)
    dec (inj₁ x) (inj₂ y) = dec₁₂
    dec (inj₂ x) (inj₁ y) = no (λ())

  _⊎-<-total_ : ∀ {ℓ₁ ℓ₂} {≤₁ : Rel A₁ ℓ₁} {≤₂ : Rel A₂ ℓ₂} →
                Total ≤₁ → Total ≤₂ → Total (≤₁ ⊎-< ≤₂)
  total₁ ⊎-<-total total₂ = total
    where
    total : Total (_ ⊎-< _)
    total (inj₁ x) (inj₁ y) = Sum.map ₁∼₁ ₁∼₁ $ total₁ x y
    total (inj₂ x) (inj₂ y) = Sum.map ₂∼₂ ₂∼₂ $ total₂ x y
    total (inj₁ x) (inj₂ y) = inj₁ (₁∼₂ _)
    total (inj₂ x) (inj₁ y) = inj₂ (₁∼₂ _)

  _⊎-<-trichotomous_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
                         {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
                       Trichotomous ≈₁ <₁ → Trichotomous ≈₂ <₂ →
                       Trichotomous (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂)
  _⊎-<-trichotomous_ {≈₁ = ≈₁} {<₁ = <₁} {≈₂ = ≈₂} {<₂ = <₂}
                     tri₁ tri₂ = tri
    where
    tri : Trichotomous (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂)
    tri (inj₁ x) (inj₂ y) = tri< (₁∼₂ _) ₁≁₂ (λ())
    tri (inj₂ x) (inj₁ y) = tri> (λ()) (λ()) (₁∼₂ _)
    tri (inj₁ x) (inj₁ y) with tri₁ x y
    ...                   | tri< x<y x≉y x≯y =
      tri< (₁∼₁ x<y)        (x≉y ∘ drop-inj₁) (x≯y ∘ drop-inj₁)
    ...                   | tri≈ x≮y x≈y x≯y =
      tri≈ (x≮y ∘ drop-inj₁) (₁∼₁ x≈y)    (x≯y ∘ drop-inj₁)
    ...                   | tri> x≮y x≉y x>y =
      tri> (x≮y ∘ drop-inj₁) (x≉y ∘ drop-inj₁) (₁∼₁ x>y)
    tri (inj₂ x) (inj₂ y) with tri₂ x y
    ...                   | tri< x<y x≉y x≯y =
      tri< (₂∼₂ x<y)        (x≉y ∘ drop-inj₂) (x≯y ∘ drop-inj₂)
    ...                   | tri≈ x≮y x≈y x≯y =
      tri≈ (x≮y ∘ drop-inj₂) (₂∼₂ x≈y)    (x≯y ∘ drop-inj₂)
    ...                   | tri> x≮y x≉y x>y =
      tri> (x≮y ∘ drop-inj₂) (x≉y ∘ drop-inj₂) (₂∼₂ x>y)

  ----------------------------------------------------------------------
  -- Some collections of properties which are preserved

  _⊎-isEquivalence_ : ∀ {ℓ₁ ℓ₂} {≈₁ : Rel A₁ ℓ₁} {≈₂ : Rel A₂ ℓ₂} →
                      IsEquivalence ≈₁ → IsEquivalence ≈₂ →
                      IsEquivalence (≈₁ ⊎-Rel ≈₂)
  eq₁ ⊎-isEquivalence eq₂ = record
    { refl  = refl  eq₁ ⊎-refl        refl  eq₂
    ; sym   = sym   eq₁ ⊎-symmetric   sym   eq₂
    ; trans = trans eq₁ ⊎-transitive  trans eq₂
    }
    where open IsEquivalence

  _⊎-isPreorder_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₁′}
                     {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {∼₂ : Rel A₂ ℓ₂′} →
                   IsPreorder ≈₁ ∼₁ → IsPreorder ≈₂ ∼₂ →
                   ∀ {P} → IsPreorder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ∼₁ ∼₂)
  pre₁ ⊎-isPreorder pre₂ = record
    { isEquivalence = isEquivalence pre₁ ⊎-isEquivalence
                      isEquivalence pre₂
    ; reflexive     = reflexive pre₁ ⊎-reflexive   reflexive pre₂
    ; trans         = trans     pre₁ ⊎-transitive  trans     pre₂
    }
    where open IsPreorder

  _⊎-isDecEquivalence_ : ∀ {ℓ₁ ℓ₂} {≈₁ : Rel A₁ ℓ₁} {≈₂ : Rel A₂ ℓ₂} →
                         IsDecEquivalence ≈₁ → IsDecEquivalence ≈₂ →
                         IsDecEquivalence (≈₁ ⊎-Rel ≈₂)
  eq₁ ⊎-isDecEquivalence eq₂ = record
    { isEquivalence = isEquivalence eq₁ ⊎-isEquivalence
                      isEquivalence eq₂
    ; _≟_           = ⊎-decidable (_≟_ eq₁) (_≟_ eq₂) (no ₁≁₂)
    }
    where open IsDecEquivalence

  _⊎-isPartialOrder_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
                         {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
                       IsPartialOrder ≈₁ ≤₁ → IsPartialOrder ≈₂ ≤₂ →
                       ∀ {P} → IsPartialOrder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ≤₁ ≤₂)
  po₁ ⊎-isPartialOrder po₂ = record
    { isPreorder = isPreorder po₁ ⊎-isPreorder    isPreorder po₂
    ; antisym    = antisym    po₁ ⊎-antisymmetric antisym    po₂
    }
    where open IsPartialOrder

  _⊎-isStrictPartialOrder_ :
    ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
      {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
    IsStrictPartialOrder ≈₁ <₁ → IsStrictPartialOrder ≈₂ <₂ →
    ∀ {P} → IsStrictPartialOrder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P <₁ <₂)
  spo₁ ⊎-isStrictPartialOrder spo₂ = record
    { isEquivalence = isEquivalence spo₁ ⊎-isEquivalence
                      isEquivalence spo₂
    ; irrefl        = irrefl   spo₁ ⊎-irreflexive irrefl   spo₂
    ; trans         = trans    spo₁ ⊎-transitive  trans    spo₂
    ; <-resp-≈      = <-resp-≈ spo₁ ⊎-≈-respects₂ <-resp-≈ spo₂
    }
    where open IsStrictPartialOrder

  _⊎-<-isTotalOrder_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
                         {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
                       IsTotalOrder ≈₁ ≤₁ → IsTotalOrder ≈₂ ≤₂ →
                       IsTotalOrder (≈₁ ⊎-Rel ≈₂) (≤₁ ⊎-< ≤₂)
  to₁ ⊎-<-isTotalOrder to₂ = record
    { isPartialOrder = isPartialOrder to₁ ⊎-isPartialOrder
                       isPartialOrder to₂
    ; total          = total to₁ ⊎-<-total total to₂
    }
    where open IsTotalOrder

  _⊎-<-isDecTotalOrder_ :
    ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
      {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
    IsDecTotalOrder ≈₁ ≤₁ → IsDecTotalOrder ≈₂ ≤₂ →
    IsDecTotalOrder (≈₁ ⊎-Rel ≈₂) (≤₁ ⊎-< ≤₂)
  to₁ ⊎-<-isDecTotalOrder to₂ = record
    { isTotalOrder = isTotalOrder to₁ ⊎-<-isTotalOrder isTotalOrder to₂
    ; _≟_          = ⊎-decidable (_≟_  to₁) (_≟_  to₂) (no ₁≁₂)
    ; _≤?_         = ⊎-decidable (_≤?_ to₁) (_≤?_ to₂) (yes (₁∼₂ _))
    }
    where open IsDecTotalOrder

  _⊎-<-isStrictTotalOrder_ :
    ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
      {ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
    IsStrictTotalOrder ≈₁ <₁ → IsStrictTotalOrder ≈₂ <₂ →
    IsStrictTotalOrder (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂)
  sto₁ ⊎-<-isStrictTotalOrder sto₂ = record
    { isEquivalence = isEquivalence sto₁ ⊎-isEquivalence
                      isEquivalence sto₂
    ; trans         = trans    sto₁ ⊎-transitive     trans    sto₂
    ; compare       = compare  sto₁ ⊎-<-trichotomous compare  sto₂
    ; <-resp-≈      = <-resp-≈ sto₁ ⊎-≈-respects₂    <-resp-≈ sto₂
    }
    where open IsStrictTotalOrder

------------------------------------------------------------------------
-- The game can be taken even further...

_⊎-setoid_ : ∀ {s₁ s₂ s₃ s₄} →
             Setoid s₁ s₂ → Setoid s₃ s₄ → Setoid _ _
s₁ ⊎-setoid s₂ = record
  { isEquivalence = isEquivalence s₁ ⊎-isEquivalence isEquivalence s₂
  } where open Setoid

_⊎-preorder_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
               Preorder p₁ p₂ p₃ → Preorder p₄ p₅ p₆ → Preorder _ _ _
p₁ ⊎-preorder p₂ = record
  { _∼_          = _∼_        p₁ ⊎-Rel        _∼_        p₂
  ; isPreorder   = isPreorder p₁ ⊎-isPreorder isPreorder p₂
  } where open Preorder

_⊎-decSetoid_ : ∀ {s₁ s₂ s₃ s₄} →
                DecSetoid s₁ s₂ → DecSetoid s₃ s₄ → DecSetoid _ _
ds₁ ⊎-decSetoid ds₂ = record
  { isDecEquivalence = isDecEquivalence ds₁ ⊎-isDecEquivalence
                       isDecEquivalence ds₂
  } where open DecSetoid

_⊎-poset_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
            Poset p₁ p₂ p₃ → Poset p₄ p₅ p₆ → Poset _ _ _
po₁ ⊎-poset po₂ = record
  { _≤_            = _≤_ po₁ ⊎-Rel _≤_ po₂
  ; isPartialOrder = isPartialOrder po₁ ⊎-isPartialOrder
                     isPartialOrder po₂
  } where open Poset

_⊎-<-poset_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
              Poset p₁ p₂ p₃ → Poset p₄ p₅ p₆ → Poset _ _ _
po₁ ⊎-<-poset po₂ = record
  { _≤_            = _≤_ po₁ ⊎-< _≤_ po₂
  ; isPartialOrder = isPartialOrder po₁ ⊎-isPartialOrder
                     isPartialOrder po₂
  } where open Poset

_⊎-<-strictPartialOrder_ :
  ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
  StrictPartialOrder p₁ p₂ p₃ → StrictPartialOrder p₄ p₅ p₆ →
  StrictPartialOrder _ _ _
spo₁ ⊎-<-strictPartialOrder spo₂ = record
  { _<_                  = _<_ spo₁ ⊎-< _<_ spo₂
  ; isStrictPartialOrder = isStrictPartialOrder spo₁
                             ⊎-isStrictPartialOrder
                           isStrictPartialOrder spo₂
  } where open StrictPartialOrder

_⊎-<-totalOrder_ :
  ∀ {t₁ t₂ t₃ t₄ t₅ t₆} →
  TotalOrder t₁ t₂ t₃ → TotalOrder t₄ t₅ t₆ → TotalOrder _ _ _
to₁ ⊎-<-totalOrder to₂ = record
  { isTotalOrder = isTotalOrder to₁ ⊎-<-isTotalOrder isTotalOrder to₂
  } where open TotalOrder

_⊎-<-decTotalOrder_ :
  ∀ {t₁ t₂ t₃ t₄ t₅ t₆} →
  DecTotalOrder t₁ t₂ t₃ → DecTotalOrder t₄ t₅ t₆ → DecTotalOrder _ _ _
to₁ ⊎-<-decTotalOrder to₂ = record
  { isDecTotalOrder = isDecTotalOrder to₁ ⊎-<-isDecTotalOrder
                      isDecTotalOrder to₂
  } where open DecTotalOrder

_⊎-<-strictTotalOrder_ :
  ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
  StrictTotalOrder p₁ p₂ p₃ → StrictTotalOrder p₄ p₅ p₆ →
  StrictTotalOrder _ _ _
sto₁ ⊎-<-strictTotalOrder sto₂ = record
  { _<_                = _<_ sto₁ ⊎-< _<_ sto₂
  ; isStrictTotalOrder = isStrictTotalOrder sto₁
                           ⊎-<-isStrictTotalOrder
                         isStrictTotalOrder sto₂
  } where open StrictTotalOrder

------------------------------------------------------------------------
-- Some properties related to "relatedness"

⊎-Rel↔≡ : ∀ {a b} (A : Set a) (B : Set b) →
          Inverse (P.setoid A ⊎-setoid P.setoid B) (P.setoid (A ⊎ B))
⊎-Rel↔≡ _ _ = record
  { to         = record { _⟨$⟩_ = id; cong = to-cong   }
  ; from       = record { _⟨$⟩_ = id; cong = from-cong }
  ; inverse-of = record
    { left-inverse-of  = λ _ → P.refl ⊎-refl P.refl
    ; right-inverse-of = λ _ → P.refl
    }
  }
  where
  to-cong : (P._≡_ ⊎-Rel P._≡_) ⇒ P._≡_
  to-cong (₁∼₂ ())
  to-cong (₁∼₁ P.refl) = P.refl
  to-cong (₂∼₂ P.refl) = P.refl

  from-cong : P._≡_ ⇒ (P._≡_ ⊎-Rel P._≡_)
  from-cong P.refl = P.refl ⊎-refl P.refl

_⊎-⟶_ :
  ∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
    {A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
    {C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
  A ⟶ B → C ⟶ D → (A ⊎-setoid C) ⟶ (B ⊎-setoid D)
_⊎-⟶_ {A = A} {B} {C} {D} f g = record
  { _⟨$⟩_ = fg
  ; cong  = fg-cong
  }
  where
  open Setoid (A ⊎-setoid C) using () renaming (_≈_ to _≈AC_)
  open Setoid (B ⊎-setoid D) using () renaming (_≈_ to _≈BD_)

  fg = Sum.map (_⟨$⟩_ f) (_⟨$⟩_ g)

  fg-cong : _≈AC_ =[ fg ]⇒ _≈BD_
  fg-cong (₁∼₂ ())
  fg-cong (₁∼₁ x∼₁y) = ₁∼₁ $ F.cong f x∼₁y
  fg-cong (₂∼₂ x∼₂y) = ₂∼₂ $ F.cong g x∼₂y

_⊎-equivalence_ :
  ∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
    {A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
    {C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
  Equivalence A B → Equivalence C D →
  Equivalence (A ⊎-setoid C) (B ⊎-setoid D)
A⇔B ⊎-equivalence C⇔D = record
  { to   = to   A⇔B ⊎-⟶ to   C⇔D
  ; from = from A⇔B ⊎-⟶ from C⇔D
  } where open Equivalence

_⊎-⇔_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
        A ⇔ B → C ⇔ D → (A ⊎ C) ⇔ (B ⊎ D)
_⊎-⇔_ {A = A} {B} {C} {D} A⇔B C⇔D =
  Inverse.equivalence (⊎-Rel↔≡ B D) ⟨∘⟩
  A⇔B ⊎-equivalence C⇔D ⟨∘⟩
  Eq.sym (Inverse.equivalence (⊎-Rel↔≡ A C))
  where open Eq using () renaming (_∘_ to _⟨∘⟩_)

_⊎-injection_ :
  ∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
    {A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
    {C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
  Injection A B → Injection C D →
  Injection (A ⊎-setoid C) (B ⊎-setoid D)
_⊎-injection_ {A = A} {B} {C} {D} A↣B C↣D = record
  { to        = to A↣B ⊎-⟶ to C↣D
  ; injective = inj _ _
  }
  where
  open Injection
  open Setoid (A ⊎-setoid C) using () renaming (_≈_ to _≈AC_)
  open Setoid (B ⊎-setoid D) using () renaming (_≈_ to _≈BD_)

  inj : ∀ x y →
        (to A↣B ⊎-⟶ to C↣D) ⟨$⟩ x ≈BD (to A↣B ⊎-⟶ to C↣D) ⟨$⟩ y →
        x ≈AC y
  inj (inj₁ x) (inj₁ y) (₁∼₁ x∼₁y) = ₁∼₁ (injective A↣B x∼₁y)
  inj (inj₂ x) (inj₂ y) (₂∼₂ x∼₂y) = ₂∼₂ (injective C↣D x∼₂y)
  inj (inj₁ x) (inj₂ y) (₁∼₂ ())
  inj (inj₂ x) (inj₁ y) ()

_⊎-↣_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
        A ↣ B → C ↣ D → (A ⊎ C) ↣ (B ⊎ D)
_⊎-↣_ {A = A} {B} {C} {D} A↣B C↣D =
  Inverse.injection (⊎-Rel↔≡ B D) ⟨∘⟩
  A↣B ⊎-injection C↣D ⟨∘⟩
  Inverse.injection (Inv.sym (⊎-Rel↔≡ A C))
  where open Inj using () renaming (_∘_ to _⟨∘⟩_)

_⊎-left-inverse_ :
  ∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
    {A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
    {C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
  LeftInverse A B → LeftInverse C D →
  LeftInverse (A ⊎-setoid C) (B ⊎-setoid D)
A↞B ⊎-left-inverse C↞D = record
  { to              = Equivalence.to eq
  ; from            = Equivalence.from eq
  ; left-inverse-of = [ ₁∼₁ ∘ left-inverse-of A↞B
                      , ₂∼₂ ∘ left-inverse-of C↞D
                      ]
  }
  where
  open LeftInverse
  eq = LeftInverse.equivalence A↞B ⊎-equivalence
       LeftInverse.equivalence C↞D

_⊎-↞_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
        A ↞ B → C ↞ D → (A ⊎ C) ↞ (B ⊎ D)
_⊎-↞_ {A = A} {B} {C} {D} A↞B C↞D =
  Inverse.left-inverse (⊎-Rel↔≡ B D) ⟨∘⟩
  A↞B ⊎-left-inverse C↞D ⟨∘⟩
  Inverse.left-inverse (Inv.sym (⊎-Rel↔≡ A C))
  where open LeftInv using () renaming (_∘_ to _⟨∘⟩_)

_⊎-surjection_ :
  ∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
    {A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
    {C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
  Surjection A B → Surjection C D →
  Surjection (A ⊎-setoid C) (B ⊎-setoid D)
A↠B ⊎-surjection C↠D = record
  { to         = LeftInverse.from inv
  ; surjective = record
    { from             = LeftInverse.to inv
    ; right-inverse-of = LeftInverse.left-inverse-of inv
    }
  }
  where
  open Surjection
  inv = right-inverse A↠B ⊎-left-inverse right-inverse C↠D

_⊎-↠_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
        A ↠ B → C ↠ D → (A ⊎ C) ↠ (B ⊎ D)
_⊎-↠_ {A = A} {B} {C} {D} A↠B C↠D =
  Inverse.surjection (⊎-Rel↔≡ B D) ⟨∘⟩
  A↠B ⊎-surjection C↠D ⟨∘⟩
  Inverse.surjection (Inv.sym (⊎-Rel↔≡ A C))
  where open Surj using () renaming (_∘_ to _⟨∘⟩_)

_⊎-inverse_ :
  ∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
    {A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
    {C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
  Inverse A B → Inverse C D → Inverse (A ⊎-setoid C) (B ⊎-setoid D)
A↔B ⊎-inverse C↔D = record
  { to         = Surjection.to   surj
  ; from       = Surjection.from surj
  ; inverse-of = record
    { left-inverse-of  = LeftInverse.left-inverse-of inv
    ; right-inverse-of = Surjection.right-inverse-of surj
    }
  }
  where
  open Inverse
  surj = Inverse.surjection   A↔B ⊎-surjection
         Inverse.surjection   C↔D
  inv  = Inverse.left-inverse A↔B ⊎-left-inverse
         Inverse.left-inverse C↔D

_⊎-↔_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
        A ↔ B → C ↔ D → (A ⊎ C) ↔ (B ⊎ D)
_⊎-↔_ {A = A} {B} {C} {D} A↔B C↔D =
  ⊎-Rel↔≡ B D ⟨∘⟩ A↔B ⊎-inverse C↔D ⟨∘⟩ Inv.sym (⊎-Rel↔≡ A C)
  where open Inv using () renaming (_∘_ to _⟨∘⟩_)

_⊎-cong_ : ∀ {k a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
           A ∼[ k ] B → C ∼[ k ] D → (A ⊎ C) ∼[ k ] (B ⊎ D)
_⊎-cong_ {implication}         = Sum.map
_⊎-cong_ {reverse-implication} = λ f g → lam (Sum.map (app-← f) (app-← g))
_⊎-cong_ {equivalence}         = _⊎-⇔_
_⊎-cong_ {injection}           = _⊎-↣_
_⊎-cong_ {reverse-injection}   = λ f g → lam (app-↢ f ⊎-↣ app-↢ g)
_⊎-cong_ {left-inverse}        = _⊎-↞_
_⊎-cong_ {surjection}          = _⊎-↠_
_⊎-cong_ {bijection}           = _⊎-↔_