This file is indexed.

/usr/share/agda-stdlib/Data/Nat.agda is in agda-stdlib 0.7-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
------------------------------------------------------------------------
-- The Agda standard library
--
-- Natural numbers
------------------------------------------------------------------------

module Data.Nat where

open import Function
open import Function.Equality as F using (_⟨$⟩_)
open import Function.Injection
  using (Injection; module Injection)
open import Data.Sum
open import Data.Empty
import Level
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
  using (_≡_; refl)

infixl 7 _*_ _⊓_
infixl 6 _∸_ _⊔_

------------------------------------------------------------------------
-- The types

data ℕ : Set where
  zero : ℕ
  suc  : (n : ℕ) → ℕ

{-# BUILTIN NATURAL ℕ    #-}
{-# BUILTIN ZERO    zero #-}
{-# BUILTIN SUC     suc  #-}

infix 4 _≤_ _<_ _≥_ _>_ _≰_ _≮_ _≱_ _≯_

data _≤_ : Rel ℕ Level.zero where
  z≤n : ∀ {n}                 → zero  ≤ n
  s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n

_<_ : Rel ℕ Level.zero
m < n = suc m ≤ n

_≥_ : Rel ℕ Level.zero
m ≥ n = n ≤ m

_>_ : Rel ℕ Level.zero
m > n = n < m

_≰_ : Rel ℕ Level.zero
a ≰ b = ¬ a ≤ b

_≮_ : Rel ℕ Level.zero
a ≮ b = ¬ a < b

_≱_ : Rel ℕ Level.zero
a ≱ b = ¬ a ≥ b

_≯_ : Rel ℕ Level.zero
a ≯ b = ¬ a > b

-- The following, alternative definition of _≤_ is more suitable for
-- well-founded induction (see Induction.Nat).

infix 4 _≤′_ _<′_ _≥′_ _>′_

data _≤′_ (m : ℕ) : ℕ → Set where
  ≤′-refl :                         m ≤′ m
  ≤′-step : ∀ {n} (m≤′n : m ≤′ n) → m ≤′ suc n

_<′_ : Rel ℕ Level.zero
m <′ n = suc m ≤′ n

_≥′_ : Rel ℕ Level.zero
m ≥′ n = n ≤′ m

_>′_ : Rel ℕ Level.zero
m >′ n = n <′ m

------------------------------------------------------------------------
-- A generalisation of the arithmetic operations

fold : {a : Set} → a → (a → a) → ℕ → a
fold z s zero    = z
fold z s (suc n) = s (fold z s n)

module GeneralisedArithmetic {a : Set} (0# : a) (1+ : a → a) where

  add : ℕ → a → a
  add n z = fold z 1+ n

  mul : (+ : a → a → a) → (ℕ → a → a)
  mul _+_ n x = fold 0# (λ s → x + s) n

------------------------------------------------------------------------
-- Arithmetic

pred : ℕ → ℕ
pred zero    = zero
pred (suc n) = n

infixl 6 _+_ _+⋎_

_+_ : ℕ → ℕ → ℕ
zero  + n = n
suc m + n = suc (m + n)

{-# BUILTIN NATPLUS _+_ #-}

-- Argument-swapping addition. Used by Data.Vec._⋎_.

_+⋎_ : ℕ → ℕ → ℕ
zero  +⋎ n = n
suc m +⋎ n = suc (n +⋎ m)

_∸_ : ℕ → ℕ → ℕ
m     ∸ zero  = m
zero  ∸ suc n = zero
suc m ∸ suc n = m ∸ n

{-# BUILTIN NATMINUS _∸_ #-}

_*_ : ℕ → ℕ → ℕ
zero  * n = zero
suc m * n = n + m * n

{-# BUILTIN NATTIMES _*_ #-}

-- Max.

_⊔_ : ℕ → ℕ → ℕ
zero  ⊔ n     = n
suc m ⊔ zero  = suc m
suc m ⊔ suc n = suc (m ⊔ n)

-- Min.

_⊓_ : ℕ → ℕ → ℕ
zero  ⊓ n     = zero
suc m ⊓ zero  = zero
suc m ⊓ suc n = suc (m ⊓ n)

-- Division by 2, rounded downwards.

⌊_/2⌋ : ℕ → ℕ
⌊ 0 /2⌋           = 0
⌊ 1 /2⌋           = 0
⌊ suc (suc n) /2⌋ = suc ⌊ n /2⌋

-- Division by 2, rounded upwards.

⌈_/2⌉ : ℕ → ℕ
⌈ n /2⌉ = ⌊ suc n /2⌋

------------------------------------------------------------------------
-- Queries

infix 4 _≟_

_≟_ : Decidable {A = ℕ} _≡_
zero  ≟ zero   = yes refl
suc m ≟ suc n  with m ≟ n
suc m ≟ suc .m | yes refl = yes refl
suc m ≟ suc n  | no prf   = no (prf ∘ PropEq.cong pred)
zero  ≟ suc n  = no λ()
suc m ≟ zero   = no λ()

≤-pred : ∀ {m n} → suc m ≤ suc n → m ≤ n
≤-pred (s≤s m≤n) = m≤n

_≤?_ : Decidable _≤_
zero  ≤? _     = yes z≤n
suc m ≤? zero  = no λ()
suc m ≤? suc n with m ≤? n
...            | yes m≤n = yes (s≤s m≤n)
...            | no  m≰n = no  (m≰n ∘ ≤-pred)

-- A comparison view. Taken from "View from the left"
-- (McBride/McKinna); details may differ.

data Ordering : Rel ℕ Level.zero where
  less    : ∀ m k → Ordering m (suc (m + k))
  equal   : ∀ m   → Ordering m m
  greater : ∀ m k → Ordering (suc (m + k)) m

compare : ∀ m n → Ordering m n
compare zero    zero    = equal   zero
compare (suc m) zero    = greater zero m
compare zero    (suc n) = less    zero n
compare (suc m) (suc n) with compare m n
compare (suc .m)           (suc .(suc m + k)) | less    m k = less    (suc m) k
compare (suc .m)           (suc .m)           | equal   m   = equal   (suc m)
compare (suc .(suc m + k)) (suc .m)           | greater m k = greater (suc m) k

-- If there is an injection from a set to ℕ, then equality of the set
-- can be decided.

eq? : ∀ {s₁ s₂} {S : Setoid s₁ s₂} →
      Injection S (PropEq.setoid ℕ) → Decidable (Setoid._≈_ S)
eq? inj x y with to ⟨$⟩ x ≟ to ⟨$⟩ y where open Injection inj
... | yes tox≡toy = yes (Injection.injective inj tox≡toy)
... | no  tox≢toy = no  (tox≢toy ∘ F.cong (Injection.to inj))

------------------------------------------------------------------------
-- Some properties

decTotalOrder : DecTotalOrder _ _ _
decTotalOrder = record
  { Carrier         = ℕ
  ; _≈_             = _≡_
  ; _≤_             = _≤_
  ; isDecTotalOrder = record
      { isTotalOrder = record
          { isPartialOrder = record
              { isPreorder = record
                  { isEquivalence = PropEq.isEquivalence
                  ; reflexive     = refl′
                  ; trans         = trans
                  }
              ; antisym  = antisym
              }
          ; total = total
          }
      ; _≟_  = _≟_
      ; _≤?_ = _≤?_
      }
  }
  where
  refl′ : _≡_ ⇒ _≤_
  refl′ {zero}  refl = z≤n
  refl′ {suc m} refl = s≤s (refl′ refl)

  antisym : Antisymmetric _≡_ _≤_
  antisym z≤n       z≤n       = refl
  antisym (s≤s m≤n) (s≤s n≤m) with antisym m≤n n≤m
  ...                         | refl = refl

  trans : Transitive _≤_
  trans z≤n       _         = z≤n
  trans (s≤s m≤n) (s≤s n≤o) = s≤s (trans m≤n n≤o)

  total : Total _≤_
  total zero    _       = inj₁ z≤n
  total _       zero    = inj₂ z≤n
  total (suc m) (suc n) with total m n
  ...                   | inj₁ m≤n = inj₁ (s≤s m≤n)
  ...                   | inj₂ n≤m = inj₂ (s≤s n≤m)

import Relation.Binary.PartialOrderReasoning as POR
module ≤-Reasoning where
  open POR (DecTotalOrder.poset decTotalOrder) public
    renaming (_≈⟨_⟩_ to _≡⟨_⟩_)

  infixr 2 _<⟨_⟩_

  _<⟨_⟩_ : ∀ x {y z} → x < y → y IsRelatedTo z → suc x IsRelatedTo z
  x <⟨ x<y ⟩ y≤z = suc x ≤⟨ x<y ⟩ y≤z