/usr/lib/2013.com.canonical.certification:checkbox/bin/audio_test is in plainbox-provider-checkbox 0.4-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 | #!/usr/bin/env python3
from __future__ import division, print_function
import argparse
import collections
import json
import logging
import math
import re
import subprocess
import sys
import time
try:
import gi
gi.require_version('Gst','1.0')
from gi.repository import GObject
from gi.repository import Gst
from gi.repository import GLib
Gst.init(None) # This has to be done very early so it can find elements
except ImportError:
print("Can't import module: %s. it may not be available for this"
"version of Python, which is: " % sys.exc_info()[1], file=sys.stderr)
print((sys.version), file=sys.stderr)
sys.exit(127)
#Frequency bands for FFT
BINS = 256
#How often to take a sample and do FFT on it.
FFT_INTERVAL = 100000000 # In nanoseconds, so this is every 1/10th second
#Sampling frequency. The effective maximum frequency we can analyze is
#half of this (see Nyquist's theorem)
SAMPLING_FREQUENCY = 44100
#The default test frequency is in the middle of the band that contains 5000Hz
#This frequency was determined experimentally to be high enough but more
#reliable than others we tried.
DEFAULT_TEST_FREQUENCY = 5035
#only sample a signal when peak level is in this range (in dB attenuation,
#0 means no attenuation (and horrible clipping).
REC_LEVEL_RANGE = (-2.0, -12.0)
#For our test signal to be considered present, it has to be this much higher
#than the base level (minimum magnitude). This is in dB.
MAGNITUDE_THRESHOLD = 2.5
#Volume for the sample tone (in %)
PLAY_VOLUME = 70
class PIDController(object):
""" A Proportional-Integrative-Derivative controller (PID) controls a
process's output to try to maintain a desired output value (known as
'setpoint', by continually adjusting the process's input.
It does so by calculating the "error" (difference between output and
setpoint) and attempting to minimize it manipulating the input.
The desired change to the input is calculated based on error and three
constants (Kp, Ki and Kd). These values can be interpreted in terms of
time: P depends on the present error, I on the accumulation of past errors,
and D is a prediction of future errors, based on current rate of change.
The weighted sum of these three actions is used to adjust the process via a
control element.
In practice, Kp, Ki and Kd are process-dependent and usually have to
be tweaked by hand, but once reasonable constants are arrived at, they
can apply to a particular process without further modification.
"""
def __init__(self, Kp, Ki, Kd, setpoint=0):
""" Creates a PID controller with given constants and setpoint.
Arguments:
Kp, Ki, Kd: PID constants, see class description.
setpoint: desired output value; calls to input_change with
a process output reading will return a desired change
to the input to attempt matching output to this value.
"""
self.setpoint = setpoint
self.Kp = Kp
self.Ki = Ki
self.Kd = Kd
self._integral = 0
self._previous_error = 0
self._change_limit = 0
def input_change(self, process_feedback, dt):
""" Calculates desired input value change.
Based on process feedback and time interval (dt).
"""
error = self.setpoint - process_feedback
self._integral = self._integral + (error * dt)
derivative = (error - self._previous_error) / dt
self._previous_error = error
input_change = (self.Kp * error) + \
(self.Ki * self._integral) + \
(self.Kd * derivative)
if self._change_limit and abs(input_change) > abs(self._change_limit):
sign = input_change / abs(input_change)
input_change = sign * self._change_limit
return input_change
def set_change_limit(self, limit):
"""Ensures that input value changes are lower than limit.
Setting limit of zero disables this.
"""
self._change_limit = limit
class PAVolumeController(object):
pa_types = {'input': 'source', 'output': 'sink'}
def __init__(self, type, method=None, logger=None):
"""Initializes the volume controller.
Arguments:
type: either input or output
method: a method that will run a command and return pulseaudio
information in the described format, as a single string with
line breaks (to be processed with str.splitlines())
"""
self.type = type
self._volume = None
self.identifier = None
self.method = method
if not isinstance(method, collections.Callable):
self.method = self._pactl_output
self.logger = logger
def set_volume(self, volume):
if not 0 <= volume <= 100:
return False
if not self.identifier:
return False
command = ['pactl',
'set-%s-volume' % (self.pa_types[self.type]),
str(self.identifier[0]),
str(int(volume)) + "%"]
if False == self.method(command):
return False
self._volume = volume
return True
def get_volume(self):
if not self.identifier:
return None
return self._volume
def mute(self, mute):
mute = str(int(mute))
if not self.identifier:
return False
command = ['pactl',
'set-%s-mute' % (self.pa_types[self.type]),
str(self.identifier[0]),
mute]
if False == self.method(command):
return False
return True
def get_identifier(self):
if self.type:
self.identifier = self._get_identifier_for(self.type)
if self.identifier and self.logger:
message = "Using PulseAudio identifier %s (%s) for %s" %\
(self.identifier + (self.type,))
self.logger.info(message)
return self.identifier
def _get_identifier_for(self, type):
"""Gets default PulseAudio identifier for given type.
Arguments:
type: either input or output
Returns:
A tuple: (pa_id, pa_description)
"""
if type not in self.pa_types:
return None
command = ['pactl', 'list', self.pa_types[type] + "s", 'short']
#Expect lines of this form (field separator is tab):
#<ID>\t<NAME>\t<MODULE>\t<SAMPLE_SPEC_WITH_SPACES>\t<STATE>
#What we need to return is the ID for the first element on this list
#that does not contain auto_null or monitor.
pa_info = self.method(command)
valid_elements = None
if pa_info:
reject_regex = '.*(monitor|auto_null).*'
valid_elements = [element for element in pa_info.splitlines()
if not re.match(reject_regex, element)]
if not valid_elements:
if self.logger:
self.logger.error("No valid PulseAudio elements"
" for %s" % (self.type))
return None
#We only need the pulseaudio numeric ID and long name for each element
valid_elements = [(int(e.split()[0]), e.split()[1])
for e in valid_elements]
return valid_elements[0]
def _pactl_output(self, command):
#This method mainly calls pactl (hence the name). Since pactl may
#return a failure if the audio layer is not yet initialized, we will
#try running a few times in case of failure. All our invocations of
#pactl should be "idempotent" so repeating them should not have
#any bad effects.
for attempt in range(0, 3):
try:
return subprocess.check_output(command,
universal_newlines=True)
except (subprocess.CalledProcessError):
time.sleep(5)
return False
class FileDumper(object):
def write_to_file(self, filename, data):
try:
with open(filename, "w") as f:
for i in data:
print(i, file=f)
return_value = True
except (TypeError, IOError):
return_value = False
return return_value
class SpectrumAnalyzer(object):
def __init__(self, points, sampling_frequency=44100,
wanted_samples=50):
self.spectrum = [0] * points
self.number_of_samples = 0
self.wanted_samples = wanted_samples
self.sampling_frequency = sampling_frequency
#Frequencies should contain *real* frequency which is half of
#the sampling frequency
self.frequencies = [((sampling_frequency / 2.0) / points) * i
for i in range(points)]
def _average(self):
return sum(self.spectrum) / len(self.spectrum)
def sample(self, sample):
if len(sample) != len(self.spectrum):
return
self.spectrum = [((old * self.number_of_samples) + new) /
(self.number_of_samples + 1)
for old, new in zip(self.spectrum, sample)]
self.number_of_samples += 1
def frequencies_with_peak_magnitude(self, threshold=1.0):
#First establish the base level
per_magnitude_bins = collections.defaultdict(int)
for magnitude in self.spectrum:
per_magnitude_bins[magnitude] += 1
base_level = max(per_magnitude_bins,
key=lambda x: per_magnitude_bins[x])
#Now return all values that are higher (more positive)
#than base_level + threshold
peaks = []
for i in range(1, len(self.spectrum) - 1):
first_index = i - 1
last_index = i + 1
if self.spectrum[first_index] < self.spectrum[i] and \
self.spectrum[last_index] < self.spectrum[i] and \
self.spectrum[i] > base_level + threshold:
peaks.append(i)
return peaks
def frequency_band_for(self, frequency):
"""Convenience function to tell me which band
a frequency is contained in
"""
#Note that actual frequencies are half of what the sampling
#frequency would tell us. If SF is 44100 then maximum actual
#frequency is 22050, and if I have 10 frequency bins each will
#contain only 2205 Hz, not 4410 Hz.
max_frequency = self.sampling_frequency / 2
if frequency > max_frequency or frequency < 0:
return None
band = float(frequency) / (max_frequency / len(self.spectrum))
return int(math.ceil(band)) - 1
def frequencies_for_band(self, band):
"""Convenience function to tell me the delimiting frequencies
for a band
"""
if band >= len(self.spectrum) or band < 0:
return None
lower = self.frequencies[band]
upper = lower + ((self.sampling_frequency / 2.0) / len(self.spectrum))
return (lower, upper)
def sampling_complete(self):
return self.number_of_samples >= self.wanted_samples
class GStreamerMessageHandler(object):
def __init__(self, rec_level_range, logger, volumecontroller,
pidcontroller, spectrum_analyzer):
"""Initializes the message handler. It knows how to handle
spectrum and level gstreamer messages.
Arguments:
rec_level_range: tuple with acceptable recording level
ranges
logger: logging object with debug, info, error methods.
volumecontroller: an instance of VolumeController to use
to adjust RECORDING level
pidcontroller: a PID controller instance which helps control
volume
spectrum_analyzer: instance of SpectrumAnalyzer to collect
data from spectrum messages
"""
self.current_level = sys.maxsize
self.logger = logger
self.pid_controller = pidcontroller
self.rec_level_range = rec_level_range
self.spectrum_analyzer = spectrum_analyzer
self.volume_controller = volumecontroller
def set_quit_method(self, method):
""" Method that will be called when sampling is complete."""
self._quit_method = method
def bus_message_handler(self, bus, message):
if message.type == Gst.MessageType.ELEMENT:
message_name = message.get_structure().get_name()
if message_name == 'spectrum':
#TODO: Due to an upstream bug, a structure's get_value method
#doesn't work if the value in question is an array (as is the
#case with the magnitudes).
#https://bugzilla.gnome.org/show_bug.cgi?id=693168
#We have to resort to parsing the string representation of the
#structure. It's an ugly hack but it works.
#Ideally we'd be able to say this to get fft_magnitudes:
#message.get_structure.get_value('magnitude').
#If an upstream fix ever makes it into gstreamer,
#remember to remove this hack and the parse_spectrum
#method
struct_string = message.get_structure().to_string()
structure = parse_spectrum_message_structure(struct_string)
fft_magnitudes = structure['magnitude']
self.spectrum_method(self.spectrum_analyzer, fft_magnitudes)
if message_name == 'level':
#peak_value is our process feedback
#It's returned as an array, so I need the first (and only)
#element
peak_value = message.get_structure().get_value('peak')[0]
self.level_method(peak_value, self.pid_controller,
self.volume_controller)
#Adjust recording level
def level_method(self, level, pid_controller, volume_controller):
#If volume controller doesn't return a valid volume,
#we can't control it :(
current_volume = volume_controller.get_volume()
if current_volume is None:
self.logger.error("Unable to control recording volume."
"Test results may be wrong")
return
self.current_level = level
change = pid_controller.input_change(level, 0.10)
if self.logger:
self.logger.debug("Peak level: %(peak_level).2f, "
"volume: %(volume)d%%, Volume change: %(change)f%%" %
{'peak_level': level,
'change': change,
'volume': current_volume})
volume_controller.set_volume(current_volume + change)
#Only sample if level is within the threshold
def spectrum_method(self, analyzer, spectrum):
if self.rec_level_range[1] <= self.current_level \
or self.current_level <= self.rec_level_range[0]:
self.logger.debug("Sampling, recorded %d samples" %
analyzer.number_of_samples)
analyzer.sample(spectrum)
if analyzer.sampling_complete() and self._quit_method:
self.logger.info("Sampling complete, ending process")
self._quit_method()
class GstAudioObject(object):
def __init__(self):
self.class_name = self.__class__.__name__
def _set_state(self, state, description):
self.pipeline.set_state(state)
message = "%s: %s" % (self.class_name, description)
if self.logger:
self.logger.info(message)
def start(self):
self._set_state(Gst.State.PLAYING, "Starting")
def stop(self):
self._set_state(Gst.State.NULL, "Stopping")
class Player(GstAudioObject):
def __init__(self, frequency=DEFAULT_TEST_FREQUENCY, logger=None):
super(Player, self).__init__()
self.pipeline_description = ("audiotestsrc wave=sine freq=%s "
"! audioconvert "
"! audioresample "
"! autoaudiosink" % int(frequency))
self.logger = logger
if self.logger:
self.logger.debug(self.pipeline_description)
self.pipeline = Gst.parse_launch(self.pipeline_description)
class Recorder(GstAudioObject):
def __init__(self, output_file, bins=BINS,
sampling_frequency=SAMPLING_FREQUENCY,
fft_interval=FFT_INTERVAL, logger=None):
super(Recorder, self).__init__()
pipeline_description = ('''autoaudiosrc
! queue
! level message=true
! audioconvert
! audio/x-raw, channels=1, rate=(int)%(rate)s
! audioresample
! spectrum interval=%(fft_interval)s bands = %(bands)s
! wavenc
! filesink location=%(file)s''' %
{'bands': bins,
'rate': sampling_frequency,
'fft_interval': fft_interval,
'file': output_file})
self.logger = logger
if self.logger:
self.logger.debug(pipeline_description)
self.pipeline = Gst.parse_launch(pipeline_description)
def register_message_handler(self, handler_method):
if self.logger:
message = "Registering message handler: %s" % handler_method
self.logger.debug(message)
self.bus = self.pipeline.get_bus()
self.bus.add_signal_watch()
self.bus.connect('message', handler_method)
def parse_spectrum_message_structure(struct_string):
#First let's jsonize this
#This is the message name, which we don't need
text = struct_string.replace("spectrum, ", "")
#name/value separator in json is : and not =
text = text.replace("=",": ")
#Mutate the {} array notation from the structure to
#[] notation for json.
text = text.replace("{","[")
text = text.replace("}","]")
#Remove a few stray semicolons that aren't needed
text = text.replace(";","")
#Remove the data type fields, as json doesn't need them
text = re.sub(r"\(.+?\)", "", text)
#double-quote the identifiers
text = re.sub(r"([\w-]+):", r'"\1":', text)
#Wrap the whole thing in brackets
text = ("{"+text+"}")
#Try to parse and return something sensible here, even if
#the data was unparsable.
try:
return json.loads(text)
except ValueError:
return None
def process_arguments():
description = """
Plays a single frequency through the default output, then records on
the default input device. Analyzes the recorded signal to test for
presence of the played frequency, if present it exits with success.
"""
parser = argparse.ArgumentParser(description=description)
parser.add_argument("-t", "--time",
dest='test_duration',
action='store',
default=30,
type=int,
help="""Maximum test duration, default %(default)s seconds.
It may exit sooner if it determines it has enough data.""")
parser.add_argument("-a", "--audio",
action='store',
default="/dev/null",
type=str,
help="File to save recorded audio in .wav format")
parser.add_argument("-q", "--quiet",
action='store_true',
default=False,
help="Be quiet, no output unless there's an error.")
parser.add_argument("-d", "--debug",
action='store_true',
default=False,
help="Debugging output")
parser.add_argument("-f", "--frequency",
action='store',
default=DEFAULT_TEST_FREQUENCY,
type=int,
help="Frequency for test signal, default %(default)s Hz")
parser.add_argument("-u", "--spectrum",
action='store',
type=str,
help="""File to save spectrum information for plotting
(one frequency/magnitude pair per line)""")
return parser.parse_args()
#
def main():
#Get arguments.
args = process_arguments()
#Setup logging
level = logging.INFO
if args.debug:
level = logging.DEBUG
if args.quiet:
level = logging.ERROR
logging.basicConfig(level=level)
try:
#Launches recording pipeline. I need to hook up into the gst
#messages.
recorder = Recorder(output_file=args.audio, logger=logging)
#Just launches the playing pipeline
player = Player(frequency=args.frequency, logger=logging)
except GObject.GError as excp:
logging.critical("Unable to initialize GStreamer pipelines: %s", excp)
sys.exit(127)
#This just receives a process feedback and tells me how much to change to
#achieve the setpoint
pidctrl = PIDController(Kp=0.7, Ki=.01, Kd=0.01,
setpoint=REC_LEVEL_RANGE[0])
pidctrl.set_change_limit(5)
#This gathers spectrum data.
analyzer = SpectrumAnalyzer(points=BINS,
sampling_frequency=SAMPLING_FREQUENCY)
#Volume controllers actually set volumes for their device types.
#we should at least issue a warning
recorder.volumecontroller = PAVolumeController(type='input',
logger=logging)
if not recorder.volumecontroller.get_identifier():
logging.warning("Unable to get input volume control identifier. "
"Test results will probably be invalid")
recorder.volumecontroller.set_volume(0)
recorder.volumecontroller.mute(False)
player.volumecontroller = PAVolumeController(type='output',
logger=logging)
if not player.volumecontroller.get_identifier():
logging.warning("Unable to get output volume control identifier. "
"Test results will probably be invalid")
player.volumecontroller.set_volume(PLAY_VOLUME)
player.volumecontroller.mute(False)
#This handles the messages from gstreamer and orchestrates
#the passed volume controllers, pid controller and spectrum analyzer
#accordingly.
gmh = GStreamerMessageHandler(rec_level_range=REC_LEVEL_RANGE,
logger=logging,
volumecontroller=recorder.volumecontroller,
pidcontroller=pidctrl,
spectrum_analyzer=analyzer)
#I need to tell the recorder which method will handle messages.
recorder.register_message_handler(gmh.bus_message_handler)
#Create the loop and add a few triggers
# GObject.threads_init() #Not needed?
loop = GLib.MainLoop()
GLib.timeout_add_seconds(0, player.start)
GLib.timeout_add_seconds(0, recorder.start)
GLib.timeout_add_seconds(args.test_duration, loop.quit)
# Tell the gmh which method to call when enough samples are collected
gmh.set_quit_method(loop.quit)
loop.run()
#When the loop ends, set things back to reasonable states
player.stop()
recorder.stop()
player.volumecontroller.set_volume(50)
recorder.volumecontroller.set_volume(10)
#See if data gathering was successful.
test_band = analyzer.frequency_band_for(args.frequency)
candidate_bands = analyzer.frequencies_with_peak_magnitude(MAGNITUDE_THRESHOLD)
for band in candidate_bands:
logging.debug("Band (%.2f,%.2f) contains a magnitude peak" %
analyzer.frequencies_for_band(band))
if test_band in candidate_bands:
freqs_for_band = analyzer.frequencies_for_band(test_band)
logging.info("PASS: Test frequency of %s in band (%.2f, %.2f) "
"which contains a magnitude peak" %
((args.frequency,) + freqs_for_band))
return_value = 0
else:
logging.info("FAIL: Test frequency of %s is not in one of the "
"bands with magnitude peaks" % args.frequency)
return_value = 1
#Is the microphone broken?
if len(set(analyzer.spectrum)) <= 1:
logging.info("WARNING: Microphone seems broken, didn't even "
"record ambient noise")
if args.spectrum:
logging.info("Saving spectrum data for plotting as %s" %
args.spectrum)
if not FileDumper().write_to_file(args.spectrum,
["%s,%s" % t for t in
zip(analyzer.frequencies,
analyzer.spectrum)]):
logging.error("Couldn't save spectrum data for plotting",
file=sys.stderr)
return return_value
if __name__ == "__main__":
sys.exit(main())
|