/usr/lib/ocaml/scanf.ml is in ocaml-nox 4.01.0-3ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 | (***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Pierre Weis, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* The run-time library for scanners. *)
(* Scanning buffers. *)
module type SCANNING = sig
type in_channel;;
type scanbuf = in_channel;;
type file_name = string;;
val stdin : in_channel;;
(* The scanning buffer reading from [Pervasives.stdin].
[stdib] is equivalent to [Scanning.from_channel Pervasives.stdin]. *)
val stdib : in_channel;;
(* An alias for [Scanf.stdin], the scanning buffer reading from
[Pervasives.stdin]. *)
val next_char : scanbuf -> char;;
(* [Scanning.next_char ib] advance the scanning buffer for
one character.
If no more character can be read, sets a end of file condition and
returns '\000'. *)
val invalidate_current_char : scanbuf -> unit;;
(* [Scanning.invalidate_current_char ib] mark the current_char as already
scanned. *)
val peek_char : scanbuf -> char;;
(* [Scanning.peek_char ib] returns the current char available in
the buffer or reads one if necessary (when the current character is
already scanned).
If no character can be read, sets an end of file condition and
returns '\000'. *)
val checked_peek_char : scanbuf -> char;;
(* Same as above but always returns a valid char or fails:
instead of returning a null char when the reading method of the
input buffer has reached an end of file, the function raises exception
[End_of_file]. *)
val store_char : int -> scanbuf -> char -> int;;
(* [Scanning.store_char lim ib c] adds [c] to the token buffer
of the scanning buffer. It also advances the scanning buffer for one
character and returns [lim - 1], indicating the new limit
for the length of the current token. *)
val skip_char : int -> scanbuf -> int;;
(* [Scanning.skip_char lim ib] ignores the current character. *)
val ignore_char : int -> scanbuf -> int;;
(* [Scanning.ignore_char ib lim] ignores the current character and
decrements the limit. *)
val token : scanbuf -> string;;
(* [Scanning.token ib] returns the string stored into the token
buffer of the scanning buffer: it returns the token matched by the
format. *)
val reset_token : scanbuf -> unit;;
(* [Scanning.reset_token ib] resets the token buffer of
the given scanning buffer. *)
val char_count : scanbuf -> int;;
(* [Scanning.char_count ib] returns the number of characters
read so far from the given buffer. *)
val line_count : scanbuf -> int;;
(* [Scanning.line_count ib] returns the number of new line
characters read so far from the given buffer. *)
val token_count : scanbuf -> int;;
(* [Scanning.token_count ib] returns the number of tokens read
so far from [ib]. *)
val eof : scanbuf -> bool;;
(* [Scanning.eof ib] returns the end of input condition
of the given buffer. *)
val end_of_input : scanbuf -> bool;;
(* [Scanning.end_of_input ib] tests the end of input condition
of the given buffer (if no char has ever been read, an attempt to
read one is performed). *)
val beginning_of_input : scanbuf -> bool;;
(* [Scanning.beginning_of_input ib] tests the beginning of input
condition of the given buffer. *)
val name_of_input : scanbuf -> string;;
(* [Scanning.name_of_input ib] returns the name of the character
source for input buffer [ib]. *)
val open_in : file_name -> in_channel;;
val open_in_bin : file_name -> in_channel;;
val from_file : file_name -> in_channel;;
val from_file_bin : file_name -> in_channel;;
val from_string : string -> in_channel;;
val from_function : (unit -> char) -> in_channel;;
val from_channel : Pervasives.in_channel -> in_channel;;
val close_in : in_channel -> unit;;
end
;;
module Scanning : SCANNING = struct
(* The run-time library for scanf. *)
type in_channel_name =
| From_file of string * Pervasives.in_channel
| From_string
| From_function
| From_channel of Pervasives.in_channel
;;
type in_channel = {
mutable eof : bool;
mutable current_char : char;
mutable current_char_is_valid : bool;
mutable char_count : int;
mutable line_count : int;
mutable token_count : int;
mutable get_next_char : unit -> char;
tokbuf : Buffer.t;
input_name : in_channel_name;
}
;;
type scanbuf = in_channel;;
type file_name = string;;
let null_char = '\000';;
(* Reads a new character from input buffer. Next_char never fails,
even in case of end of input: it then simply sets the end of file
condition. *)
let next_char ib =
try
let c = ib.get_next_char () in
ib.current_char <- c;
ib.current_char_is_valid <- true;
ib.char_count <- succ ib.char_count;
if c = '\n' then ib.line_count <- succ ib.line_count;
c with
| End_of_file ->
let c = null_char in
ib.current_char <- c;
ib.current_char_is_valid <- false;
ib.eof <- true;
c
;;
let peek_char ib =
if ib.current_char_is_valid then ib.current_char else next_char ib;;
(* Returns a valid current char for the input buffer. In particular
no irrelevant null character (as set by [next_char] in case of end
of input) is returned, since [End_of_file] is raised when
[next_char] sets the end of file condition while trying to read a
new character. *)
let checked_peek_char ib =
let c = peek_char ib in
if ib.eof then raise End_of_file;
c
;;
let end_of_input ib =
ignore (peek_char ib);
ib.eof
;;
let eof ib = ib.eof;;
let beginning_of_input ib = ib.char_count = 0;;
let name_of_input ib =
match ib.input_name with
| From_file (fname, _ic) -> fname
| From_string -> "unnamed character string"
| From_function -> "unnamed function"
| From_channel _ic -> "unnamed pervasives input channel"
;;
let char_count ib =
if ib.current_char_is_valid then ib.char_count - 1 else ib.char_count
;;
let line_count ib = ib.line_count;;
let reset_token ib = Buffer.reset ib.tokbuf;;
let invalidate_current_char ib = ib.current_char_is_valid <- false;;
let token ib =
let tokbuf = ib.tokbuf in
let tok = Buffer.contents tokbuf in
Buffer.clear tokbuf;
ib.token_count <- succ ib.token_count;
tok
;;
let token_count ib = ib.token_count;;
let skip_char width ib =
invalidate_current_char ib;
width
;;
let ignore_char width ib = skip_char (width - 1) ib;;
let store_char width ib c =
Buffer.add_char ib.tokbuf c;
ignore_char width ib
;;
let default_token_buffer_size = 1024;;
let create iname next = {
eof = false;
current_char = null_char;
current_char_is_valid = false;
char_count = 0;
line_count = 0;
token_count = 0;
get_next_char = next;
tokbuf = Buffer.create default_token_buffer_size;
input_name = iname;
}
;;
let from_string s =
let i = ref 0 in
let len = String.length s in
let next () =
if !i >= len then raise End_of_file else
let c = s.[!i] in
incr i;
c in
create From_string next
;;
let from_function = create From_function;;
(* Scanning from an input channel. *)
(* Position of the problem:
We cannot prevent the scanning mechanism to use one lookahead character,
if needed by the semantics of the format string specifications (e.g. a
trailing 'skip space' specification in the format string); in this case,
the mandatory lookahead character is indeed read from the input and not
used to return the token read. It is thus mandatory to be able to store
an unused lookahead character somewhere to get it as the first character
of the next scan.
To circumvent this problem, all the scanning functions get a low level
input buffer argument where they store the lookahead character when
needed; additionally, the input buffer is the only source of character of
a scanner. The [scanbuf] input buffers are defined in module {!Scanning}.
Now we understand that it is extremely important that related successive
calls to scanners indeed read from the same input buffer. In effect, if a
scanner [scan1] is reading from [ib1] and stores an unused lookahead
character [c1] into its input buffer [ib1], then another scanner [scan2]
not reading from the same buffer [ib1] will miss the character [c],
seemingly vanished in the air from the point of view of [scan2].
This mechanism works perfectly to read from strings, from files, and from
functions, since in those cases, allocating two buffers reading from the
same source is unnatural.
Still, there is a difficulty in the case of scanning from an input
channel. In effect, when scanning from an input channel [ic], this channel
may not have been allocated from within this library. Hence, it may be
shared (two functions of the user's program may successively read from
[ic]). This is highly error prone since, one of the function may seek the
input channel, while the other function has still an unused lookahead
character in its input buffer. In conclusion, you should never mix direct
low level reading and high level scanning from the same input channel.
This phenomenon of reading mess is even worse when one defines more than
one scanning buffer reading from the same input channel
[ic]. Unfortunately, we have no simple way to get rid of this problem
(unless the basic input channel API is modified to offer a 'consider this
char as unread' procedure to keep back the unused lookahead character as
available in the input channel for further reading).
To prevent some of the confusion the scanning buffer allocation function
is a memo function that never allocates two different scanning buffers for
the same input channel. This way, the user can naively perform successive
call to [fscanf] below, without allocating a new scanning buffer at each
invocation and hence preserving the expected semantics.
As mentioned above, a more ambitious fix could be to change the input
channel API to allow arbitrary mixing of direct and formatted reading from
input channels. *)
(* Perform bufferized input to improve efficiency. *)
let file_buffer_size = ref 1024;;
(* The scanner closes the input channel at end of input. *)
let scan_close_at_end ic = close_in ic; raise End_of_file;;
(* The scanner does not close the input channel at end of input:
it just raises [End_of_file]. *)
let scan_raise_at_end _ic = raise End_of_file;;
let from_ic scan_close_ic iname ic =
let len = !file_buffer_size in
let buf = String.create len in
let i = ref 0 in
let lim = ref 0 in
let eof = ref false in
let next () =
if !i < !lim then begin let c = buf.[!i] in incr i; c end else
if !eof then raise End_of_file else begin
lim := input ic buf 0 len;
if !lim = 0 then begin eof := true; scan_close_ic ic end else begin
i := 1;
buf.[0]
end
end in
create iname next
;;
let from_ic_close_at_end = from_ic scan_close_at_end;;
(* The scanning buffer reading from [Pervasives.stdin].
One could try to define [stdib] as a scanning buffer reading a character
at a time (no bufferization at all), but unfortunately the top-level
interaction would be wrong. This is due to some kind of
'race condition' when reading from [Pervasives.stdin],
since the interactive compiler and [scanf] will simultaneously read the
material they need from [Pervasives.stdin]; then, confusion will result
from what should be read by the top-level and what should be read
by [scanf].
This is even more complicated by the one character lookahead that [scanf]
is sometimes obliged to maintain: the lookahead character will be
available for the next ([scanf]) entry, seemingly coming from nowhere.
Also no [End_of_file] is raised when reading from stdin: if not enough
characters have been read, we simply ask to read more. *)
let stdin =
from_ic scan_raise_at_end
(From_file ("-", Pervasives.stdin)) Pervasives.stdin
;;
let stdib = stdin;;
let open_in fname =
match fname with
| "-" -> stdin
| fname ->
let ic = open_in fname in
from_ic_close_at_end (From_file (fname, ic)) ic
;;
let open_in_bin fname =
match fname with
| "-" -> stdin
| fname ->
let ic = open_in_bin fname in
from_ic_close_at_end (From_file (fname, ic)) ic
;;
let from_file = open_in;;
let from_file_bin = open_in_bin;;
let memo_from_ic =
let memo = ref [] in
(fun scan_close_ic ic ->
try List.assq ic !memo with
| Not_found ->
let ib = from_ic scan_close_ic (From_channel ic) ic in
memo := (ic, ib) :: !memo;
ib)
;;
let from_channel = memo_from_ic scan_raise_at_end;;
let close_in ib =
match ib.input_name with
| From_file (_fname, ic) -> Pervasives.close_in ic
| From_string | From_function -> ()
| From_channel ic -> Pervasives.close_in ic
;;
end
;;
(* Formatted input functions. *)
type ('a, 'b, 'c, 'd) scanner =
('a, Scanning.in_channel, 'b, 'c, 'a -> 'd, 'd) format6 -> 'c
;;
external string_to_format :
string -> ('a, 'b, 'c, 'd, 'e, 'f) format6 = "%identity"
;;
(* Reporting errors. *)
exception Scan_failure of string;;
let bad_input s = raise (Scan_failure s);;
let bad_input_escape c =
bad_input (Printf.sprintf "illegal escape character %C" c)
;;
let bad_token_length message =
bad_input
(Printf.sprintf
"scanning of %s failed: \
the specified length was too short for token" message)
;;
let bad_end_of_input message =
bad_input
(Printf.sprintf
"scanning of %s failed: \
premature end of file occurred before end of token" message)
;;
let int_of_width_opt = function
| None -> max_int
| Some width -> width
;;
let int_of_prec_opt = function
| None -> max_int
| Some prec -> prec
;;
module Sformat = Printf.CamlinternalPr.Sformat;;
module Tformat = Printf.CamlinternalPr.Tformat;;
let bad_conversion fmt i c =
invalid_arg
(Printf.sprintf
"scanf: bad conversion %%%C, at char number %i \
in format string \'%s\'" c i (Sformat.to_string fmt))
;;
let incomplete_format fmt =
invalid_arg
(Printf.sprintf "scanf: premature end of format string \'%s\'"
(Sformat.to_string fmt))
;;
let bad_float () =
bad_input "no dot or exponent part found in float token"
;;
let character_mismatch_err c ci =
Printf.sprintf "looking for %C, found %C" c ci
;;
let character_mismatch c ci =
bad_input (character_mismatch_err c ci)
;;
let format_mismatch_err fmt1 fmt2 =
Printf.sprintf
"format read \'%s\' does not match specification \'%s\'" fmt1 fmt2
;;
let format_mismatch fmt1 fmt2 = bad_input (format_mismatch_err fmt1 fmt2);;
(* Checking that 2 format strings are type compatible. *)
let compatible_format_type fmt1 fmt2 =
Tformat.summarize_format_type (string_to_format fmt1) =
Tformat.summarize_format_type (string_to_format fmt2);;
(* Checking that [c] is indeed in the input, then skips it.
In this case, the character [c] has been explicitly specified in the
format as being mandatory in the input; hence we should fail with
End_of_file in case of end_of_input. (Remember that Scan_failure is raised
only when (we can prove by evidence) that the input does not match the
format string given. We must thus differentiate End_of_file as an error
due to lack of input, and Scan_failure which is due to provably wrong
input. I am not sure this is worth the burden: it is complex and somehow
subliminal; should be clearer to fail with Scan_failure "Not enough input
to complete scanning"!)
That's why, waiting for a better solution, we use checked_peek_char here.
We are also careful to treat "\r\n" in the input as an end of line marker:
it always matches a '\n' specification in the input format string. *)
let rec check_char ib c =
let ci = Scanning.checked_peek_char ib in
if ci = c then Scanning.invalidate_current_char ib else begin
match ci with
| '\r' when c = '\n' ->
Scanning.invalidate_current_char ib; check_char ib '\n'
| _ -> character_mismatch c ci
end
;;
(* Checks that the current char is indeed one of the stopper characters,
then skips it.
Be careful that if ib has no more character this procedure should
just do nothing (since %s@c defaults to the entire rest of the
buffer, when no character c can be found in the input). *)
let ignore_stoppers stps ib =
if stps <> [] && not (Scanning.eof ib) then
let ci = Scanning.peek_char ib in
if List.memq ci stps then Scanning.invalidate_current_char ib else
let sr = String.concat "" (List.map (String.make 1) stps) in
bad_input
(Printf.sprintf "looking for one of range %S, found %C" sr ci)
;;
(* Extracting tokens from the output token buffer. *)
let token_char ib = (Scanning.token ib).[0];;
let token_string = Scanning.token;;
let token_bool ib =
match Scanning.token ib with
| "true" -> true
| "false" -> false
| s -> bad_input (Printf.sprintf "invalid boolean %S" s)
;;
(* Extract an integer literal token.
Since the functions Pervasives.*int*_of_string do not accept a leading +,
we skip it if necessary. *)
let token_int_literal conv ib =
let tok =
match conv with
| 'd' | 'i' | 'u' -> Scanning.token ib
| 'o' -> "0o" ^ Scanning.token ib
| 'x' | 'X' -> "0x" ^ Scanning.token ib
| 'b' -> "0b" ^ Scanning.token ib
| _ -> assert false in
let l = String.length tok in
if l = 0 || tok.[0] <> '+' then tok else String.sub tok 1 (l - 1)
;;
(* All the functions that convert a string to a number raise the exception
Failure when the conversion is not possible.
This exception is then trapped in [kscanf]. *)
let token_int conv ib = int_of_string (token_int_literal conv ib);;
let token_float ib = float_of_string (Scanning.token ib);;
(* To scan native ints, int32 and int64 integers.
We cannot access to conversions to/from strings for those types,
Nativeint.of_string, Int32.of_string, and Int64.of_string,
since those modules are not available to [Scanf].
However, we can bind and use the corresponding primitives that are
available in the runtime. *)
external nativeint_of_string : string -> nativeint
= "caml_nativeint_of_string"
;;
external int32_of_string : string -> int32
= "caml_int32_of_string"
;;
external int64_of_string : string -> int64
= "caml_int64_of_string"
;;
let token_nativeint conv ib = nativeint_of_string (token_int_literal conv ib);;
let token_int32 conv ib = int32_of_string (token_int_literal conv ib);;
let token_int64 conv ib = int64_of_string (token_int_literal conv ib);;
(* Scanning numbers. *)
(* Digits scanning functions suppose that one character has been checked and
is available, since they return at end of file with the currently found
token selected.
Put it in another way, the digits scanning functions scan for a possibly
empty sequence of digits, (hence, a successful scanning from one of those
functions does not imply that the token is a well-formed number: to get a
true number, it is mandatory to check that at least one valid digit is
available before calling one of the digit scanning functions). *)
(* The decimal case is treated especially for optimization purposes. *)
let rec scan_decimal_digits width ib =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
match c with
| '0' .. '9' as c ->
let width = Scanning.store_char width ib c in
scan_decimal_digits width ib
| '_' ->
let width = Scanning.ignore_char width ib in
scan_decimal_digits width ib
| _ -> width
;;
let scan_decimal_digits_plus width ib =
if width = 0 then bad_token_length "decimal digits" else
let c = Scanning.checked_peek_char ib in
match c with
| '0' .. '9' ->
let width = Scanning.store_char width ib c in
scan_decimal_digits width ib
| c ->
bad_input (Printf.sprintf "character %C is not a decimal digit" c)
;;
let scan_digits_plus basis digitp width ib =
(* To scan numbers from other bases, we use a predicate argument to
scan_digits. *)
let rec scan_digits width =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
match c with
| c when digitp c ->
let width = Scanning.store_char width ib c in
scan_digits width
| '_' ->
let width = Scanning.ignore_char width ib in
scan_digits width
| _ -> width in
(* Ensure we have got enough width left,
and read at list one digit. *)
if width = 0 then bad_token_length "digits" else
let c = Scanning.checked_peek_char ib in
if digitp c then
let width = Scanning.store_char width ib c in
scan_digits width
else
bad_input (Printf.sprintf "character %C is not a valid %s digit" c basis)
;;
let is_binary_digit = function
| '0' .. '1' -> true
| _ -> false
;;
let scan_binary_int = scan_digits_plus "binary" is_binary_digit;;
let is_octal_digit = function
| '0' .. '7' -> true
| _ -> false
;;
let scan_octal_int = scan_digits_plus "octal" is_octal_digit;;
let is_hexa_digit = function
| '0' .. '9' | 'a' .. 'f' | 'A' .. 'F' -> true
| _ -> false
;;
let scan_hexadecimal_int = scan_digits_plus "hexadecimal" is_hexa_digit;;
(* Scan a decimal integer. *)
let scan_unsigned_decimal_int = scan_decimal_digits_plus;;
let scan_sign width ib =
let c = Scanning.checked_peek_char ib in
match c with
| '+' -> Scanning.store_char width ib c
| '-' -> Scanning.store_char width ib c
| _ -> width
;;
let scan_optionally_signed_decimal_int width ib =
let width = scan_sign width ib in
scan_unsigned_decimal_int width ib
;;
(* Scan an unsigned integer that could be given in any (common) basis.
If digits are prefixed by one of 0x, 0X, 0o, or 0b, the number is
assumed to be written respectively in hexadecimal, hexadecimal,
octal, or binary. *)
let scan_unsigned_int width ib =
match Scanning.checked_peek_char ib with
| '0' as c ->
let width = Scanning.store_char width ib c in
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
begin match c with
| 'x' | 'X' -> scan_hexadecimal_int (Scanning.store_char width ib c) ib
| 'o' -> scan_octal_int (Scanning.store_char width ib c) ib
| 'b' -> scan_binary_int (Scanning.store_char width ib c) ib
| _ -> scan_decimal_digits width ib end
| _ -> scan_unsigned_decimal_int width ib
;;
let scan_optionally_signed_int width ib =
let width = scan_sign width ib in
scan_unsigned_int width ib
;;
let scan_int_conv conv width _prec ib =
match conv with
| 'b' -> scan_binary_int width ib
| 'd' -> scan_optionally_signed_decimal_int width ib
| 'i' -> scan_optionally_signed_int width ib
| 'o' -> scan_octal_int width ib
| 'u' -> scan_unsigned_decimal_int width ib
| 'x' | 'X' -> scan_hexadecimal_int width ib
| _ -> assert false
;;
(* Scanning floating point numbers. *)
(* Fractional part is optional and can be reduced to 0 digits. *)
let scan_frac_part width ib =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
match c with
| '0' .. '9' as c ->
scan_decimal_digits (Scanning.store_char width ib c) ib
| _ -> width
;;
(* Exp part is optional and can be reduced to 0 digits. *)
let scan_exp_part width ib =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
match c with
| 'e' | 'E' as c ->
scan_optionally_signed_decimal_int (Scanning.store_char width ib c) ib
| _ -> width
;;
(* Scan the integer part of a floating point number, (not using the
OCaml lexical convention since the integer part can be empty):
an optional sign, followed by a possibly empty sequence of decimal
digits (e.g. -.1). *)
let scan_int_part width ib =
let width = scan_sign width ib in
scan_decimal_digits width ib
;;
(*
For the time being we have (as found in scanf.mli):
The field width is composed of an optional integer literal
indicating the maximal width of the token to read.
Unfortunately, the type-checker let the user write an optional precision,
since this is valid for printf format strings.
Thus, the next step for Scanf is to support a full width and precision
indication, more or less similar to the one for printf, possibly extended
to the specification of a [max, min] range for the width of the token read
for strings. Something like the following spec for scanf.mli:
The optional [width] is an integer indicating the maximal
width of the token read. For instance, [%6d] reads an integer,
having at most 6 characters.
The optional [precision] is a dot [.] followed by an integer:
- in the floating point number conversions ([%f], [%e], [%g], [%F], [%E],
and [%F] conversions, the [precision] indicates the maximum number of
digits that may follow the decimal point. For instance, [%.4f] reads a
[float] with at most 4 fractional digits,
- in the string conversions ([%s], [%S], [%\[ range \]]), and in the
integer number conversions ([%i], [%d], [%u], [%x], [%o], and their
[int32], [int64], and [native_int] correspondent), the [precision]
indicates the required minimum width of the token read,
- on all other conversions, the width and precision are meaningless and
ignored (FIXME: lead to a runtime error ? type checking error ?).
*)
let scan_float width precision ib =
let width = scan_int_part width ib in
if width = 0 then width, precision else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width, precision else
match c with
| '.' ->
let width = Scanning.store_char width ib c in
let precision = min width precision in
let width = width - (precision - scan_frac_part precision ib) in
scan_exp_part width ib, precision
| _ ->
scan_exp_part width ib, precision
;;
let scan_Float width precision ib =
let width = scan_optionally_signed_decimal_int width ib in
if width = 0 then bad_float () else
let c = Scanning.peek_char ib in
if Scanning.eof ib then bad_float () else
match c with
| '.' ->
let width = Scanning.store_char width ib c in
let precision = min width precision in
let width = width - (precision - scan_frac_part precision ib) in
scan_exp_part width ib
| 'e' | 'E' ->
scan_exp_part width ib
| _ -> bad_float ()
;;
(* Scan a regular string:
stops when encountering a space, if no scanning indication has been given;
otherwise, stops when encountering one of the characters in the scanning
indication list [stp].
It also stops at end of file or when the maximum number of characters has
been read.*)
let scan_string stp width ib =
let rec loop width =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
if stp = [] then
match c with
| ' ' | '\t' | '\n' | '\r' -> width
| c -> loop (Scanning.store_char width ib c) else
if List.memq c stp then Scanning.skip_char width ib else
loop (Scanning.store_char width ib c) in
loop width
;;
(* Scan a char: peek strictly one character in the input, whatsoever. *)
let scan_char width ib =
(* The case width = 0 could not happen here, since it is tested before
calling scan_char, in the main scanning function.
if width = 0 then bad_token_length "a character" else *)
Scanning.store_char width ib (Scanning.checked_peek_char ib)
;;
let char_for_backslash = function
| 'n' -> '\010'
| 'r' -> '\013'
| 'b' -> '\008'
| 't' -> '\009'
| c -> c
;;
(* The integer value corresponding to the facial value of a valid
decimal digit character. *)
let decimal_value_of_char c = int_of_char c - int_of_char '0';;
let char_for_decimal_code c0 c1 c2 =
let c =
100 * decimal_value_of_char c0 +
10 * decimal_value_of_char c1 +
decimal_value_of_char c2 in
if c < 0 || c > 255 then
bad_input
(Printf.sprintf
"bad character decimal encoding \\%c%c%c" c0 c1 c2) else
char_of_int c
;;
(* The integer value corresponding to the facial value of a valid
hexadecimal digit character. *)
let hexadecimal_value_of_char c =
let d = int_of_char c in
(* Could also be:
if d <= int_of_char '9' then d - int_of_char '0' else
if d <= int_of_char 'F' then 10 + d - int_of_char 'A' else
if d <= int_of_char 'f' then 10 + d - int_of_char 'a' else assert false
*)
if d >= int_of_char 'a' then
d - 87 (* 10 + int_of_char c - int_of_char 'a' *) else
if d >= int_of_char 'A' then
d - 55 (* 10 + int_of_char c - int_of_char 'A' *) else
d - int_of_char '0'
;;
let char_for_hexadecimal_code c1 c2 =
let c =
16 * hexadecimal_value_of_char c1 +
hexadecimal_value_of_char c2 in
if c < 0 || c > 255 then
bad_input
(Printf.sprintf "bad character hexadecimal encoding \\%c%c" c1 c2) else
char_of_int c
;;
(* Called in particular when encountering '\\' as starter of a char.
Stops before the corresponding '\''. *)
let check_next_char message width ib =
if width = 0 then bad_token_length message else
let c = Scanning.peek_char ib in
if Scanning.eof ib then bad_end_of_input message else
c
;;
let check_next_char_for_char = check_next_char "a Char";;
let check_next_char_for_string = check_next_char "a String";;
let scan_backslash_char width ib =
match check_next_char_for_char width ib with
| '\\' | '\'' | '\"' | 'n' | 't' | 'b' | 'r' as c ->
Scanning.store_char width ib (char_for_backslash c)
| '0' .. '9' as c ->
let get_digit () =
let c = Scanning.next_char ib in
match c with
| '0' .. '9' as c -> c
| c -> bad_input_escape c in
let c0 = c in
let c1 = get_digit () in
let c2 = get_digit () in
Scanning.store_char (width - 2) ib (char_for_decimal_code c0 c1 c2)
| 'x' ->
let get_digit () =
let c = Scanning.next_char ib in
match c with
| '0' .. '9' | 'A' .. 'F' | 'a' .. 'f' as c -> c
| c -> bad_input_escape c in
let c1 = get_digit () in
let c2 = get_digit () in
Scanning.store_char (width - 2) ib (char_for_hexadecimal_code c1 c2)
| c ->
bad_input_escape c
;;
(* Scan a character (an OCaml token). *)
let scan_Char width ib =
let rec find_start width =
match Scanning.checked_peek_char ib with
| '\'' -> find_char (Scanning.ignore_char width ib)
| c -> character_mismatch '\'' c
and find_char width =
match check_next_char_for_char width ib with
| '\\' ->
find_stop (scan_backslash_char (Scanning.ignore_char width ib) ib)
| c ->
find_stop (Scanning.store_char width ib c)
and find_stop width =
match check_next_char_for_char width ib with
| '\'' -> Scanning.ignore_char width ib
| c -> character_mismatch '\'' c in
find_start width
;;
(* Scan a delimited string (an OCaml token). *)
let scan_String width ib =
let rec find_start width =
match Scanning.checked_peek_char ib with
| '\"' -> find_stop (Scanning.ignore_char width ib)
| c -> character_mismatch '\"' c
and find_stop width =
match check_next_char_for_string width ib with
| '\"' -> Scanning.ignore_char width ib
| '\\' -> scan_backslash (Scanning.ignore_char width ib)
| c -> find_stop (Scanning.store_char width ib c)
and scan_backslash width =
match check_next_char_for_string width ib with
| '\r' -> skip_newline (Scanning.ignore_char width ib)
| '\n' -> skip_spaces (Scanning.ignore_char width ib)
| _ -> find_stop (scan_backslash_char width ib)
and skip_newline width =
match check_next_char_for_string width ib with
| '\n' -> skip_spaces (Scanning.ignore_char width ib)
| _ -> find_stop (Scanning.store_char width ib '\r')
and skip_spaces width =
match check_next_char_for_string width ib with
| ' ' -> skip_spaces (Scanning.ignore_char width ib)
| _ -> find_stop width in
find_start width
;;
(* Scan a boolean (an OCaml token). *)
let scan_bool width ib =
if width < 4 then bad_token_length "a boolean" else
let c = Scanning.checked_peek_char ib in
let m =
match c with
| 't' -> 4
| 'f' -> 5
| c ->
bad_input
(Printf.sprintf "the character %C cannot start a boolean" c) in
scan_string [] (min width m) ib
;;
(* Reading char sets in %[...] conversions. *)
type char_set =
| Pos_set of string (* Positive (regular) set. *)
| Neg_set of string (* Negative (complementary) set. *)
;;
(* Char sets are read as sub-strings in the format string. *)
let scan_range fmt j =
let len = Sformat.length fmt in
let buffer = Buffer.create len in
let rec scan_closing j =
if j >= len then incomplete_format fmt else
match Sformat.get fmt j with
| ']' -> j, Buffer.contents buffer
| '%' ->
let j = j + 1 in
if j >= len then incomplete_format fmt else
begin match Sformat.get fmt j with
| '%' | '@' as c ->
Buffer.add_char buffer c;
scan_closing (j + 1)
| c -> bad_conversion fmt j c
end
| c ->
Buffer.add_char buffer c;
scan_closing (j + 1) in
let scan_first_pos j =
if j >= len then incomplete_format fmt else
match Sformat.get fmt j with
| ']' as c ->
Buffer.add_char buffer c;
scan_closing (j + 1)
| _ -> scan_closing j in
let scan_first_neg j =
if j >= len then incomplete_format fmt else
match Sformat.get fmt j with
| '^' ->
let j = j + 1 in
let k, char_set = scan_first_pos j in
k, Neg_set char_set
| _ ->
let k, char_set = scan_first_pos j in
k, Pos_set char_set in
scan_first_neg j
;;
(* Char sets are now represented as bit vectors that are represented as
byte strings. *)
(* Bit manipulations into bytes. *)
let set_bit_of_byte byte idx b =
(b lsl idx) lor (byte land (* mask idx *) (lnot (1 lsl idx)))
;;
let get_bit_of_byte byte idx = (byte lsr idx) land 1;;
(* Bit manipulations in vectors of bytes represented as strings. *)
let set_bit_of_range r c b =
let idx = c land 0x7 in
let ydx = c lsr 3 in
let byte = r.[ydx] in
r.[ydx] <- char_of_int (set_bit_of_byte (int_of_char byte) idx b)
;;
let get_bit_of_range r c =
let idx = c land 0x7 in
let ydx = c lsr 3 in
let byte = r.[ydx] in
get_bit_of_byte (int_of_char byte) idx
;;
(* Char sets represented as bit vectors represented as fixed length byte
strings. *)
(* Create a full or empty set of chars. *)
let make_range bit =
let c = char_of_int (if bit = 0 then 0 else 0xFF) in
String.make 32 c
;;
(* Test if a char belongs to a set of chars. *)
let get_char_in_range r c = get_bit_of_range r (int_of_char c);;
let bit_not b = (lnot b) land 1;;
(* Build the bit vector corresponding to the set of characters
that belongs to the string argument [set].
(In the [Scanf] module [set] is always a sub-string of the format.) *)
let make_char_bit_vect bit set =
let r = make_range (bit_not bit) in
let lim = String.length set - 1 in
let rec loop bit rp i =
if i <= lim then
match set.[i] with
| '-' when rp ->
(* if i = 0 then rp is false (since the initial call is
loop bit false 0). Hence i >= 1 and the following is safe. *)
let c1 = set.[i - 1] in
let i = succ i in
if i > lim then loop bit false (i - 1) else
let c2 = set.[i] in
for j = int_of_char c1 to int_of_char c2 do
set_bit_of_range r j bit done;
loop bit false (succ i)
| _ ->
set_bit_of_range r (int_of_char set.[i]) bit;
loop bit true (succ i) in
loop bit false 0;
r
;;
(* Compute the predicate on chars corresponding to a char set. *)
let make_predicate bit set stp =
let r = make_char_bit_vect bit set in
List.iter
(fun c -> set_bit_of_range r (int_of_char c) (bit_not bit)) stp;
(fun c -> get_char_in_range r c)
;;
let make_setp stp char_set =
match char_set with
| Pos_set set ->
begin match String.length set with
| 0 -> (fun _ -> 0)
| 1 ->
let p = set.[0] in
(fun c -> if c == p then 1 else 0)
| 2 ->
let p1 = set.[0] and p2 = set.[1] in
(fun c -> if c == p1 || c == p2 then 1 else 0)
| 3 ->
let p1 = set.[0] and p2 = set.[1] and p3 = set.[2] in
if p2 = '-' then make_predicate 1 set stp else
(fun c -> if c == p1 || c == p2 || c == p3 then 1 else 0)
| _ -> make_predicate 1 set stp
end
| Neg_set set ->
begin match String.length set with
| 0 -> (fun _ -> 1)
| 1 ->
let p = set.[0] in
(fun c -> if c != p then 1 else 0)
| 2 ->
let p1 = set.[0] and p2 = set.[1] in
(fun c -> if c != p1 && c != p2 then 1 else 0)
| 3 ->
let p1 = set.[0] and p2 = set.[1] and p3 = set.[2] in
if p2 = '-' then make_predicate 0 set stp else
(fun c -> if c != p1 && c != p2 && c != p3 then 1 else 0)
| _ -> make_predicate 0 set stp
end
;;
let setp_table = Hashtbl.create 7;;
let add_setp stp char_set setp =
let char_set_tbl =
try Hashtbl.find setp_table char_set with
| Not_found ->
let char_set_tbl = Hashtbl.create 3 in
Hashtbl.add setp_table char_set char_set_tbl;
char_set_tbl in
Hashtbl.add char_set_tbl stp setp
;;
let find_setp stp char_set =
try Hashtbl.find (Hashtbl.find setp_table char_set) stp with
| Not_found ->
let setp = make_setp stp char_set in
add_setp stp char_set setp;
setp
;;
let scan_chars_in_char_set stp char_set width ib =
let rec loop_pos1 cp1 width =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
if c == cp1
then loop_pos1 cp1 (Scanning.store_char width ib c)
else width
and loop_pos2 cp1 cp2 width =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
if c == cp1 || c == cp2
then loop_pos2 cp1 cp2 (Scanning.store_char width ib c)
else width
and loop_pos3 cp1 cp2 cp3 width =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
if c == cp1 || c == cp2 || c == cp3
then loop_pos3 cp1 cp2 cp3 (Scanning.store_char width ib c)
else width
and loop_neg1 cp1 width =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
if c != cp1
then loop_neg1 cp1 (Scanning.store_char width ib c)
else width
and loop_neg2 cp1 cp2 width =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
if c != cp1 && c != cp2
then loop_neg2 cp1 cp2 (Scanning.store_char width ib c)
else width
and loop_neg3 cp1 cp2 cp3 width =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
if c != cp1 && c != cp2 && c != cp3
then loop_neg3 cp1 cp2 cp3 (Scanning.store_char width ib c)
else width
and loop setp width =
if width = 0 then width else
let c = Scanning.peek_char ib in
if Scanning.eof ib then width else
if setp c == 1
then loop setp (Scanning.store_char width ib c)
else width in
let width =
match char_set with
| Pos_set set ->
begin match String.length set with
| 0 -> loop (fun _ -> 0) width
| 1 -> loop_pos1 set.[0] width
| 2 -> loop_pos2 set.[0] set.[1] width
| 3 when set.[1] != '-' -> loop_pos3 set.[0] set.[1] set.[2] width
| _ -> loop (find_setp stp char_set) width end
| Neg_set set ->
begin match String.length set with
| 0 -> loop (fun _ -> 1) width
| 1 -> loop_neg1 set.[0] width
| 2 -> loop_neg2 set.[0] set.[1] width
| 3 when set.[1] != '-' -> loop_neg3 set.[0] set.[1] set.[2] width
| _ -> loop (find_setp stp char_set) width end in
ignore_stoppers stp ib;
width
;;
let get_count t ib =
match t with
| 'l' -> Scanning.line_count ib
| 'n' -> Scanning.char_count ib
| _ -> Scanning.token_count ib
;;
let rec skip_whites ib =
let c = Scanning.peek_char ib in
if not (Scanning.eof ib) then begin
match c with
| ' ' | '\t' | '\n' | '\r' ->
Scanning.invalidate_current_char ib; skip_whites ib
| _ -> ()
end
;;
(* The global error report function for [Scanf]. *)
let scanf_bad_input ib = function
| Scan_failure s | Failure s ->
let i = Scanning.char_count ib in
bad_input (Printf.sprintf "scanf: bad input at char number %i: \'%s\'" i s)
| x -> raise x
;;
let list_iter_i f l =
let rec loop i = function
| [] -> ()
| [x] -> f i x (* Tail calling [f] *)
| x :: xs -> f i x; loop (succ i) xs in
loop 0 l
;;
let ascanf sc fmt =
let ac = Tformat.ac_of_format fmt in
match ac.Tformat.ac_rdrs with
| 0 ->
Obj.magic (fun f -> sc fmt [||] f)
| 1 ->
Obj.magic (fun x f -> sc fmt [| Obj.repr x |] f)
| 2 ->
Obj.magic (fun x y f -> sc fmt [| Obj.repr x; Obj.repr y; |] f)
| 3 ->
Obj.magic
(fun x y z f -> sc fmt [| Obj.repr x; Obj.repr y; Obj.repr z; |] f)
| nargs ->
let rec loop i args =
if i >= nargs then
let a = Array.make nargs (Obj.repr 0) in
list_iter_i (fun i arg -> a.(nargs - i - 1) <- arg) args;
Obj.magic (fun f -> sc fmt a f)
else Obj.magic (fun x -> loop (succ i) (x :: args)) in
loop 0 []
;;
(* The [scan_format] main scanning function.
It takes as arguments:
- an input buffer [ib] from which to read characters,
- an error handling function [ef],
- a format [fmt] that specifies what to read in the input,
- a vector of user's defined readers [rv],
- and a function [f] to pass the tokens read to.
Then [scan_format] scans the format and the input buffer in parallel to
find out tokens as specified by the format; when it finds one token, it
converts it as specified, remembers the converted value as a future
argument to the function [f], and continues scanning.
If the entire scanning succeeds (i.e. the format string has been
exhausted and the buffer has provided tokens according to the
format string), [f] is applied to the tokens read.
If the scanning or some conversion fails, the main scanning function
aborts and applies the scanning buffer and a string that explains
the error to the error handling function [ef] (the error continuation). *)
let scan_format ib ef fmt rv f =
let limr = Array.length rv - 1 in
let return v = Obj.magic v () in
let delay f x () = f x in
let stack f = delay (return f) in
let no_stack f _x = f in
let rec scan fmt =
let lim = Sformat.length fmt - 1 in
let rec scan_fmt ir f i =
if i > lim then ir, f else
match Sformat.unsafe_get fmt i with
| '%' -> scan_skip ir f (succ i)
| ' ' -> skip_whites ib; scan_fmt ir f (succ i)
| c -> check_char ib c; scan_fmt ir f (succ i)
and scan_skip ir f i =
if i > lim then ir, f else
match Sformat.get fmt i with
| '_' -> scan_limits true ir f (succ i)
| _ -> scan_limits false ir f i
and scan_limits skip ir f i =
let rec scan_width i =
if i > lim then incomplete_format fmt else
match Sformat.get fmt i with
| '0' .. '9' as conv ->
let width, i =
read_int_literal (decimal_value_of_char conv) (succ i) in
Some width, i
| _ -> None, i
and scan_precision i =
begin
match Sformat.get fmt i with
| '.' ->
let precision, i = read_int_literal 0 (succ i) in
(Some precision, i)
| _ -> None, i
end
and read_int_literal accu i =
if i > lim then accu, i else
match Sformat.unsafe_get fmt i with
| '0' .. '9' as c ->
let accu = 10 * accu + decimal_value_of_char c in
read_int_literal accu (succ i)
| _ -> accu, i in
if i > lim then ir, f else
let width_opt, i = scan_width i in
let prec_opt, i = scan_precision i in
scan_conversion skip width_opt prec_opt ir f i
and scan_conversion skip width_opt prec_opt ir f i =
let stack = if skip then no_stack else stack in
let width = int_of_width_opt width_opt in
let prec = int_of_prec_opt prec_opt in
match Sformat.get fmt i with
| '%' | '@' as c ->
check_char ib c;
scan_fmt ir f (succ i)
| '!' ->
if not (Scanning.end_of_input ib)
then bad_input "end of input not found" else
scan_fmt ir f (succ i)
| ',' ->
scan_fmt ir f (succ i)
| 's' ->
let i, stp = scan_indication (succ i) in
let _x = scan_string stp width ib in
scan_fmt ir (stack f (token_string ib)) (succ i)
| 'S' ->
let _x = scan_String width ib in
scan_fmt ir (stack f (token_string ib)) (succ i)
| '[' (* ']' *) ->
let i, char_set = scan_range fmt (succ i) in
let i, stp = scan_indication (succ i) in
let _x = scan_chars_in_char_set stp char_set width ib in
scan_fmt ir (stack f (token_string ib)) (succ i)
| ('c' | 'C') when width = 0 ->
let c = Scanning.checked_peek_char ib in
scan_fmt ir (stack f c) (succ i)
| 'c' ->
let _x = scan_char width ib in
scan_fmt ir (stack f (token_char ib)) (succ i)
| 'C' ->
let _x = scan_Char width ib in
scan_fmt ir (stack f (token_char ib)) (succ i)
| 'd' | 'i' | 'o' | 'u' | 'x' | 'X' as conv ->
let _x = scan_int_conv conv width prec ib in
scan_fmt ir (stack f (token_int conv ib)) (succ i)
| 'N' as conv ->
scan_fmt ir (stack f (get_count conv ib)) (succ i)
| 'f' | 'e' | 'E' | 'g' | 'G' ->
let _x = scan_float width prec ib in
scan_fmt ir (stack f (token_float ib)) (succ i)
| 'F' ->
let _x = scan_Float width prec ib in
scan_fmt ir (stack f (token_float ib)) (succ i)
(* | 'B' | 'b' when width = Some 0 ->
let _x = scan_bool width ib in
scan_fmt ir (stack f (token_int ib)) (succ i) *)
| 'B' | 'b' ->
let _x = scan_bool width ib in
scan_fmt ir (stack f (token_bool ib)) (succ i)
| 'r' ->
if ir > limr then assert false else
let token = Obj.magic rv.(ir) ib in
scan_fmt (succ ir) (stack f token) (succ i)
| 'l' | 'n' | 'L' as conv0 ->
let i = succ i in
if i > lim then scan_fmt ir (stack f (get_count conv0 ib)) i else begin
match Sformat.get fmt i with
(* This is in fact an integer conversion (e.g. %ld, %ni, or %Lo). *)
| 'd' | 'i' | 'o' | 'u' | 'x' | 'X' as conv1 ->
let _x = scan_int_conv conv1 width prec ib in
(* Look back to the character that triggered the integer conversion
(this character is either 'l', 'n' or 'L') to find the
conversion to apply to the integer token read. *)
begin match conv0 with
| 'l' -> scan_fmt ir (stack f (token_int32 conv1 ib)) (succ i)
| 'n' -> scan_fmt ir (stack f (token_nativeint conv1 ib)) (succ i)
| _ -> scan_fmt ir (stack f (token_int64 conv1 ib)) (succ i) end
(* This is not an integer conversion, but a regular %l, %n or %L. *)
| _ -> scan_fmt ir (stack f (get_count conv0 ib)) i end
| '(' | '{' as conv (* ')' '}' *) ->
let i = succ i in
(* Find [mf], the static specification for the format to read. *)
let j =
Tformat.sub_format
incomplete_format bad_conversion conv fmt i in
let mf = Sformat.sub fmt (Sformat.index_of_int i) (j - 2 - i) in
(* Read [rf], the specified format string in the input buffer,
and check its correctness w.r.t. [mf]. *)
let _x = scan_String width ib in
let rf = token_string ib in
if not (compatible_format_type rf mf) then format_mismatch rf mf else
(* Proceed according to the kind of metaformat found:
- %{ mf %} simply returns [rf] as the token read,
- %( mf %) returns [rf] as the first token read, then
returns a second token obtained by scanning the input with
format string [rf].
Behaviour for %( mf %) is mandatory for sake of format string
typechecking specification. To get pure format string
substitution behaviour, you should use %_( mf %) that skips the
first (format string) token and hence properly substitutes [mf] by
[rf] in the format string argument.
*)
(* For conversion %{%}, just return this format string as the token
read and go on with the rest of the format string argument. *)
if conv = '{' (* '}' *) then scan_fmt ir (stack f rf) j else
(* Or else, return this format string as the first token read;
then continue scanning using this format string to get
the following token read;
finally go on with the rest of the format string argument. *)
let ir, nf = scan (string_to_format rf) ir (stack f rf) 0 in
(* Return the format string read and the value just read,
then go on with the rest of the format. *)
scan_fmt ir nf j
| c -> bad_conversion fmt i c
and scan_indication j =
if j > lim then j - 1, [] else
match Sformat.get fmt j with
| '@' ->
let k = j + 1 in
if k > lim then j - 1, [] else
begin match Sformat.get fmt k with
| '%' ->
let k = k + 1 in
if k > lim then j - 1, [] else
begin match Sformat.get fmt k with
| '%' | '@' as c -> k, [ c ]
| _c -> j - 1, []
end
| c -> k, [ c ]
end
| _c -> j - 1, [] in
scan_fmt in
Scanning.reset_token ib;
let v =
try snd (scan fmt 0 (fun () -> f) 0) with
| (Scan_failure _ | Failure _ | End_of_file) as exc ->
stack (delay ef ib) exc in
return v
;;
let mkscanf ib ef fmt =
let sc = scan_format ib ef in
ascanf sc fmt
;;
let kscanf ib ef fmt = mkscanf ib ef fmt;;
let bscanf ib = kscanf ib scanf_bad_input;;
let fscanf ic = bscanf (Scanning.from_channel ic);;
let sscanf : string -> ('a, 'b, 'c, 'd) scanner
= fun s -> bscanf (Scanning.from_string s);;
let scanf fmt = bscanf Scanning.stdib fmt;;
let bscanf_format ib fmt f =
let fmt = Sformat.unsafe_to_string fmt in
let fmt1 =
ignore (scan_String max_int ib);
token_string ib in
if not (compatible_format_type fmt1 fmt) then
format_mismatch fmt1 fmt else
f (string_to_format fmt1)
;;
let sscanf_format s fmt = bscanf_format (Scanning.from_string s) fmt;;
let string_to_String s =
let l = String.length s in
let b = Buffer.create (l + 2) in
Buffer.add_char b '\"';
for i = 0 to l - 1 do
let c = s.[i] in
if c = '\"' then Buffer.add_char b '\\';
Buffer.add_char b c;
done;
Buffer.add_char b '\"';
Buffer.contents b
;;
let format_from_string s fmt =
sscanf_format (string_to_String s) fmt (fun x -> x)
;;
let unescaped s =
sscanf ("\"" ^ s ^ "\"") "%S%!" (fun x -> x)
;;
(*
Local Variables:
compile-command: "cd ..; make world"
End:
*)
|