/usr/share/agda-stdlib/Function/Related.agda is in agda-stdlib 0.7-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- A universe which includes several kinds of "relatedness" for sets,
-- such as equivalences, surjections and bijections
------------------------------------------------------------------------
module Function.Related where
open import Level
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence as Eq using (Equivalence)
open import Function.Injection as Inj using (Injection; _↣_)
open import Function.Inverse as Inv using (Inverse; _↔_)
open import Function.LeftInverse as LeftInv using (LeftInverse)
open import Function.Surjection as Surj using (Surjection)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
------------------------------------------------------------------------
-- Wrapper types
-- Synonyms which are used to make _∼[_]_ below "constructor-headed"
-- (which implies that Agda can deduce the universe code from an
-- expression matching any of the right-hand sides).
record _←_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor lam
field app-← : B → A
open _←_ public
record _↢_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor lam
field app-↢ : B ↣ A
open _↢_ public
------------------------------------------------------------------------
-- Relatedness
-- There are several kinds of "relatedness".
-- The idea to include kinds other than equivalence and bijection came
-- from Simon Thompson and Bengt Nordström. /NAD
data Kind : Set where
implication reverse-implication
equivalence
injection reverse-injection
left-inverse surjection
bijection
: Kind
-- Interpretation of the codes above. The code "bijection" is
-- interpreted as Inverse rather than Bijection; the two types are
-- equivalent.
infix 4 _∼[_]_
_∼[_]_ : ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Kind → Set ℓ₂ → Set _
A ∼[ implication ] B = A → B
A ∼[ reverse-implication ] B = A ← B
A ∼[ equivalence ] B = Equivalence (P.setoid A) (P.setoid B)
A ∼[ injection ] B = Injection (P.setoid A) (P.setoid B)
A ∼[ reverse-injection ] B = A ↢ B
A ∼[ left-inverse ] B = LeftInverse (P.setoid A) (P.setoid B)
A ∼[ surjection ] B = Surjection (P.setoid A) (P.setoid B)
A ∼[ bijection ] B = Inverse (P.setoid A) (P.setoid B)
-- A non-infix synonym.
Related : Kind → ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set _
Related k A B = A ∼[ k ] B
-- The bijective equality implies any kind of relatedness.
↔⇒ : ∀ {k x y} {X : Set x} {Y : Set y} →
X ∼[ bijection ] Y → X ∼[ k ] Y
↔⇒ {implication} = _⟨$⟩_ ∘ Inverse.to
↔⇒ {reverse-implication} = lam ∘′ _⟨$⟩_ ∘ Inverse.from
↔⇒ {equivalence} = Inverse.equivalence
↔⇒ {injection} = Inverse.injection
↔⇒ {reverse-injection} = lam ∘′ Inverse.injection ∘ Inv.sym
↔⇒ {left-inverse} = Inverse.left-inverse
↔⇒ {surjection} = Inverse.surjection
↔⇒ {bijection} = id
-- Actual equality also implies any kind of relatedness.
≡⇒ : ∀ {k ℓ} {X Y : Set ℓ} → X ≡ Y → X ∼[ k ] Y
≡⇒ P.refl = ↔⇒ Inv.id
------------------------------------------------------------------------
-- Special kinds of kinds
-- Kinds whose interpretation is symmetric.
data Symmetric-kind : Set where
equivalence bijection : Symmetric-kind
-- Forgetful map.
⌊_⌋ : Symmetric-kind → Kind
⌊ equivalence ⌋ = equivalence
⌊ bijection ⌋ = bijection
-- The proof of symmetry can be found below.
-- Kinds whose interpretation include a function which "goes in the
-- forward direction".
data Forward-kind : Set where
implication equivalence injection
left-inverse surjection bijection : Forward-kind
-- Forgetful map.
⌊_⌋→ : Forward-kind → Kind
⌊ implication ⌋→ = implication
⌊ equivalence ⌋→ = equivalence
⌊ injection ⌋→ = injection
⌊ left-inverse ⌋→ = left-inverse
⌊ surjection ⌋→ = surjection
⌊ bijection ⌋→ = bijection
-- The function.
⇒→ : ∀ {k x y} {X : Set x} {Y : Set y} → X ∼[ ⌊ k ⌋→ ] Y → X → Y
⇒→ {implication} = id
⇒→ {equivalence} = _⟨$⟩_ ∘ Equivalence.to
⇒→ {injection} = _⟨$⟩_ ∘ Injection.to
⇒→ {left-inverse} = _⟨$⟩_ ∘ LeftInverse.to
⇒→ {surjection} = _⟨$⟩_ ∘ Surjection.to
⇒→ {bijection} = _⟨$⟩_ ∘ Inverse.to
-- Kinds whose interpretation include a function which "goes backwards".
data Backward-kind : Set where
reverse-implication equivalence reverse-injection
left-inverse surjection bijection : Backward-kind
-- Forgetful map.
⌊_⌋← : Backward-kind → Kind
⌊ reverse-implication ⌋← = reverse-implication
⌊ equivalence ⌋← = equivalence
⌊ reverse-injection ⌋← = reverse-injection
⌊ left-inverse ⌋← = left-inverse
⌊ surjection ⌋← = surjection
⌊ bijection ⌋← = bijection
-- The function.
⇒← : ∀ {k x y} {X : Set x} {Y : Set y} → X ∼[ ⌊ k ⌋← ] Y → Y → X
⇒← {reverse-implication} = app-←
⇒← {equivalence} = _⟨$⟩_ ∘ Equivalence.from
⇒← {reverse-injection} = _⟨$⟩_ ∘ Injection.to ∘ app-↢
⇒← {left-inverse} = _⟨$⟩_ ∘ LeftInverse.from
⇒← {surjection} = _⟨$⟩_ ∘ Surjection.from
⇒← {bijection} = _⟨$⟩_ ∘ Inverse.from
-- Kinds whose interpretation include functions going in both
-- directions.
data Equivalence-kind : Set where
equivalence left-inverse surjection bijection : Equivalence-kind
-- Forgetful map.
⌊_⌋⇔ : Equivalence-kind → Kind
⌊ equivalence ⌋⇔ = equivalence
⌊ left-inverse ⌋⇔ = left-inverse
⌊ surjection ⌋⇔ = surjection
⌊ bijection ⌋⇔ = bijection
-- The functions.
⇒⇔ : ∀ {k x y} {X : Set x} {Y : Set y} →
X ∼[ ⌊ k ⌋⇔ ] Y → X ∼[ equivalence ] Y
⇒⇔ {equivalence} = id
⇒⇔ {left-inverse} = LeftInverse.equivalence
⇒⇔ {surjection} = Surjection.equivalence
⇒⇔ {bijection} = Inverse.equivalence
-- Conversions between special kinds.
⇔⌊_⌋ : Symmetric-kind → Equivalence-kind
⇔⌊ equivalence ⌋ = equivalence
⇔⌊ bijection ⌋ = bijection
→⌊_⌋ : Equivalence-kind → Forward-kind
→⌊ equivalence ⌋ = equivalence
→⌊ left-inverse ⌋ = left-inverse
→⌊ surjection ⌋ = surjection
→⌊ bijection ⌋ = bijection
←⌊_⌋ : Equivalence-kind → Backward-kind
←⌊ equivalence ⌋ = equivalence
←⌊ left-inverse ⌋ = left-inverse
←⌊ surjection ⌋ = surjection
←⌊ bijection ⌋ = bijection
------------------------------------------------------------------------
-- Opposites
-- For every kind there is an opposite kind.
_op : Kind → Kind
implication op = reverse-implication
reverse-implication op = implication
equivalence op = equivalence
injection op = reverse-injection
reverse-injection op = injection
left-inverse op = surjection
surjection op = left-inverse
bijection op = bijection
-- For every morphism there is a corresponding reverse morphism of the
-- opposite kind.
reverse : ∀ {k a b} {A : Set a} {B : Set b} →
A ∼[ k ] B → B ∼[ k op ] A
reverse {implication} = lam
reverse {reverse-implication} = app-←
reverse {equivalence} = Eq.sym
reverse {injection} = lam
reverse {reverse-injection} = app-↢
reverse {left-inverse} = Surj.fromRightInverse
reverse {surjection} = Surjection.right-inverse
reverse {bijection} = Inv.sym
------------------------------------------------------------------------
-- Equational reasoning
-- Equational reasoning for related things.
module EquationalReasoning where
private
refl : ∀ {k ℓ} → Reflexive (Related k {ℓ})
refl {implication} = id
refl {reverse-implication} = lam id
refl {equivalence} = Eq.id
refl {injection} = Inj.id
refl {reverse-injection} = lam Inj.id
refl {left-inverse} = LeftInv.id
refl {surjection} = Surj.id
refl {bijection} = Inv.id
trans : ∀ {k ℓ₁ ℓ₂ ℓ₃} →
Trans (Related k {ℓ₁} {ℓ₂})
(Related k {ℓ₂} {ℓ₃})
(Related k {ℓ₁} {ℓ₃})
trans {implication} = flip _∘′_
trans {reverse-implication} = λ f g → lam (app-← f ∘ app-← g)
trans {equivalence} = flip Eq._∘_
trans {injection} = flip Inj._∘_
trans {reverse-injection} = λ f g → lam (Inj._∘_ (app-↢ f) (app-↢ g))
trans {left-inverse} = flip LeftInv._∘_
trans {surjection} = flip Surj._∘_
trans {bijection} = flip Inv._∘_
sym : ∀ {k ℓ₁ ℓ₂} →
Sym (Related ⌊ k ⌋ {ℓ₁} {ℓ₂})
(Related ⌊ k ⌋ {ℓ₂} {ℓ₁})
sym {equivalence} = Eq.sym
sym {bijection} = Inv.sym
infix 2 _∎
infixr 2 _∼⟨_⟩_ _↔⟨_⟩_ _≡⟨_⟩_
_∼⟨_⟩_ : ∀ {k x y z} (X : Set x) {Y : Set y} {Z : Set z} →
X ∼[ k ] Y → Y ∼[ k ] Z → X ∼[ k ] Z
_ ∼⟨ X↝Y ⟩ Y↝Z = trans X↝Y Y↝Z
-- Isomorphisms can be combined with any other kind of relatedness.
_↔⟨_⟩_ : ∀ {k x y z} (X : Set x) {Y : Set y} {Z : Set z} →
X ↔ Y → Y ∼[ k ] Z → X ∼[ k ] Z
X ↔⟨ X↔Y ⟩ Y⇔Z = X ∼⟨ ↔⇒ X↔Y ⟩ Y⇔Z
_≡⟨_⟩_ : ∀ {k ℓ z} (X : Set ℓ) {Y : Set ℓ} {Z : Set z} →
X ≡ Y → Y ∼[ k ] Z → X ∼[ k ] Z
X ≡⟨ X≡Y ⟩ Y⇔Z = X ∼⟨ ≡⇒ X≡Y ⟩ Y⇔Z
_∎ : ∀ {k x} (X : Set x) → X ∼[ k ] X
X ∎ = refl
-- For a symmetric kind and a fixed universe level we can construct a
-- setoid.
setoid : Symmetric-kind → (ℓ : Level) → Setoid _ _
setoid k ℓ = record
{ Carrier = Set ℓ
; _≈_ = Related ⌊ k ⌋
; isEquivalence =
record {refl = _ ∎; sym = sym; trans = _∼⟨_⟩_ _}
} where open EquationalReasoning
-- For an arbitrary kind and a fixed universe level we can construct a
-- preorder.
preorder : Kind → (ℓ : Level) → Preorder _ _ _
preorder k ℓ = record
{ Carrier = Set ℓ
; _≈_ = _↔_
; _∼_ = Related k
; isPreorder = record
{ isEquivalence = Setoid.isEquivalence (setoid bijection ℓ)
; reflexive = ↔⇒
; trans = _∼⟨_⟩_ _
}
} where open EquationalReasoning
------------------------------------------------------------------------
-- Some induced relations
-- Every unary relation induces a preorder and, for symmetric kinds,
-- an equivalence. (No claim is made that these relations are unique.)
InducedRelation₁ : Kind → ∀ {a s} {A : Set a} →
(A → Set s) → A → A → Set _
InducedRelation₁ k S = λ x y → S x ∼[ k ] S y
InducedPreorder₁ : Kind → ∀ {a s} {A : Set a} →
(A → Set s) → Preorder _ _ _
InducedPreorder₁ k S = record
{ _≈_ = P._≡_
; _∼_ = InducedRelation₁ k S
; isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = reflexive ∘
Setoid.reflexive (setoid bijection _) ∘
P.cong S
; trans = trans
}
} where open Preorder (preorder _ _)
InducedEquivalence₁ : Symmetric-kind → ∀ {a s} {A : Set a} →
(A → Set s) → Setoid _ _
InducedEquivalence₁ k S = record
{ _≈_ = InducedRelation₁ ⌊ k ⌋ S
; isEquivalence = record {refl = refl; sym = sym; trans = trans}
} where open Setoid (setoid _ _)
-- Every binary relation induces a preorder and, for symmetric kinds,
-- an equivalence. (No claim is made that these relations are unique.)
InducedRelation₂ : Kind → ∀ {a b s} {A : Set a} {B : Set b} →
(A → B → Set s) → B → B → Set _
InducedRelation₂ k _S_ = λ x y → ∀ {z} → (z S x) ∼[ k ] (z S y)
InducedPreorder₂ : Kind → ∀ {a b s} {A : Set a} {B : Set b} →
(A → B → Set s) → Preorder _ _ _
InducedPreorder₂ k _S_ = record
{ _≈_ = P._≡_
; _∼_ = InducedRelation₂ k _S_
; isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = λ x≡y {z} →
reflexive $
Setoid.reflexive (setoid bijection _) $
P.cong (_S_ z) x≡y
; trans = λ i↝j j↝k → trans i↝j j↝k
}
} where open Preorder (preorder _ _)
InducedEquivalence₂ : Symmetric-kind →
∀ {a b s} {A : Set a} {B : Set b} →
(A → B → Set s) → Setoid _ _
InducedEquivalence₂ k _S_ = record
{ _≈_ = InducedRelation₂ ⌊ k ⌋ _S_
; isEquivalence = record
{ refl = refl
; sym = λ i↝j → sym i↝j
; trans = λ i↝j j↝k → trans i↝j j↝k
}
} where open Setoid (setoid _ _)
|