/usr/lib/python3/dist-packages/Onboard/Layout.py is in onboard 1.0.0-0ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 | # -*- coding: utf-8 -*-
""" Classes for recursive layout definition """
from __future__ import division, print_function, unicode_literals
from Onboard.utils import Rect, TreeItem
### Config Singleton ###
from Onboard.Config import Config
config = Config()
########################
class KeyContext(object):
"""
Transforms logical coordinates to canvas coordinates and vice versa.
"""
def __init__(self):
# logical rectangle as defined by the keyboard layout,
# never changed after loading.
self.initial_log_rect = Rect(0.0, 0.0, 1.0, 1.0) # includes border
# logical rectangle as defined by the keyboard layout
self.log_rect = Rect(0.0, 0.0, 1.0, 1.0) # includes border
# canvas rectangle in drawing units
self.canvas_rect = Rect(0.0, 0.0, 1.0, 1.0)
def __repr__(self):
return "log={} canvas={}".format(list(self.log_rect),
list(self.canvas_rect))
def log_to_canvas(self, coord):
return (self.log_to_canvas_x(coord[0]), \
self.log_to_canvas_y(coord[1]))
def log_to_canvas_rect(self, rect):
if rect.is_empty():
return Rect()
return Rect(self.log_to_canvas_x(rect.x),
self.log_to_canvas_y(rect.y),
self.scale_log_to_canvas_x(rect.w),
self.scale_log_to_canvas_y(rect.h))
def log_to_canvas_x(self, x):
canvas_rect = self.canvas_rect
log_rect = self.log_rect
return canvas_rect.x + (x - log_rect.x) * canvas_rect.w / log_rect.w
def log_to_canvas_y(self, y):
canvas_rect = self.canvas_rect
log_rect = self.log_rect
return canvas_rect.y + (y - log_rect.y) * canvas_rect.h / log_rect.h
def scale_log_to_canvas(self, coord):
return (self.scale_log_to_canvas_x(coord[0]), \
self.scale_log_to_canvas_y(coord[1]))
def scale_log_to_canvas_x(self, x):
return x * self.canvas_rect.w / self.log_rect.w
def scale_log_to_canvas_y(self, y):
return y * self.canvas_rect.h / self.log_rect.h
def canvas_to_log(self, coord):
return (self.canvas_to_log_x(coord[0]), \
self.canvas_to_log_y(coord[1]))
def canvas_to_log_rect(self, rect):
return Rect(self.canvas_to_log_x(rect.x),
self.canvas_to_log_y(rect.y),
self.scale_canvas_to_log_x(rect.w),
self.scale_canvas_to_log_y(rect.h))
def canvas_to_log_x(self, x):
canvas_rect = self.canvas_rect
log_rect = self.log_rect
return (x - canvas_rect.x) * log_rect.w / canvas_rect.w + log_rect.x
def canvas_to_log_y(self, y):
canvas_rect = self.canvas_rect
log_rect = self.log_rect
return (y - canvas_rect.y) * log_rect.h / canvas_rect.h + log_rect.y
def scale_canvas_to_log_x(self, x):
return x * self.log_rect.w / self.canvas_rect.w
def scale_canvas_to_log_y(self, y):
return y * self.log_rect.h / self.canvas_rect.h
def log_to_canvas_path(self, path):
result = path.copy()
log_to_canvas_x = self.log_to_canvas_x
log_to_canvas_y = self.log_to_canvas_y
for op, coords in result.segments:
for i in range(0, len(coords), 2):
coords[i] = log_to_canvas_x(coords[i])
coords[i+1] = log_to_canvas_y(coords[i+1])
return result
##### Speed-optimized overloads #####
def log_to_canvas(self, coord):
canvas_rect = self.canvas_rect
log_rect = self.log_rect
return canvas_rect.x + (coord[0] - log_rect.x) * \
canvas_rect.w / log_rect.w, \
canvas_rect.y + (coord[1] - log_rect.y) * \
canvas_rect.h / log_rect.h
def log_to_canvas_rect(self, rect):
""" ~50% faster than the above. """
w = rect.w
h = rect.h
if w <= 0 or h <= 0:
return Rect()
canvas_rect = self.canvas_rect
log_rect = self.log_rect
scale_w = canvas_rect.w / log_rect.w
scale_h = canvas_rect.h / log_rect.h
return Rect(canvas_rect.x + (rect.x - log_rect.x) * scale_w,
canvas_rect.y + (rect.y - log_rect.y) * scale_h,
w * scale_w,
h * scale_h)
def scale_log_to_canvas(self, coord):
canvas_rect = self.canvas_rect
log_rect = self.log_rect
return coord[0] * canvas_rect.w / log_rect.w, \
coord[1] * canvas_rect.h / log_rect.h
class LayoutRoot:
"""
Decorator class wrapping the root item.
Implements extensive caching to avoid most of the expensive
(for python) traversal of the layout tree.
"""
def __init__(self, item):
self.__dict__['_item'] = item # item to decorate
self.invalidate_caches()
self.init_chamfer_sizes()
def __getattr__(self, name):
return getattr(self._item, name)
def __setattr__(self, name, value):
self._item.__setattr__(name, value)
def invalidate_caches(self):
self.invalidate_traversal_caches()
self.invalidate_geometry_caches()
def invalidate_traversal_caches(self):
# speed up iterating the tree
self._cached_items = {}
self._cached_keys = {}
self._cached_visible_items = {}
self._cached_layer_items = {}
self._cached_layer_keys = {}
self._cached_key_groups = {}
# cache available layers
self._cached_layer_ids = None
def invalidate_geometry_caches(self):
# speed up hit testing
self._cached_hit_rects = {}
self._last_hit_args = None
self._last_hit_key = None
def fit_inside_canvas(self, canvas_border_rect,
keep_aspect = False,
aspect_change_range = (0.0, 1.1),
x_align = 0.5, y_align = 0.0):
self._item.fit_inside_canvas(canvas_border_rect,
keep_aspect, aspect_change_range,
x_align, y_align)
# rects likely changed
# -> invalidate geometry related caches
self.invalidate_geometry_caches()
def set_visible_layers(self, layer_ids):
"""
Show all items of layer "layer", hide all items of the other layers.
"""
self.invalidate_caches()
self._item.set_visible_layers(layer_ids)
def set_item_visible(self, item, visible):
if item.visible != visible:
item.set_visible(visible)
self.invalidate_caches()
def iter_items(self):
items = self._cached_items
if not items:
items = tuple(self._item.iter_items())
self._cached_items = items
return items
def iter_keys(self, group_name = None):
items = self._cached_keys.get(group_name)
if not items:
items = tuple(self._item.iter_keys(group_name))
self._cached_keys[group_name] = items
return items
def iter_visible_items(self):
items = self._cached_visible_items
if not items:
items = tuple(self._item.iter_visible_items())
self._cached_visible_items = items
return items
def iter_layer_keys(self, layer_id):
"""
Returns cached visible keys per layer, re-creates cache if necessary.
Use iter_layer_keys if performance doesn't matter.
"""
items = self._cached_layer_keys.get(layer_id)
if not items:
items = tuple(self._item.iter_layer_keys(layer_id))
self._cached_layer_keys[layer_id] = items
return items
def iter_layer_items(self, layer_id = None, only_visible = True):
args = (layer_id, only_visible)
items = self._cached_layer_items.get(args)
if not items:
items = tuple(self._item.iter_layer_items(*args))
self._cached_layer_items[args] = items
return items
def get_layer_ids(self):
layer_ids = self._cached_layer_ids
if not layer_ids:
layer_ids = self._item.get_layer_ids()
self._cached_layer_ids = layer_ids
return layer_ids
def get_key_groups(self):
"""
Return all keys sorted by group.
"""
key_groups = self._cached_key_groups
if not key_groups:
key_groups = self._item.get_key_groups()
self._cached_key_groups = key_groups
return key_groups
def get_key_at(self, point, active_layer):
"""
Find the topmost key at point.
"""
# After motion-notify-event the query-tooltit event calls this
# a second time with the same point. Avoid re-searching in that case.
args = (point, active_layer)
if self._last_hit_args == args:
return self._last_hit_key
key = None
x, y = point
hit_rects = self._get_hit_rects(active_layer)
for x0, y0, x1, y1, k in hit_rects:
# Inlined test, not using Rect.is_point_within for speed.
if x >= x0 and x < x1 and \
y >= y0 and y < y1:
if k.geometry is None or \
k.get_hit_path().is_point_within(point):
key = k
break
self._last_hit_args = args
self._last_hit_key = key
return key
def _get_hit_rects(self, active_layer):
try:
hit_rects = self._cached_hit_rects[active_layer]
except KeyError:
# All visible and sensitive key items sorted in z-order.
# Keys of the active layer have priority over non-layer keys
# (layer switcher, hide, etc.).
iter_layer_keys = self.iter_layer_keys
items = list(reversed(list(iter_layer_keys(active_layer)))) + \
list(reversed(list(iter_layer_keys(None))))
hit_rects = [item.get_hit_rect().to_extents() + (item,) \
for item in items]
self._cached_hit_rects[active_layer] = hit_rects
return hit_rects
def init_chamfer_sizes(self):
chamfer_sizes = self._calc_chamfer_sizes()
for key in self.iter_global_keys():
if key.chamfer_size is None:
layer_id = key.get_layer()
chamfer_size = chamfer_sizes.get(layer_id)
if not chamfer_size is None:
key.chamfer_size = chamfer_size
def _calc_chamfer_sizes(self):
chamfer_sizes = {}
for layer_id in [None] + self.get_layer_ids():
# find the most frequent key width or height of the layer
hist = {}
for key in self.iter_layer_keys(layer_id):
r = key.get_border_rect()
s = min(r.w, r.h)
hist[s] = hist.get(s, 0) + 1
most_frequent_size = \
max(list(zip(list(hist.values()), list(hist.keys()))))[1] \
if hist else None
chamfer_size = most_frequent_size * 0.5 \
if not most_frequent_size is None else None
chamfer_sizes[layer_id] = chamfer_size
return chamfer_sizes
class LayoutItem(TreeItem):
""" Abstract base class for layoutable items """
# group string of the item, label size group for keys
group = None
# name of the layer the item is to be shown on, None for all layers
layer_id = None
# filename of the svg file where the key geometry is defined
filename = None
# key context for transformation between logical and canvas coordinates
context = None
# State of visibility. Also determines if drawing space will be
# assigned to this item and its children.
visible = True
# sensitivity, aka. greying; False to stop interaction with the item
sensitive = True
# Border around the item. The border "shrinks" the item and
# is invisible but still sensitive to clicks.
border = 0.0
# Expand item in LayoutBoxes
# "True" expands the item into the space of invisible siblings.
# "False" keeps it at the size of the even distribution of all siblings.
# Usually this will lock the key to the aspect ratio of its
# svg geometry.
expand = True
# sublayout sub-trees
sublayouts = None
# parent item of sublayout roots
sublayout_parent = None
# override switching back to layer 0 on key press
# True: do switch to layer 0 on press
# False: dont't
# None: maybe, hard-coded default-behavior for compatibility with <0.99
unlatch_layer = None
# False if the key should be ignored by the scanner
scannable = True
# Determines scanning order
scan_priority = None
# parsing helpers, only valid while loading a layout
templates = None
keysym_rules = None
def __init__(self):
self.context = KeyContext()
def __repr__(self):
return "{}({})".format(type(self).__name__, repr(self.id))
def dumps(self):
"""
Recursively dumps the layout (sub-) tree starting from self.
Returns a multi-line string.
"""
global _level
if not "_level" in globals():
_level = -1
_level += 1
s = " "*_level + "{} id={} layer_id={} fn={} vis={}\n".format(
object.__repr__(self),
repr(self.id),
repr(self.layer_id),
repr(self.filename),
repr(self.visible),
) + \
"".join(item.dumps() for item in self.items)
_level -= 1
return s
def set_id(self, id):
self.id = id
def get_rect(self):
""" Get bounding box in logical coordinates """
return self.get_border_rect().deflate(self.border)
def get_border_rect(self):
""" Get bounding rect including border in logical coordinates """
return self.context.log_rect
def set_border_rect(self, border_rect):
""" Set bounding rect including border in logical coordinates """
self.context.log_rect = border_rect
def get_initial_border_rect(self):
"""
Get initial bounding rect including border in logical coordinates
"""
return self.context.initial_log_rect
def set_initial_border_rect(self, border_rect):
"""
Set initial bounding rect including border in logical coordinates.
"""
self.context.initial_log_rect = border_rect
def get_canvas_rect(self):
""" Get bounding box in canvas coordinates """
return self.context.log_to_canvas_rect(self.get_rect())
def get_canvas_border_rect(self):
""" Get bounding rect including border in canvas coordinates """
return self.context.canvas_rect
def get_log_aspect_ratio(self):
"""
Return the aspect ratio of the visible logical extents
of the layout tree.
"""
size = self.get_log_extents()
return size[0] / float(size[1])
def get_log_extents(self):
"""
Get the logical extents of the layout tree.
Extents ignore invisible, "collapsed" items,
ie. an invisible click column is not included.
"""
return self.get_border_rect().get_size()
def get_canvas_extents(self):
"""
Get the canvas extents of the layout tree.
"""
size = self.get_log_extents()
return self.context.scale_log_to_canvas(size)
def get_extra_render_size(self):
""" Account for stroke width and antialiasing of keys and bars"""
root = self.get_layout_root()
return root.context.scale_log_to_canvas((2.0, 2.0))
def fit_inside_canvas(self, canvas_border_rect,
keep_aspect = False,
aspect_change_range = (0.0, 1.1),
x_align = 0.5, y_align = 0.0):
"""
Scale item and its children to fit inside the given canvas_rect.
"""
# recursively update item's bounding boxes
self.update_log_rect()
# optionally maintain the aspect ratio and align the result
if keep_aspect:
r = self.context.log_rect
if r.h:
a0 = r.w / float(r.h)
a0_max = a0 * aspect_change_range[1]
a1 = canvas_border_rect.w / float(canvas_border_rect.h)
a = min(a1, a0_max)
r = Rect(0, 0, a, 1.0)
r = Rect(0, 0, a, 1.0)
canvas_border_rect = r.inscribe_with_aspect( \
canvas_border_rect, x_align, y_align)
# recursively fit inside canvas
self._fit_inside_canvas(canvas_border_rect)
def _fit_inside_canvas(self, canvas_border_rect):
"""
Scale item and its children to fit inside the given canvas_rect.
"""
self.context.canvas_rect = canvas_border_rect
def update_log_rect(self):
for item in self.iter_depth_first():
item._update_log_rect()
def _update_log_rect(self):
"""
Override this for layout items that have to calculate their
logical rectangle.
"""
pass
def get_hit_rect(self):
""" Returns true if the point lies within the items borders. """
return self.get_canvas_border_rect().inflate(1)
def is_point_within(self, canvas_point):
""" Returns true if the point lies within the items borders. """
rect = self.get_hit_rect()
return rect.is_point_within(canvas_point)
def set_visible(self, visible):
self.visible = visible
def is_visible(self):
""" Returns visibility status """
return self.visible
def is_path_visible(self):
""" Are all items in the path to the root visible? """
item = self
while item:
if not item.visible:
return False
item = item.parent
return True
def has_visible_key(self):
"""
Checks if there is any visible key in the
subtree starting at self.
"""
for item in self.iter_visible_items():
if item.is_key():
return True
return False
def is_path_scannable(self):
""" Are all items in the path to the root scannable? """
item = self
while item:
if not item.scannable:
return False
item = item.parent
return True
def get_path_scan_priority(self):
""" Return the closeset scan_priority in the path to the root. """
item = self
while item:
if not item.scan_priority is None:
return item.scan_priority
item = item.parent
return 0
def get_layout_root(self):
""" Return the root layout item """
item = self
while item:
if item.parent is None:
return item
item = item.parent
def get_global_layout_root(self):
""" Return the root layout item """
item = self
while item:
if item.parent is None:
return item
item = item.parent
def get_layer(self):
""" Return the first layer_id on the path from the tree root to self """
layer_id = None
item = self
while item:
if not item.layer_id is None:
layer_id = item.layer_id
item = item.parent
return layer_id
def set_visible_layers(self, layer_ids):
"""
Show all items of layers <layer_ids>, hide all items of the other layers.
"""
if not self.layer_id is None:
if not self.is_key():
self.visible = self.layer_id in layer_ids
for item in self.items:
item.set_visible_layers(layer_ids)
def get_layer_ids(self, _layer_ids=None):
"""
Search the tree for layer ids and return them in order of appearance
"""
if _layer_ids is None:
_layer_ids = []
if not self.layer_id is None and \
not self.layer_id in _layer_ids:
_layer_ids.append(self.layer_id)
for item in self.items:
item.get_layer_ids(_layer_ids)
return _layer_ids
def get_key_groups(self):
"""
Traverse the tree and return all keys sorted by group.
"""
key_groups = {}
for key in self.iter_keys():
keys = key_groups.get(key.group, [])
keys.append(key)
key_groups[key.group] = keys
return key_groups
def raise_to_top(self):
""" raise self to the top of its siblings """
if self.parent:
self.parent.items.remove(self)
self.parent.items.append(self)
def lower_to_bottom(self):
""" lower self to the bottom of its siblings """
if self.parent:
self.parent.items.remove(self)
self.parent.items.insert(0, self)
def raise_to_top(self):
if self.parent:
self.parent.items.remove(self)
#self.parent.items.insert(0, self)
self.parent.items.append(self)
def get_filename(self):
"""
Recursively finds the closeset definition of the svg filename.
"""
if self.filename:
return self.filename
if self.parent:
return self.parent.get_filename()
return None
def can_unlatch_layer(self):
"""
Recursively finds the closeset definition of the
unlatch_layer attribute.
"""
if not self.unlatch_layer is None:
return self.unlatch_layer
if self.parent:
return self.parent.can_unlatch_layer()
return None
def is_key(self):
""" Returns true if self is a key. """
return False
def iter_visible_items(self):
"""
Traverses top to bottom all visible layout items of the
layout tree. Invisible paths are cut short.
"""
if self.visible:
yield self
for item in self.items:
for visible_item in item.iter_visible_items():
yield visible_item
def iter_keys(self, group_name = None):
"""
Iterates through all keys of the layout tree.
"""
if self.is_key():
if group_name is None or key.group == group_name:
yield self
for item in self.items:
for key in item.iter_keys(group_name):
yield key
def iter_global_items(self):
"""
Iterates through all items of the tree including sublayouts.
"""
yield self
for item in self.items:
for child in item.iter_global_items():
yield child
if self.sublayouts:
for item in self.sublayouts:
for child in item.iter_global_items():
yield child
def iter_global_keys(self, group_name = None):
"""
Iterates through all keys of the layout tree including sublayouts.
"""
if self.is_key():
if group_name is None or key.group == group_name:
yield self
for item in self.items:
for key in item.iter_global_keys(group_name):
yield key
if self.sublayouts:
for item in self.sublayouts:
for key in item.iter_global_keys(group_name):
yield key
def iter_layer_keys(self, layer_id = None):
"""
Iterates through all keys of the given layer.
"""
for item in self.iter_layer_items(layer_id):
if item.is_key():
yield item
def iter_layer_items(self, layer_id = None, only_visible = True,
_found_layer_id = None):
"""
Iterate through all items of the given layer.
The first layer definition found in the path to each key wins.
layer=None iterates through all keys that don't have a layer
specified anywhere in their path.
"""
if only_visible and not self.visible:
return
if self.layer_id == layer_id:
_found_layer_id = layer_id
if self.layer_id and self.layer_id != _found_layer_id:
return
if _found_layer_id == layer_id:
yield self
for item in self.items:
for item in item.iter_layer_items(layer_id, only_visible,
_found_layer_id):
yield item
def find_instance_in_path(self, classinfo):
""" Find an item of a certain type in the path from self to the root. """
item = self
while item:
if isinstance(item, classinfo):
return item
item = item.parent
return None
def update_templates(self, templates):
if templates:
if self.templates is None:
self.templates = templates
else:
self.templates.update(templates)
def update_keysym_rules(self, keysym_rules):
if keysym_rules:
if self.keysym_rules is None:
self.keysym_rules = keysym_rules
else:
self.keysym_rules.update(keysym_rules)
def append_sublayout(self, sublayout):
if sublayout:
if self.sublayouts is None:
self.sublayouts = []
self.sublayouts.append(sublayout)
def find_sublayout(self, id):
"""
Look for a sublayout item upwards from self to the root.
"""
for item in self.iter_to_root():
sublayouts = item.sublayouts
if sublayouts:
for sublayout in sublayouts:
if sublayout.id == id:
return sublayout
return None
def iter_to_global_root(self):
"""
Iterate through sublayouts all the way to the global layout root.
LayoutLoader needs this to access key templates from inside of
sublayouts.
"""
item = self
while item:
yield item
item = item.parent or item.sublayout_parent
class LayoutBox(LayoutItem):
"""
Container for distributing items along a single horizontal or
vertical axis. Items touch, but don't overlap.
"""
# Spread out child items horizontally or vertically.
horizontal = True
# distance between items
spacing = 1
# Don't extend bounding box into invisibles
compact = False
def __init__(self, horizontal = True):
super(LayoutBox, self).__init__()
if self.horizontal != horizontal:
self.horizontal = horizontal
def _update_log_rect(self):
self.context.log_rect = self._calc_bounds()
def _calc_bounds(self):
"""
Calculate the bounding rectangle over all items of this panel.
Include invisible items to stretch the visible ones into their
space too.
"""
compact = self.compact
bounds = None
for item in self.items:
if not compact or item.visible:
rect = item.get_border_rect()
if not rect.is_empty():
if bounds is None:
bounds = rect
else:
bounds = bounds.union(rect)
if bounds is None:
return Rect()
return bounds
def _fit_inside_canvas(self, canvas_border_rect):
""" Scale items to fit inside the given canvas_rect """
LayoutItem._fit_inside_canvas(self, canvas_border_rect)
axis = 0 if self.horizontal else 1
items = self.items
# get canvas rectangle without borders
canvas_rect = self.get_canvas_rect()
# Find the combined length of all items, including
# invisible ones (logical coordinates).
length = 0.0
for i, item in enumerate(items):
rect = item.get_border_rect()
if not rect.is_empty():
if i:
length += self.spacing
length += rect[axis+2]
# Find the stretch factor, that fills the available canvas space with
# evenly distributed, all visible items.
fully_visible_scale = canvas_rect[axis+2] / length \
if length else 1.0
canvas_spacing = fully_visible_scale * self.spacing
# Transform items into preliminary canvas space, drop invisibles
# and find the total lengths of expandable and non-expandable
# items (preliminary canvas coordinates).
length_expandables = 0.0
num_expandables = 0
length_nonexpandables = 0.0
num_nonexpandables = 0
for i, item in enumerate(items):
length = item.get_border_rect()[axis+2]
if length and item.has_visible_key():
length *= fully_visible_scale
if item.expand:
length_expandables += length
num_expandables += 1
else:
length_nonexpandables += length
num_nonexpandables += 1
# Calculate a second stretch factor for expandable and actually
# visible items. This takes care of the part of the canvas_rect,
# that isn't covered by the first factor yet.
# All calculation is done in preliminary canvas coordinates.
length_target = canvas_rect[axis+2] - length_nonexpandables - \
canvas_spacing * (num_nonexpandables + num_expandables - 1)
expandable_scale = length_target / length_expandables \
if length_expandables else 1.0
# Calculate the final canvas rectangles and traverse
# the tree recursively.
position = 0.0
for i, item in enumerate(items):
rect = item.get_border_rect()
if item.has_visible_key():
length = rect[axis+2]
spacing = canvas_spacing
else:
length = 0.0
spacing = 0.0
scale = fully_visible_scale
if item.expand:
scale *= expandable_scale
canvas_length = length * scale
# set the final canvas rect
r = Rect(*canvas_rect)
r[axis] = canvas_rect[axis] + position
r[axis+2] = canvas_length
item._fit_inside_canvas(r)
position += canvas_length + spacing
def get_log_extents(self):
"""
Get the logical extents of the layout tree.
Extents ignore invisible, "collapsed" items,
ie. an invisible click column is not included.
"""
rect = None
for item in self.items:
r = item.get_border_rect()
if rect is None:
rect = r.copy()
else:
if self.horizontal:
rect.w += r.w
else:
rect.h += r.h
return rect.get_size()
class LayoutPanel(LayoutItem):
"""
Group of keys layed out at fixed positions relative to each other.
"""
# Don't extend bounding box into invisibles
compact = False
def _fit_inside_canvas(self, canvas_border_rect):
"""
Scale panel to fit inside the given canvas_rect.
"""
LayoutItem._fit_inside_canvas(self, canvas_border_rect)
# Setup children's transformations, take care of the border.
if self.get_border_rect().is_empty():
# Clear all item's transformations if there are no visible items.
for item in self.items:
item.context.canvas_rect = Rect()
else:
context = KeyContext()
context.log_rect = self.get_border_rect()
context.canvas_rect = self.get_canvas_rect() # exclude border
for item in self.items:
rect = context.log_to_canvas_rect(item.context.log_rect)
item._fit_inside_canvas(rect)
def _update_log_rect(self):
self.context.log_rect = self._calc_bounds()
def _calc_bounds(self):
""" Calculate the bounding rectangle over all items of this panel """
# If there is no visible item return an empty rect
if all(not item.is_visible() for item in self.items):
return Rect()
compact = self.compact
bounds = None
for item in self.items:
if not compact or item.visible:
rect = item.get_border_rect()
if not rect.is_empty():
if bounds is None:
bounds = rect
else:
bounds = bounds.union(rect)
if bounds is None:
return Rect()
return bounds
|