/usr/lib/python3/dist-packages/Onboard/WPEngine.py is in onboard 1.0.0-0ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 | # -*- coding: utf-8 -*-
# Copyright © 2013, marmuta
#
# This file is part of Onboard.
#
# Onboard is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Onboard is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import division, print_function, unicode_literals
import os
import time
import Onboard.pypredict as pypredict
import Onboard.utils as utils
from Onboard.Config import Config
config = Config()
import logging
_logger = logging.getLogger(__name__)
class WPLocalEngine(object):
"""
Singleton class for low-level word prediction, local in-process engine.
"""
def __new__(cls, *args, **kwargs):
"""
Singleton magic.
"""
if not hasattr(cls, "self"):
cls.self = object.__new__(cls, *args, **kwargs)
cls.self.construct()
return cls.self
def __init__(self):
"""
Called multiple times, do not use.
"""
pass
def construct(self):
"""
Singleton constructor, runs only once.
"""
self._model_cache = ModelCache()
self._auto_save_timer = AutoSaveTimer(self._model_cache)
self.models = []
self.persistent_models = []
self.auto_learn_models = []
self.scratch_models = []
def cleanup(self):
self._auto_save_timer.stop()
self._model_cache.save_models()
def set_models(self, persistent_models, auto_learn_models, scratch_models):
""" Fixme: rename to "set_model_ids" """
self.models = persistent_models + scratch_models
self.persistent_models = persistent_models
self.auto_learn_models = auto_learn_models
self.auto_learn_models = auto_learn_models
self.scratch_models = scratch_models
def load_models(self):
"""
Pre-load models set with set_models. If this isn't called,
language models are lazy-loaded on demand.
"""
self._model_cache.get_models(self.models)
def predict(self, context_line, limit = 20,
case_insensitive = False,
case_insensitive_smart = False,
accent_insensitive = False,
accent_insensitive_smart = False,
ignore_capitalized = False,
ignore_non_capitalized = False):
""" Find completion/prediction choices. """
LanguageModel = pypredict.LanguageModel
options = 0
if case_insensitive:
options |= LanguageModel.CASE_INSENSITIVE
if case_insensitive_smart:
options |= LanguageModel.CASE_INSENSITIVE_SMART
if accent_insensitive:
options |= LanguageModel.ACCENT_INSENSITIVE
if accent_insensitive_smart:
options |= LanguageModel.ACCENT_INSENSITIVE_SMART
if ignore_capitalized:
options |= LanguageModel.IGNORE_CAPITALIZED
if ignore_non_capitalized:
options |= LanguageModel.IGNORE_NON_CAPITALIZED
context, spans = pypredict.tokenize_context(context_line)
choices = self._get_prediction(self.models, context, limit, options)
_logger.debug("context=" + repr(context))
_logger.debug("choices=" + repr(choices[:5]))
return [x[0] for x in choices]
def learn_text(self, text, allow_new_words):
""" Count n-grams and add words to the auto-learn models. """
if self.auto_learn_models:
tokens, spans = pypredict.tokenize_text(text)
# Remove trailing single quote, too many false positives.
# Do this here, because we still want "it's", etc. to
# incrementally provide completions.
for i, token in enumerate(tokens):
if token.endswith("'"):
token = token[:-1]
if not token: # shouldn't happen
token = "<unk>"
tokens[i] = token
models = self._model_cache.get_models(self.auto_learn_models)
for model in models:
model.learn_tokens(tokens, allow_new_words)
_logger.info("learn_text: tokens=" + repr(tokens[:10]))
# debug: save all learned text for later parameter optimization
if config.log_learn:
fn = os.path.join(config.user_dir, "learned_text.txt")
with open(fn, "a") as f:
f.write(text + "\n")
def learn_scratch_text(self, text):
""" Count n-grams and add words to the scratch models. """
tokens, spans = pypredict.tokenize_text(text)
models = self._model_cache.get_models(self.scratch_models)
for model in models:
#print("scratch learn", model, tokens)
model.learn_tokens(tokens, True)
def clear_scratch_models(self):
""" Count n-grams and add words to the scratch models. """
models = self._model_cache.get_models(self.scratch_models)
for model in models:
model.clear()
def lookup_text(self, text):
"""
Split <text> into tokens and lookup the individual tokens in each
of the given language models. This method is meant to be a basis for
highlighting (partially) unknown words in a display for recently
typed text.
The return value is a tuple of two arrays. First an array of tuples
(start, end, token), one per token, with start and end index pointing
into <text> and second a two dimensional array of lookup results.
There is one lookup result per token and language model. Each lookup
result is either 0 for no match, 1 for an exact match or -n for
count n partial (prefix) matches.
"""
lmids = self.models
toks, spans = pypredict.tokenize_sentence(text)
tokens = [(spans[i][0], spans[i][1], t) for i,t in enumerate(toks)]
counts = [[0 for lmid in lmids] for t in tokens]
for i,lmid in enumerate(lmids):
model = self._model_cache.get_model(lmid)
if model:
for j,t in enumerate(tokens):
counts[j][i] = model.lookup_word(t[2])
_logger.debug("lookup_words: tokens=%s counts=%s" % \
(repr(tokens), repr(counts)) )
# counts are 0 for no match, 1 for exact match or -n for partial matches
return tokens, counts
def word_exists(self, word):
"""
Does word exist in any of the non-scratch models?
"""
exists = False
lmids = self.persistent_models
for i,lmid in enumerate(lmids):
model = self._model_cache.get_model(lmid)
if model:
count = model.lookup_word(word)
if count > 0:
exists = True
break
return exists
def tokenize_text(self, text):
"""
Let the service find the words in text.
"""
tokens, spans = pypredict.tokenize_text(text)
return tokens, spans
def tokenize_text_pythonic(self, text):
"""
Let the service find the words in text.
Return python types instead of dbus.Array/String/... .
Doctests:
# whitspace have to be respected in spans
>>> p = WPLocalEngine()
>>> p.tokenize_text_pythonic("abc def")
(['abc', 'def'], [[0, 3], [5, 8]])
"""
return self.tokenize_text(text)
def tokenize_context(self, text):
""" let the service find the words in text """
return pypredict.tokenize_context(text)
def get_model_names(self, _class):
""" Return the names of the available models. """
names = self._model_cache.find_available_model_names(_class)
return names
def get_last_context_fragment(self, text):
"""
Return the very last (partial) word in text.
"""
text = text[-1024:]
tokens, spans = self.tokenize_context(text)
if len(spans):
# Don't return the the token itself as it won't include
# trailing dashes. Catch the text until its very end.
begin = spans[-1][0]
return text[begin:]
else:
return ""
def _get_prediction(self, lmdesc, context, limit, options):
lmids, weights = self._model_cache.parse_lmdesc(lmdesc)
models = self._model_cache.get_models(lmids)
for m in models:
# Kneser-ney perfomes best in entropy and ksr measures, but
# failed in practice for anything but natural language, e.g.
# shell commands.
# -> use the second best available: absolute discounting
#m.smoothing = "kneser-ney"
m.smoothing = "abs-disc"
# setup recency caching
if hasattr(m, "recency_ratio"):
# Values found with
# $ pypredict/optimize caching models/en.lm learned_text.txt
# based on multilingual text actually typed (--log-learning)
# with onboard over ~3 months.
# How valid those settings are under different conditions
# remains to be seen, but for now this is the best I have.
m.recency_ratio = 0.811
m.recency_halflife = 96
m.recency_smoothing = "jelinek-mercer"
m.recency_lambdas = [0.404, 0.831, 0.444]
model = pypredict.overlay(models)
#model = pypredict.linint(models, weights)
#model = pypredict.loglinint(models, weights)
choices = model.predictp(context, limit, options=options)
return choices
class ModelCache:
""" Loads and caches language models """
def __init__(self):
self._language_models = {}
def clear(self):
self._language_models = {}
def get_models(self, lmids):
models = []
for lmid in lmids:
model = self.get_model(lmid)
if model:
models.append(model)
return models
def get_model(self, lmid):
""" get language model from cache or load it from disk"""
lmid = self.canonicalize_lmid(lmid)
if lmid in self._language_models:
model = self._language_models[lmid]
else:
model = self.load_model(lmid)
if model:
self._language_models[lmid] = model
return model
def find_available_model_names(self, _class):
names = []
models = self._find_models(_class)
for model in models:
name = os.path.basename(model)
name, ext = os.path.splitext(name)
names.append(name)
return names
@staticmethod
def _find_models(_class):
models = []
if _class == "system":
path = config.get_system_model_dir()
else:
path = config.get_user_model_dir()
try:
files = os.listdir(path)
extension = "lm"
for filename in files:
if filename.endswith("." + extension):
models.append(os.path.join(path, filename))
except OSError as e:
_logger.warning("Failed to find language models in '{}': {} ({})" \
.format(path, os.strerror(e.errno), e.errno))
return models
@staticmethod
def parse_lmdesc(lmdesc):
"""
Extract language model ids and interpolation weights from
the language model description.
"""
lmids = []
weights = []
for entry in lmdesc:
fields = entry.split(",")
lmids.append(fields[0])
weight = 1.0
if len(fields) >= 2: # weight is optional
try:
weight = float(fields[1])
except:
pass
weights.append(weight)
return lmids, weights
@staticmethod
def canonicalize_lmid(lmid):
"""
Fully qualifies and unifies language model ids.
Fills in missing fields with default values.
The result is of the format "type:class:name".
"""
# default values
result = ["lm", "system", "en"]
for i, field in enumerate(lmid.split(":")[:3]):
result[i] = field
return ":".join(result)
@staticmethod
def split_lmid(lmid):
lmid = ModelCache.canonicalize_lmid(lmid)
return lmid.split(":")
@staticmethod
def is_user_lmid(lmid):
type_, class_, name = ModelCache.split_lmid(lmid)
return class_ == "user"
def load_model(self, lmid):
type_, class_, name = lmid.split(":")
filename = self.get_filename(lmid)
if type_ == "lm":
if class_ == "system":
if pypredict.read_order(filename) == 1:
model = pypredict.UnigramModel()
else:
model = pypredict.DynamicModel()
elif class_ == "user":
model = pypredict.CachedDynamicModel()
elif class_ == "mem":
model = pypredict.DynamicModel()
else:
_logger.error("Unknown class component '{}' in lmid '{}'" \
.format(class_, lmid))
return None
else:
_logger.error("Unknown type component '{}' in lmid '{}'" \
.format(type_, lmid))
return None
if filename:
self.do_load_model(model, filename, class_)
return model
@staticmethod
def do_load_model(model, filename, class_):
_logger.info("Loading language model '{}'.".format(filename))
if not os.path.exists(filename):
if class_ == "system":
_logger.warning("System language model '{}' "
"doesn't exist, skipping." \
.format(filename))
else:
try:
model.load(filename)
except IOError as ex:
if not ex.errno is None: # not n-gram count mismatch
errno = ex.errno
errstr = os.strerror(errno)
msg = _format(
"Failed to load language model '{}': {} ({})", \
filename, errstr, errno)
else:
msg = utils.unicode_str(ex)
_logger.error(msg)
model.load_error_msg = msg
if class_ == "user":
_logger.error("Saving word suggestions disabled "
"to prevent further data loss.")
def save_models(self):
for lmid, model in list(self._language_models.items()):
if self.can_save(lmid):
self.save_model(model, lmid)
@staticmethod
def can_save(lmid):
type_, class_, name = lmid.split(":")
return class_ == "user"
def save_model(self, model, lmid):
type_, class_, name = lmid.split(":")
filename = self.get_filename(lmid)
backup_filename = self.get_backup_filename(filename)
if filename and \
model.modified:
if model.load_error:
_logger.warning("Not saving modified language model '{}' "
"due to previous error on load." \
.format(filename))
else:
_logger.info("Saving language model '{}'".format(filename))
try:
# create the path
path = os.path.dirname(filename)
utils.XDGDirs.assure_user_dir_exists(path)
if 1:
# save to temp file
basename, ext = os.path.splitext(filename)
tempfile = basename + ".tmp"
model.save(tempfile)
# rename to final file
if os.path.exists(filename):
os.rename(filename, backup_filename)
os.rename(tempfile, filename)
model.modified = False
except (IOError, OSError) as e:
_logger.warning("Failed to save language model '{}': {} ({})" \
.format(filename, os.strerror(e.errno), e.errno))
@staticmethod
def get_filename(lmid):
type_, class_, name = lmid.split(":")
if class_ == "mem":
filename = ""
else:
if class_ == "system":
path = config.get_system_model_dir()
else: #if class_ == "user":
path = config.get_user_model_dir()
ext = type_
filename = os.path.join(path, name + "." + ext)
return filename
@staticmethod
def get_backup_filename(filename):
return filename + ".bak"
@staticmethod
def get_broken_filename(filename):
"""
Filename broken files are renamed to.
Doctests:
>>> import tempfile
>>> import subprocess
>>> from os.path import basename
>>> td = tempfile.TemporaryDirectory(prefix="test_onboard_")
>>> dir = td.name
>>> fn = os.path.join(dir, "en_US.lm")
>>>
>>> def test(fn):
... bfn = ModelCache.get_broken_filename(fn)
... print(repr(basename(bfn)))
... _ignore = subprocess.call(["touch", bfn])
>>> test(fn) # doctest: +ELLIPSIS
'en_US.lm.broken-..._001'
>>> test(fn) # doctest: +ELLIPSIS
'en_US.lm.broken-..._002'
>>> test(fn) # doctest: +ELLIPSIS
'en_US.lm.broken-..._003'
"""
count = 1
while True:
fn = "{}.broken-{}_{:03}".format(filename,
time.strftime("%Y-%m-%d"),
count)
if not os.path.exists(fn):
break
count += 1
return fn
class AutoSaveTimer(utils.Timer):
""" Auto-save modified language models periodically """
def __init__(self, mode_cache, interval = 10*60):
self._model_cache = mode_cache
self._interval = interval # in seconds
self._last_save_time = 0
self.start(5, self._on_timer)
def _on_timer(self):
t = time.time()
if t - self._last_save_time > self._interval:
self._last_save_time = t
self._model_cache.save_models()
return True # run again
|