This file is indexed.

/usr/share/agda-stdlib/Data/Vec/Properties.agda is in agda-stdlib 0.7-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some Vec-related properties
------------------------------------------------------------------------

module Data.Vec.Properties where

open import Algebra
open import Category.Applicative.Indexed
open import Category.Monad
open import Category.Monad.Identity
open import Data.Vec
open import Data.Nat
open import Data.Empty using (⊥-elim)
import Data.Nat.Properties as Nat
open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ)
open import Data.Fin.Props using (_+′_)
open import Data.Empty using (⊥-elim)
open import Function
open import Function.Inverse using (_↔_)
open import Relation.Binary

module UsingVectorEquality {s₁ s₂} (S : Setoid s₁ s₂) where

  private module SS = Setoid S
  open SS using () renaming (Carrier to A)
  import Data.Vec.Equality as VecEq
  open VecEq.Equality S

  replicate-lemma : ∀ {m} n x (xs : Vec A m) →
                    replicate {n = n}     x ++ (x ∷ xs) ≈
                    replicate {n = 1 + n} x ++      xs
  replicate-lemma zero    x xs = refl (x ∷ xs)
  replicate-lemma (suc n) x xs = SS.refl ∷-cong replicate-lemma n x xs

  xs++[]=xs : ∀ {n} (xs : Vec A n) → xs ++ [] ≈ xs
  xs++[]=xs []       = []-cong
  xs++[]=xs (x ∷ xs) = SS.refl ∷-cong xs++[]=xs xs

  map-++-commute : ∀ {b m n} {B : Set b}
                   (f : B → A) (xs : Vec B m) {ys : Vec B n} →
                   map f (xs ++ ys) ≈ map f xs ++ map f ys
  map-++-commute f []       = refl _
  map-++-commute f (x ∷ xs) = SS.refl ∷-cong map-++-commute f xs

open import Relation.Binary.PropositionalEquality as P
  using (_≡_; _≢_; refl; _≗_)
open import Relation.Binary.HeterogeneousEquality using (_≅_; refl)

-- lookup is an applicative functor morphism.

lookup-morphism :
  ∀ {a n} (i : Fin n) →
  Morphism (applicative {a = a})
           (RawMonad.rawIApplicative IdentityMonad)
lookup-morphism i = record
  { op      = lookup i
  ; op-pure = lookup-replicate i
  ; op-⊛    = lookup-⊛ i
  }
  where
  lookup-replicate : ∀ {a n} {A : Set a} (i : Fin n) →
                     lookup i ∘ replicate {A = A} ≗ id {A = A}
  lookup-replicate zero    = λ _ → refl
  lookup-replicate (suc i) = lookup-replicate i

  lookup-⊛ : ∀ {a b n} {A : Set a} {B : Set b}
             i (fs : Vec (A → B) n) (xs : Vec A n) →
             lookup i (fs ⊛ xs) ≡ (lookup i fs $ lookup i xs)
  lookup-⊛ zero    (f ∷ fs) (x ∷ xs) = refl
  lookup-⊛ (suc i) (f ∷ fs) (x ∷ xs) = lookup-⊛ i fs xs

-- tabulate is an inverse of flip lookup.

lookup∘tabulate : ∀ {a n} {A : Set a} (f : Fin n → A) (i : Fin n) →
                  lookup i (tabulate f) ≡ f i
lookup∘tabulate f zero    = refl
lookup∘tabulate f (suc i) = lookup∘tabulate (f ∘ suc) i

tabulate∘lookup : ∀ {a n} {A : Set a} (xs : Vec A n) →
                  tabulate (flip lookup xs) ≡ xs
tabulate∘lookup []       = refl
tabulate∘lookup (x ∷ xs) = P.cong (_∷_ x) $ tabulate∘lookup xs

-- If you look up an index in allFin n, then you get the index.

lookup-allFin : ∀ {n} (i : Fin n) → lookup i (allFin n) ≡ i
lookup-allFin = lookup∘tabulate id

-- Various lemmas relating lookup and _++_.

lookup-++-< : ∀ {a} {A : Set a} {m n}
              (xs : Vec A m) (ys : Vec A n) i (i<m : toℕ i < m) →
              lookup i (xs ++ ys) ≡ lookup (Fin.fromℕ≤ i<m) xs
lookup-++-< []       ys i       ()
lookup-++-< (x ∷ xs) ys zero    (s≤s z≤n)       = refl
lookup-++-< (x ∷ xs) ys (suc i) (s≤s (s≤s i<m)) =
  lookup-++-< xs ys i (s≤s i<m)

lookup-++-≥ : ∀ {a} {A : Set a} {m n}
              (xs : Vec A m) (ys : Vec A n) i (i≥m : toℕ i ≥ m) →
              lookup i (xs ++ ys) ≡ lookup (Fin.reduce≥ i i≥m) ys
lookup-++-≥ []       ys i       i≥m = refl
lookup-++-≥ (x ∷ xs) ys zero    ()
lookup-++-≥ (x ∷ xs) ys (suc i) (s≤s i≥m) = lookup-++-≥ xs ys i i≥m

lookup-++-inject+ : ∀ {a} {A : Set a} {m n}
                    (xs : Vec A m) (ys : Vec A n) i →
                    lookup (Fin.inject+ n i) (xs ++ ys) ≡ lookup i xs
lookup-++-inject+ []       ys ()
lookup-++-inject+ (x ∷ xs) ys zero    = refl
lookup-++-inject+ (x ∷ xs) ys (suc i) = lookup-++-inject+ xs ys i

lookup-++-+′ : ∀ {a} {A : Set a} {m n}
               (xs : Vec A m) (ys : Vec A n) i →
               lookup (fromℕ m +′ i) (xs ++ ys) ≡ lookup i ys
lookup-++-+′ []       ys       zero    = refl
lookup-++-+′ []       (y ∷ xs) (suc i) = lookup-++-+′ [] xs i
lookup-++-+′ (x ∷ xs) ys       i       = lookup-++-+′ xs ys i

-- Properties relating lookup and _[_]≔_.

lookup∘update : ∀ {a} {A : Set a} {n}
                (i : Fin n) (xs : Vec A n) x →
                lookup i (xs [ i ]≔ x) ≡ x
lookup∘update zero    (_ ∷ xs) x = refl
lookup∘update (suc i) (_ ∷ xs) x = lookup∘update i xs x

lookup∘update′ : ∀ {a} {A : Set a} {n} {i j : Fin n} →
                 i ≢ j → ∀ (xs : Vec A n) y →
                 lookup i (xs [ j ]≔ y) ≡ lookup i xs
lookup∘update′ {i = zero}  {zero}  i≢j      xs  y = ⊥-elim (i≢j refl)
lookup∘update′ {i = zero}  {suc j} i≢j (x ∷ xs) y = refl
lookup∘update′ {i = suc i} {zero}  i≢j (x ∷ xs) y = refl
lookup∘update′ {i = suc i} {suc j} i≢j (x ∷ xs) y =
  lookup∘update′ (i≢j ∘ P.cong suc) xs y

-- map is a congruence.

map-cong : ∀ {a b n} {A : Set a} {B : Set b} {f g : A → B} →
           f ≗ g → _≗_ {A = Vec A n} (map f) (map g)
map-cong f≗g []       = refl
map-cong f≗g (x ∷ xs) = P.cong₂ _∷_ (f≗g x) (map-cong f≗g xs)

-- map is functorial.

map-id : ∀ {a n} {A : Set a} → _≗_ {A = Vec A n} (map id) id
map-id []       = refl
map-id (x ∷ xs) = P.cong (_∷_ x) (map-id xs)

map-∘ : ∀ {a b c n} {A : Set a} {B : Set b} {C : Set c}
        (f : B → C) (g : A → B) →
        _≗_ {A = Vec A n} (map (f ∘ g)) (map f ∘ map g)
map-∘ f g []       = refl
map-∘ f g (x ∷ xs) = P.cong (_∷_ (f (g x))) (map-∘ f g xs)

-- tabulate can be expressed using map and allFin.

tabulate-∘ : ∀ {n a b} {A : Set a} {B : Set b}
             (f : A → B) (g : Fin n → A) →
             tabulate (f ∘ g) ≡ map f (tabulate g)
tabulate-∘ {zero}  f g = refl
tabulate-∘ {suc n} f g =
  P.cong (_∷_ (f (g zero))) (tabulate-∘ f (g ∘ suc))

tabulate-allFin : ∀ {n a} {A : Set a} (f : Fin n → A) →
                  tabulate f ≡ map f (allFin n)
tabulate-allFin f = tabulate-∘ f id

-- The positive case of allFin can be expressed recursively using map.

allFin-map : ∀ n → allFin (suc n) ≡ zero ∷ map suc (allFin n)
allFin-map n = P.cong (_∷_ zero) $ tabulate-∘ suc id

-- If you look up every possible index, in increasing order, then you
-- get back the vector you started with.

map-lookup-allFin : ∀ {a} {A : Set a} {n} (xs : Vec A n) →
                    map (λ x → lookup x xs) (allFin n) ≡ xs
map-lookup-allFin {n = n} xs = begin
  map (λ x → lookup x xs) (allFin n) ≡⟨ P.sym $ tabulate-∘ (λ x → lookup x xs) id ⟩
  tabulate (λ x → lookup x xs)       ≡⟨ tabulate∘lookup xs ⟩
  xs                                 ∎
  where open P.≡-Reasoning

-- sum commutes with _++_.

sum-++-commute : ∀ {m n} (xs : Vec ℕ m) {ys : Vec ℕ n} →
                 sum (xs ++ ys) ≡ sum xs + sum ys
sum-++-commute []            = refl
sum-++-commute (x ∷ xs) {ys} = begin
  x + sum (xs ++ ys)
    ≡⟨ P.cong (λ p → x + p) (sum-++-commute xs) ⟩
  x + (sum xs + sum ys)
    ≡⟨ P.sym (+-assoc x (sum xs) (sum ys)) ⟩
  sum (x ∷ xs) + sum ys
    ∎
  where
  open P.≡-Reasoning
  open CommutativeSemiring Nat.commutativeSemiring hiding (_+_; sym)

-- foldr is a congruence.

foldr-cong : ∀ {a} {A : Set a}
               {b₁} {B₁ : ℕ → Set b₁}
               {f₁ : ∀ {n} → A → B₁ n → B₁ (suc n)} {e₁}
               {b₂} {B₂ : ℕ → Set b₂}
               {f₂ : ∀ {n} → A → B₂ n → B₂ (suc n)} {e₂} →
             (∀ {n x} {y₁ : B₁ n} {y₂ : B₂ n} →
                y₁ ≅ y₂ → f₁ x y₁ ≅ f₂ x y₂) →
             e₁ ≅ e₂ →
             ∀ {n} (xs : Vec A n) →
             foldr B₁ f₁ e₁ xs ≅ foldr B₂ f₂ e₂ xs
foldr-cong           _     e₁=e₂ []       = e₁=e₂
foldr-cong {B₁ = B₁} f₁=f₂ e₁=e₂ (x ∷ xs) =
  f₁=f₂ (foldr-cong {B₁ = B₁} f₁=f₂ e₁=e₂ xs)

-- foldl is a congruence.

foldl-cong : ∀ {a} {A : Set a}
               {b₁} {B₁ : ℕ → Set b₁}
               {f₁ : ∀ {n} → B₁ n → A → B₁ (suc n)} {e₁}
               {b₂} {B₂ : ℕ → Set b₂}
               {f₂ : ∀ {n} → B₂ n → A → B₂ (suc n)} {e₂} →
             (∀ {n x} {y₁ : B₁ n} {y₂ : B₂ n} →
                y₁ ≅ y₂ → f₁ y₁ x ≅ f₂ y₂ x) →
             e₁ ≅ e₂ →
             ∀ {n} (xs : Vec A n) →
             foldl B₁ f₁ e₁ xs ≅ foldl B₂ f₂ e₂ xs
foldl-cong           _     e₁=e₂ []       = e₁=e₂
foldl-cong {B₁ = B₁} f₁=f₂ e₁=e₂ (x ∷ xs) =
  foldl-cong {B₁ = B₁ ∘ suc} f₁=f₂ (f₁=f₂ e₁=e₂) xs

-- The (uniqueness part of the) universality property for foldr.

foldr-universal : ∀ {a b} {A : Set a} (B : ℕ → Set b)
                  (f : ∀ {n} → A → B n → B (suc n)) {e}
                  (h : ∀ {n} → Vec A n → B n) →
                  h [] ≡ e →
                  (∀ {n} x → h ∘ _∷_ x ≗ f {n} x ∘ h) →
                  ∀ {n} → h ≗ foldr B {n} f e
foldr-universal B f     h base step []       = base
foldr-universal B f {e} h base step (x ∷ xs) = begin
  h (x ∷ xs)
    ≡⟨ step x xs ⟩
  f x (h xs)
    ≡⟨ P.cong (f x) (foldr-universal B f h base step xs) ⟩
  f x (foldr B f e xs)
    ∎
  where open P.≡-Reasoning

-- A fusion law for foldr.

foldr-fusion : ∀ {a b c} {A : Set a}
                 {B : ℕ → Set b} {f : ∀ {n} → A → B n → B (suc n)} e
                 {C : ℕ → Set c} {g : ∀ {n} → A → C n → C (suc n)}
               (h : ∀ {n} → B n → C n) →
               (∀ {n} x → h ∘ f {n} x ≗ g x ∘ h) →
               ∀ {n} → h ∘ foldr B {n} f e ≗ foldr C g (h e)
foldr-fusion {B = B} {f} e {C} h fuse =
  foldr-universal C _ _ refl (λ x xs → fuse x (foldr B f e xs))

-- The identity function is a fold.

idIsFold : ∀ {a n} {A : Set a} → id ≗ foldr (Vec A) {n} _∷_ []
idIsFold = foldr-universal _ _ id refl (λ _ _ → refl)

-- Proof irrelevance for _[_]=_.

proof-irrelevance-[]= : ∀ {a} {A : Set a} {n} {xs : Vec A n} {i x} →
                        (p q : xs [ i ]= x) → p ≡ q
proof-irrelevance-[]= here            here             = refl
proof-irrelevance-[]= (there xs[i]=x) (there xs[i]=x') =
  P.cong there (proof-irrelevance-[]= xs[i]=x xs[i]=x')

-- _[_]=_ can be expressed using lookup and _≡_.

[]=↔lookup : ∀ {a n i} {A : Set a} {x} {xs : Vec A n} →
             xs [ i ]= x ↔ lookup i xs ≡ x
[]=↔lookup {i = i} {x = x} {xs} = record
  { to         = P.→-to-⟶ to
  ; from       = P.→-to-⟶ (from i xs)
  ; inverse-of = record
    { left-inverse-of  = λ _ → proof-irrelevance-[]= _ _
    ; right-inverse-of = λ _ → P.proof-irrelevance _ _
    }
  }
  where
  to : ∀ {n xs} {i : Fin n} → xs [ i ]= x → lookup i xs ≡ x
  to here            = refl
  to (there xs[i]=x) = to xs[i]=x

  from : ∀ {n} (i : Fin n) xs → lookup i xs ≡ x → xs [ i ]= x
  from zero    (.x ∷ _)  refl = here
  from (suc i) (_  ∷ xs) p    = there (from i xs p)

------------------------------------------------------------------------
-- Some properties related to _[_]≔_

[]≔-idempotent :
  ∀ {n a} {A : Set a} (xs : Vec A n) (i : Fin n) {x₁ x₂ : A} →
  (xs [ i ]≔ x₁) [ i ]≔ x₂ ≡ xs [ i ]≔ x₂
[]≔-idempotent []       ()
[]≔-idempotent (x ∷ xs) zero    = refl
[]≔-idempotent (x ∷ xs) (suc i) = P.cong (_∷_ x) $ []≔-idempotent xs i

[]≔-commutes :
  ∀ {n a} {A : Set a} (xs : Vec A n) (i j : Fin n) {x y : A} →
  i ≢ j → (xs [ i ]≔ x) [ j ]≔ y ≡ (xs [ j ]≔ y) [ i ]≔ x
[]≔-commutes []       ()      ()      _
[]≔-commutes (x ∷ xs) zero    zero    0≢0 = ⊥-elim $ 0≢0 refl
[]≔-commutes (x ∷ xs) zero    (suc i) _   = refl
[]≔-commutes (x ∷ xs) (suc i) zero    _   = refl
[]≔-commutes (x ∷ xs) (suc i) (suc j) i≢j =
  P.cong (_∷_ x) $ []≔-commutes xs i j (i≢j ∘ P.cong suc)

[]≔-updates : ∀ {n a} {A : Set a} (xs : Vec A n) (i : Fin n) {x : A} →
              (xs [ i ]≔ x) [ i ]= x
[]≔-updates []       ()
[]≔-updates (x ∷ xs) zero    = here
[]≔-updates (x ∷ xs) (suc i) = there ([]≔-updates xs i)

[]≔-minimal :
  ∀ {n a} {A : Set a} (xs : Vec A n) (i j : Fin n) {x y : A} →
  i ≢ j → xs [ i ]= x → (xs [ j ]≔ y) [ i ]= x
[]≔-minimal []       ()      ()      _   _
[]≔-minimal (x ∷ xs) .zero   zero    0≢0 here        = ⊥-elim $ 0≢0 refl
[]≔-minimal (x ∷ xs) .zero   (suc j) _   here        = here
[]≔-minimal (x ∷ xs) (suc i) zero    _   (there loc) = there loc
[]≔-minimal (x ∷ xs) (suc i) (suc j) i≢j (there loc) =
  there ([]≔-minimal xs i j (i≢j ∘ P.cong suc) loc)

map-[]≔ : ∀ {n a b} {A : Set a} {B : Set b}
          (f : A → B) (xs : Vec A n) (i : Fin n) {x : A} →
          map f (xs [ i ]≔ x) ≡ map f xs [ i ]≔ f x
map-[]≔ f []       ()
map-[]≔ f (x ∷ xs) zero    = refl
map-[]≔ f (x ∷ xs) (suc i) = P.cong (_∷_ _) $ map-[]≔ f xs i

[]≔-lookup : ∀ {a} {A : Set a} {n} (xs : Vec A n) (i : Fin n) →
             xs [ i ]≔ lookup i xs ≡ xs
[]≔-lookup []       ()
[]≔-lookup (x ∷ xs) zero    = refl
[]≔-lookup (x ∷ xs) (suc i) = P.cong (_∷_ x) $ []≔-lookup xs i