This file is indexed.

/usr/share/agda-stdlib/Data/Star.agda is in agda-stdlib 0.7-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
------------------------------------------------------------------------
-- The Agda standard library
--
-- The reflexive transitive closures of McBride, Norell and Jansson
------------------------------------------------------------------------

-- This module could be placed under Relation.Binary. However, since
-- its primary purpose is to be used for _data_ it has been placed
-- under Data instead.

module Data.Star where

open import Relation.Binary
open import Function
open import Level

infixr 5 _◅_

-- Reflexive transitive closure.

data Star {i t} {I : Set i} (T : Rel I t) : Rel I (i ⊔ t) where
  ε   : Reflexive (Star T)
  _◅_ : ∀ {i j k} (x : T i j) (xs : Star T j k) → Star T i k
        -- The type of _◅_ is Trans T (Star T) (Star T); I expanded
        -- the definition in order to be able to name the arguments (x
        -- and xs).

-- Append/transitivity.

infixr 5 _◅◅_

_◅◅_ : ∀ {i t} {I : Set i} {T : Rel I t} → Transitive (Star T)
ε        ◅◅ ys = ys
(x ◅ xs) ◅◅ ys = x ◅ (xs ◅◅ ys)

-- Sometimes you want to view cons-lists as snoc-lists. Then the
-- following "constructor" is handy. Note that this is _not_ snoc for
-- cons-lists, it is just a synonym for cons (with a different
-- argument order).

infixl 5 _▻_

_▻_ : ∀ {i t} {I : Set i} {T : Rel I t} {i j k} →
      Star T j k → T i j → Star T i k
_▻_ = flip _◅_

-- A corresponding variant of append.

infixr 5 _▻▻_

_▻▻_ : ∀ {i t} {I : Set i} {T : Rel I t} {i j k} →
       Star T j k → Star T i j → Star T i k
_▻▻_ = flip _◅◅_

-- A generalised variant of map which allows the index type to change.

gmap : ∀ {i j t u} {I : Set i} {T : Rel I t} {J : Set j} {U : Rel J u} →
       (f : I → J) → T =[ f ]⇒ U → Star T =[ f ]⇒ Star U
gmap f g ε        = ε
gmap f g (x ◅ xs) = g x ◅ gmap f g xs

map : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} →
      T ⇒ U → Star T ⇒ Star U
map = gmap id

-- A generalised variant of fold.

gfold : ∀ {i j t p} {I : Set i} {J : Set j} {T : Rel I t}
        (f : I → J) (P : Rel J p) →
        Trans     T        (P on f) (P on f) →
        TransFlip (Star T) (P on f) (P on f)
gfold f P _⊕_ ∅ ε        = ∅
gfold f P _⊕_ ∅ (x ◅ xs) = x ⊕ gfold f P _⊕_ ∅ xs

fold : ∀ {i t p} {I : Set i} {T : Rel I t} (P : Rel I p) →
       Trans T P P → Reflexive P → Star T ⇒ P
fold P _⊕_ ∅ = gfold id P _⊕_ ∅

gfoldl : ∀ {i j t p} {I : Set i} {J : Set j} {T : Rel I t}
         (f : I → J) (P : Rel J p) →
         Trans (P on f) T        (P on f) →
         Trans (P on f) (Star T) (P on f)
gfoldl f P _⊕_ ∅ ε        = ∅
gfoldl f P _⊕_ ∅ (x ◅ xs) = gfoldl f P _⊕_ (∅ ⊕ x) xs

foldl : ∀ {i t p} {I : Set i} {T : Rel I t} (P : Rel I p) →
        Trans P T P → Reflexive P → Star T ⇒ P
foldl P _⊕_ ∅ = gfoldl id P _⊕_ ∅

concat : ∀ {i t} {I : Set i} {T : Rel I t} → Star (Star T) ⇒ Star T
concat {T = T} = fold (Star T) _◅◅_ ε

-- If the underlying relation is symmetric, then the reflexive
-- transitive closure is also symmetric.

revApp : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} →
         Sym T U → ∀ {i j k} → Star T j i → Star U j k → Star U i k
revApp rev ε        ys = ys
revApp rev (x ◅ xs) ys = revApp rev xs (rev x ◅ ys)

reverse : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} →
          Sym T U → Sym (Star T) (Star U)
reverse rev xs = revApp rev xs ε

-- Reflexive transitive closures form a (generalised) monad.

-- return could also be called singleton.

return : ∀ {i t} {I : Set i} {T : Rel I t} → T ⇒ Star T
return x = x ◅ ε

-- A generalised variant of the Kleisli star (flip bind, or
-- concatMap).

kleisliStar : ∀ {i j t u}
                {I : Set i} {J : Set j} {T : Rel I t} {U : Rel J u}
              (f : I → J) → T =[ f ]⇒ Star U → Star T =[ f ]⇒ Star U
kleisliStar f g = concat ∘′ gmap f g

_⋆ : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} →
     T ⇒ Star U → Star T ⇒ Star U
_⋆ = kleisliStar id

infixl 1 _>>=_

_>>=_ : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} {i j} →
        Star T i j → T ⇒ Star U → Star U i j
m >>= f = (f ⋆) m

-- Note that the monad-like structure above is not an indexed monad
-- (as defined in Category.Monad.Indexed). If it were, then _>>=_
-- would have a type similar to
--
--   ∀ {I} {T U : Rel I t} {i j k} →
--   Star T i j → (T i j → Star U j k) → Star U i k.
--                  ^^^^^
-- Note, however, that there is no scope for applying T to any indices
-- in the definition used in Category.Monad.Indexed.