/usr/include/llvm-3.4/llvm/ADT/IntrusiveRefCntPtr.h is in llvm-3.4-dev 1:3.4-1ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | //== llvm/ADT/IntrusiveRefCntPtr.h - Smart Refcounting Pointer ---*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines IntrusiveRefCntPtr, a template class that
// implements a "smart" pointer for objects that maintain their own
// internal reference count, and RefCountedBase/RefCountedBaseVPTR, two
// generic base classes for objects that wish to have their lifetimes
// managed using reference counting.
//
// IntrusiveRefCntPtr is similar to Boost's intrusive_ptr with added
// LLVM-style casting.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INTRUSIVEREFCNTPTR_H
#define LLVM_ADT_INTRUSIVEREFCNTPTR_H
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include <memory>
namespace llvm {
template <class T>
class IntrusiveRefCntPtr;
//===----------------------------------------------------------------------===//
/// RefCountedBase - A generic base class for objects that wish to
/// have their lifetimes managed using reference counts. Classes
/// subclass RefCountedBase to obtain such functionality, and are
/// typically handled with IntrusiveRefCntPtr "smart pointers" (see below)
/// which automatically handle the management of reference counts.
/// Objects that subclass RefCountedBase should not be allocated on
/// the stack, as invoking "delete" (which is called when the
/// reference count hits 0) on such objects is an error.
//===----------------------------------------------------------------------===//
template <class Derived>
class RefCountedBase {
mutable unsigned ref_cnt;
public:
RefCountedBase() : ref_cnt(0) {}
RefCountedBase(const RefCountedBase &) : ref_cnt(0) {}
void Retain() const { ++ref_cnt; }
void Release() const {
assert (ref_cnt > 0 && "Reference count is already zero.");
if (--ref_cnt == 0) delete static_cast<const Derived*>(this);
}
};
//===----------------------------------------------------------------------===//
/// RefCountedBaseVPTR - A class that has the same function as
/// RefCountedBase, but with a virtual destructor. Should be used
/// instead of RefCountedBase for classes that already have virtual
/// methods to enforce dynamic allocation via 'new'. Classes that
/// inherit from RefCountedBaseVPTR can't be allocated on stack -
/// attempting to do this will produce a compile error.
//===----------------------------------------------------------------------===//
class RefCountedBaseVPTR {
mutable unsigned ref_cnt;
virtual void anchor();
protected:
RefCountedBaseVPTR() : ref_cnt(0) {}
RefCountedBaseVPTR(const RefCountedBaseVPTR &) : ref_cnt(0) {}
virtual ~RefCountedBaseVPTR() {}
void Retain() const { ++ref_cnt; }
void Release() const {
assert (ref_cnt > 0 && "Reference count is already zero.");
if (--ref_cnt == 0) delete this;
}
template <typename T>
friend struct IntrusiveRefCntPtrInfo;
};
template <typename T> struct IntrusiveRefCntPtrInfo {
static void retain(T *obj) { obj->Retain(); }
static void release(T *obj) { obj->Release(); }
};
//===----------------------------------------------------------------------===//
/// IntrusiveRefCntPtr - A template class that implements a "smart pointer"
/// that assumes the wrapped object has a reference count associated
/// with it that can be managed via calls to
/// IntrusivePtrAddRef/IntrusivePtrRelease. The smart pointers
/// manage reference counts via the RAII idiom: upon creation of
/// smart pointer the reference count of the wrapped object is
/// incremented and upon destruction of the smart pointer the
/// reference count is decremented. This class also safely handles
/// wrapping NULL pointers.
///
/// Reference counting is implemented via calls to
/// Obj->Retain()/Obj->Release(). Release() is required to destroy
/// the object when the reference count reaches zero. Inheriting from
/// RefCountedBase/RefCountedBaseVPTR takes care of this
/// automatically.
//===----------------------------------------------------------------------===//
template <typename T>
class IntrusiveRefCntPtr {
T* Obj;
typedef IntrusiveRefCntPtr this_type;
public:
typedef T element_type;
explicit IntrusiveRefCntPtr() : Obj(0) {}
IntrusiveRefCntPtr(T* obj) : Obj(obj) {
retain();
}
IntrusiveRefCntPtr(const IntrusiveRefCntPtr& S) : Obj(S.Obj) {
retain();
}
#if LLVM_HAS_RVALUE_REFERENCES
IntrusiveRefCntPtr(IntrusiveRefCntPtr&& S) : Obj(S.Obj) {
S.Obj = 0;
}
template <class X>
IntrusiveRefCntPtr(IntrusiveRefCntPtr<X>&& S) : Obj(S.getPtr()) {
S.Obj = 0;
}
#endif
template <class X>
IntrusiveRefCntPtr(const IntrusiveRefCntPtr<X>& S)
: Obj(S.getPtr()) {
retain();
}
IntrusiveRefCntPtr& operator=(IntrusiveRefCntPtr S) {
swap(S);
return *this;
}
~IntrusiveRefCntPtr() { release(); }
T& operator*() const { return *Obj; }
T* operator->() const { return Obj; }
T* getPtr() const { return Obj; }
typedef T* (IntrusiveRefCntPtr::*unspecified_bool_type) () const;
operator unspecified_bool_type() const {
return Obj == 0 ? 0 : &IntrusiveRefCntPtr::getPtr;
}
void swap(IntrusiveRefCntPtr& other) {
T* tmp = other.Obj;
other.Obj = Obj;
Obj = tmp;
}
void reset() {
release();
Obj = 0;
}
void resetWithoutRelease() {
Obj = 0;
}
private:
void retain() { if (Obj) IntrusiveRefCntPtrInfo<T>::retain(Obj); }
void release() { if (Obj) IntrusiveRefCntPtrInfo<T>::release(Obj); }
};
template<class T, class U>
inline bool operator==(const IntrusiveRefCntPtr<T>& A,
const IntrusiveRefCntPtr<U>& B)
{
return A.getPtr() == B.getPtr();
}
template<class T, class U>
inline bool operator!=(const IntrusiveRefCntPtr<T>& A,
const IntrusiveRefCntPtr<U>& B)
{
return A.getPtr() != B.getPtr();
}
template<class T, class U>
inline bool operator==(const IntrusiveRefCntPtr<T>& A,
U* B)
{
return A.getPtr() == B;
}
template<class T, class U>
inline bool operator!=(const IntrusiveRefCntPtr<T>& A,
U* B)
{
return A.getPtr() != B;
}
template<class T, class U>
inline bool operator==(T* A,
const IntrusiveRefCntPtr<U>& B)
{
return A == B.getPtr();
}
template<class T, class U>
inline bool operator!=(T* A,
const IntrusiveRefCntPtr<U>& B)
{
return A != B.getPtr();
}
//===----------------------------------------------------------------------===//
// LLVM-style downcasting support for IntrusiveRefCntPtr objects
//===----------------------------------------------------------------------===//
template<class T> struct simplify_type<IntrusiveRefCntPtr<T> > {
typedef T* SimpleType;
static SimpleType getSimplifiedValue(IntrusiveRefCntPtr<T>& Val) {
return Val.getPtr();
}
};
template<class T> struct simplify_type<const IntrusiveRefCntPtr<T> > {
typedef /*const*/ T* SimpleType;
static SimpleType getSimplifiedValue(const IntrusiveRefCntPtr<T>& Val) {
return Val.getPtr();
}
};
} // end namespace llvm
#endif // LLVM_ADT_INTRUSIVEREFCNTPTR_H
|