This file is indexed.

/usr/include/llvm-3.4/llvm/ADT/APInt.h is in llvm-3.4-dev 1:3.4-1ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements a class to represent arbitrary precision
/// integral constant values and operations on them.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_APINT_H
#define LLVM_ADT_APINT_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <climits>
#include <cstring>
#include <string>

namespace llvm {
class Deserializer;
class FoldingSetNodeID;
class Serializer;
class StringRef;
class hash_code;
class raw_ostream;

template <typename T> class SmallVectorImpl;

// An unsigned host type used as a single part of a multi-part
// bignum.
typedef uint64_t integerPart;

const unsigned int host_char_bit = 8;
const unsigned int integerPartWidth =
    host_char_bit * static_cast<unsigned int>(sizeof(integerPart));

//===----------------------------------------------------------------------===//
//                              APInt Class
//===----------------------------------------------------------------------===//

/// \brief Class for arbitrary precision integers.
///
/// APInt is a functional replacement for common case unsigned integer type like
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
/// and methods to manipulate integer values of any bit-width. It supports both
/// the typical integer arithmetic and comparison operations as well as bitwise
/// manipulation.
///
/// The class has several invariants worth noting:
///   * All bit, byte, and word positions are zero-based.
///   * Once the bit width is set, it doesn't change except by the Truncate,
///     SignExtend, or ZeroExtend operations.
///   * All binary operators must be on APInt instances of the same bit width.
///     Attempting to use these operators on instances with different bit
///     widths will yield an assertion.
///   * The value is stored canonically as an unsigned value. For operations
///     where it makes a difference, there are both signed and unsigned variants
///     of the operation. For example, sdiv and udiv. However, because the bit
///     widths must be the same, operations such as Mul and Add produce the same
///     results regardless of whether the values are interpreted as signed or
///     not.
///   * In general, the class tries to follow the style of computation that LLVM
///     uses in its IR. This simplifies its use for LLVM.
///
class APInt {
  unsigned BitWidth; ///< The number of bits in this APInt.

  /// This union is used to store the integer value. When the
  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
  union {
    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
    uint64_t *pVal; ///< Used to store the >64 bits integer value.
  };

  /// This enum is used to hold the constants we needed for APInt.
  enum {
    /// Bits in a word
    APINT_BITS_PER_WORD =
        static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
    /// Byte size of a word
    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
  };

  /// \brief Fast internal constructor
  ///
  /// This constructor is used only internally for speed of construction of
  /// temporaries. It is unsafe for general use so it is not public.
  APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}

  /// \brief Determine if this APInt just has one word to store value.
  ///
  /// \returns true if the number of bits <= 64, false otherwise.
  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }

  /// \brief Determine which word a bit is in.
  ///
  /// \returns the word position for the specified bit position.
  static unsigned whichWord(unsigned bitPosition) {
    return bitPosition / APINT_BITS_PER_WORD;
  }

  /// \brief Determine which bit in a word a bit is in.
  ///
  /// \returns the bit position in a word for the specified bit position
  /// in the APInt.
  static unsigned whichBit(unsigned bitPosition) {
    return bitPosition % APINT_BITS_PER_WORD;
  }

  /// \brief Get a single bit mask.
  ///
  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
  /// This method generates and returns a uint64_t (word) mask for a single
  /// bit at a specific bit position. This is used to mask the bit in the
  /// corresponding word.
  static uint64_t maskBit(unsigned bitPosition) {
    return 1ULL << whichBit(bitPosition);
  }

  /// \brief Clear unused high order bits
  ///
  /// This method is used internally to clear the to "N" bits in the high order
  /// word that are not used by the APInt. This is needed after the most
  /// significant word is assigned a value to ensure that those bits are
  /// zero'd out.
  APInt &clearUnusedBits() {
    // Compute how many bits are used in the final word
    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
    if (wordBits == 0)
      // If all bits are used, we want to leave the value alone. This also
      // avoids the undefined behavior of >> when the shift is the same size as
      // the word size (64).
      return *this;

    // Mask out the high bits.
    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
    if (isSingleWord())
      VAL &= mask;
    else
      pVal[getNumWords() - 1] &= mask;
    return *this;
  }

  /// \brief Get the word corresponding to a bit position
  /// \returns the corresponding word for the specified bit position.
  uint64_t getWord(unsigned bitPosition) const {
    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
  }

  /// \brief Convert a char array into an APInt
  ///
  /// \param radix 2, 8, 10, 16, or 36
  /// Converts a string into a number.  The string must be non-empty
  /// and well-formed as a number of the given base. The bit-width
  /// must be sufficient to hold the result.
  ///
  /// This is used by the constructors that take string arguments.
  ///
  /// StringRef::getAsInteger is superficially similar but (1) does
  /// not assume that the string is well-formed and (2) grows the
  /// result to hold the input.
  void fromString(unsigned numBits, StringRef str, uint8_t radix);

  /// \brief An internal division function for dividing APInts.
  ///
  /// This is used by the toString method to divide by the radix. It simply
  /// provides a more convenient form of divide for internal use since KnuthDiv
  /// has specific constraints on its inputs. If those constraints are not met
  /// then it provides a simpler form of divide.
  static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
                     unsigned rhsWords, APInt *Quotient, APInt *Remainder);

  /// out-of-line slow case for inline constructor
  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);

  /// shared code between two array constructors
  void initFromArray(ArrayRef<uint64_t> array);

  /// out-of-line slow case for inline copy constructor
  void initSlowCase(const APInt &that);

  /// out-of-line slow case for shl
  APInt shlSlowCase(unsigned shiftAmt) const;

  /// out-of-line slow case for operator&
  APInt AndSlowCase(const APInt &RHS) const;

  /// out-of-line slow case for operator|
  APInt OrSlowCase(const APInt &RHS) const;

  /// out-of-line slow case for operator^
  APInt XorSlowCase(const APInt &RHS) const;

  /// out-of-line slow case for operator=
  APInt &AssignSlowCase(const APInt &RHS);

  /// out-of-line slow case for operator==
  bool EqualSlowCase(const APInt &RHS) const;

  /// out-of-line slow case for operator==
  bool EqualSlowCase(uint64_t Val) const;

  /// out-of-line slow case for countLeadingZeros
  unsigned countLeadingZerosSlowCase() const;

  /// out-of-line slow case for countTrailingOnes
  unsigned countTrailingOnesSlowCase() const;

  /// out-of-line slow case for countPopulation
  unsigned countPopulationSlowCase() const;

public:
  /// \name Constructors
  /// @{

  /// \brief Create a new APInt of numBits width, initialized as val.
  ///
  /// If isSigned is true then val is treated as if it were a signed value
  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
  /// the range of val are zero filled).
  ///
  /// \param numBits the bit width of the constructed APInt
  /// \param val the initial value of the APInt
  /// \param isSigned how to treat signedness of val
  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
      : BitWidth(numBits), VAL(0) {
    assert(BitWidth && "bitwidth too small");
    if (isSingleWord())
      VAL = val;
    else
      initSlowCase(numBits, val, isSigned);
    clearUnusedBits();
  }

  /// \brief Construct an APInt of numBits width, initialized as bigVal[].
  ///
  /// Note that bigVal.size() can be smaller or larger than the corresponding
  /// bit width but any extraneous bits will be dropped.
  ///
  /// \param numBits the bit width of the constructed APInt
  /// \param bigVal a sequence of words to form the initial value of the APInt
  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);

  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
  /// deprecated because this constructor is prone to ambiguity with the
  /// APInt(unsigned, uint64_t, bool) constructor.
  ///
  /// If this overload is ever deleted, care should be taken to prevent calls
  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
  /// constructor.
  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);

  /// \brief Construct an APInt from a string representation.
  ///
  /// This constructor interprets the string \p str in the given radix. The
  /// interpretation stops when the first character that is not suitable for the
  /// radix is encountered, or the end of the string. Acceptable radix values
  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
  /// string to require more bits than numBits.
  ///
  /// \param numBits the bit width of the constructed APInt
  /// \param str the string to be interpreted
  /// \param radix the radix to use for the conversion
  APInt(unsigned numBits, StringRef str, uint8_t radix);

  /// Simply makes *this a copy of that.
  /// @brief Copy Constructor.
  APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
    assert(BitWidth && "bitwidth too small");
    if (isSingleWord())
      VAL = that.VAL;
    else
      initSlowCase(that);
  }

#if LLVM_HAS_RVALUE_REFERENCES
  /// \brief Move Constructor.
  APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
    that.BitWidth = 0;
  }
#endif

  /// \brief Destructor.
  ~APInt() {
    if (needsCleanup())
      delete[] pVal;
  }

  /// \brief Default constructor that creates an uninitialized APInt.
  ///
  /// This is useful for object deserialization (pair this with the static
  ///  method Read).
  explicit APInt() : BitWidth(1) {}

  /// \brief Returns whether this instance allocated memory.
  bool needsCleanup() const { return !isSingleWord(); }

  /// Used to insert APInt objects, or objects that contain APInt objects, into
  ///  FoldingSets.
  void Profile(FoldingSetNodeID &id) const;

  /// @}
  /// \name Value Tests
  /// @{

  /// \brief Determine sign of this APInt.
  ///
  /// This tests the high bit of this APInt to determine if it is set.
  ///
  /// \returns true if this APInt is negative, false otherwise
  bool isNegative() const { return (*this)[BitWidth - 1]; }

  /// \brief Determine if this APInt Value is non-negative (>= 0)
  ///
  /// This tests the high bit of the APInt to determine if it is unset.
  bool isNonNegative() const { return !isNegative(); }

  /// \brief Determine if this APInt Value is positive.
  ///
  /// This tests if the value of this APInt is positive (> 0). Note
  /// that 0 is not a positive value.
  ///
  /// \returns true if this APInt is positive.
  bool isStrictlyPositive() const { return isNonNegative() && !!*this; }

  /// \brief Determine if all bits are set
  ///
  /// This checks to see if the value has all bits of the APInt are set or not.
  bool isAllOnesValue() const {
    if (isSingleWord())
      return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
    return countPopulationSlowCase() == BitWidth;
  }

  /// \brief Determine if this is the largest unsigned value.
  ///
  /// This checks to see if the value of this APInt is the maximum unsigned
  /// value for the APInt's bit width.
  bool isMaxValue() const { return isAllOnesValue(); }

  /// \brief Determine if this is the largest signed value.
  ///
  /// This checks to see if the value of this APInt is the maximum signed
  /// value for the APInt's bit width.
  bool isMaxSignedValue() const {
    return BitWidth == 1 ? VAL == 0
                         : !isNegative() && countPopulation() == BitWidth - 1;
  }

  /// \brief Determine if this is the smallest unsigned value.
  ///
  /// This checks to see if the value of this APInt is the minimum unsigned
  /// value for the APInt's bit width.
  bool isMinValue() const { return !*this; }

  /// \brief Determine if this is the smallest signed value.
  ///
  /// This checks to see if the value of this APInt is the minimum signed
  /// value for the APInt's bit width.
  bool isMinSignedValue() const {
    return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
  }

  /// \brief Check if this APInt has an N-bits unsigned integer value.
  bool isIntN(unsigned N) const {
    assert(N && "N == 0 ???");
    return getActiveBits() <= N;
  }

  /// \brief Check if this APInt has an N-bits signed integer value.
  bool isSignedIntN(unsigned N) const {
    assert(N && "N == 0 ???");
    return getMinSignedBits() <= N;
  }

  /// \brief Check if this APInt's value is a power of two greater than zero.
  ///
  /// \returns true if the argument APInt value is a power of two > 0.
  bool isPowerOf2() const {
    if (isSingleWord())
      return isPowerOf2_64(VAL);
    return countPopulationSlowCase() == 1;
  }

  /// \brief Check if the APInt's value is returned by getSignBit.
  ///
  /// \returns true if this is the value returned by getSignBit.
  bool isSignBit() const { return isMinSignedValue(); }

  /// \brief Convert APInt to a boolean value.
  ///
  /// This converts the APInt to a boolean value as a test against zero.
  bool getBoolValue() const { return !!*this; }

  /// If this value is smaller than the specified limit, return it, otherwise
  /// return the limit value.  This causes the value to saturate to the limit.
  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
                                                            : getZExtValue();
  }

  /// @}
  /// \name Value Generators
  /// @{

  /// \brief Gets maximum unsigned value of APInt for specific bit width.
  static APInt getMaxValue(unsigned numBits) {
    return getAllOnesValue(numBits);
  }

  /// \brief Gets maximum signed value of APInt for a specific bit width.
  static APInt getSignedMaxValue(unsigned numBits) {
    APInt API = getAllOnesValue(numBits);
    API.clearBit(numBits - 1);
    return API;
  }

  /// \brief Gets minimum unsigned value of APInt for a specific bit width.
  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }

  /// \brief Gets minimum signed value of APInt for a specific bit width.
  static APInt getSignedMinValue(unsigned numBits) {
    APInt API(numBits, 0);
    API.setBit(numBits - 1);
    return API;
  }

  /// \brief Get the SignBit for a specific bit width.
  ///
  /// This is just a wrapper function of getSignedMinValue(), and it helps code
  /// readability when we want to get a SignBit.
  static APInt getSignBit(unsigned BitWidth) {
    return getSignedMinValue(BitWidth);
  }

  /// \brief Get the all-ones value.
  ///
  /// \returns the all-ones value for an APInt of the specified bit-width.
  static APInt getAllOnesValue(unsigned numBits) {
    return APInt(numBits, UINT64_MAX, true);
  }

  /// \brief Get the '0' value.
  ///
  /// \returns the '0' value for an APInt of the specified bit-width.
  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }

  /// \brief Compute an APInt containing numBits highbits from this APInt.
  ///
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
  /// the low bits and right shift to the least significant bit.
  ///
  /// \returns the high "numBits" bits of this APInt.
  APInt getHiBits(unsigned numBits) const;

  /// \brief Compute an APInt containing numBits lowbits from this APInt.
  ///
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
  /// the high bits.
  ///
  /// \returns the low "numBits" bits of this APInt.
  APInt getLoBits(unsigned numBits) const;

  /// \brief Return an APInt with exactly one bit set in the result.
  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
    APInt Res(numBits, 0);
    Res.setBit(BitNo);
    return Res;
  }

  /// \brief Get a value with a block of bits set.
  ///
  /// Constructs an APInt value that has a contiguous range of bits set. The
  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
  ///
  /// \param numBits the intended bit width of the result
  /// \param loBit the index of the lowest bit set.
  /// \param hiBit the index of the highest bit set.
  ///
  /// \returns An APInt value with the requested bits set.
  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    assert(hiBit <= numBits && "hiBit out of range");
    assert(loBit < numBits && "loBit out of range");
    if (hiBit < loBit)
      return getLowBitsSet(numBits, hiBit) |
             getHighBitsSet(numBits, numBits - loBit);
    return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
  }

  /// \brief Get a value with high bits set
  ///
  /// Constructs an APInt value that has the top hiBitsSet bits set.
  ///
  /// \param numBits the bitwidth of the result
  /// \param hiBitsSet the number of high-order bits set in the result.
  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    assert(hiBitsSet <= numBits && "Too many bits to set!");
    // Handle a degenerate case, to avoid shifting by word size
    if (hiBitsSet == 0)
      return APInt(numBits, 0);
    unsigned shiftAmt = numBits - hiBitsSet;
    // For small values, return quickly
    if (numBits <= APINT_BITS_PER_WORD)
      return APInt(numBits, ~0ULL << shiftAmt);
    return getAllOnesValue(numBits).shl(shiftAmt);
  }

  /// \brief Get a value with low bits set
  ///
  /// Constructs an APInt value that has the bottom loBitsSet bits set.
  ///
  /// \param numBits the bitwidth of the result
  /// \param loBitsSet the number of low-order bits set in the result.
  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    assert(loBitsSet <= numBits && "Too many bits to set!");
    // Handle a degenerate case, to avoid shifting by word size
    if (loBitsSet == 0)
      return APInt(numBits, 0);
    if (loBitsSet == APINT_BITS_PER_WORD)
      return APInt(numBits, UINT64_MAX);
    // For small values, return quickly.
    if (loBitsSet <= APINT_BITS_PER_WORD)
      return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
    return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
  }

  /// \brief Return a value containing V broadcasted over NewLen bits.
  static APInt getSplat(unsigned NewLen, const APInt &V) {
    assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");

    APInt Val = V.zextOrSelf(NewLen);
    for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
      Val |= Val << I;

    return Val;
  }

  /// \brief Determine if two APInts have the same value, after zero-extending
  /// one of them (if needed!) to ensure that the bit-widths match.
  static bool isSameValue(const APInt &I1, const APInt &I2) {
    if (I1.getBitWidth() == I2.getBitWidth())
      return I1 == I2;

    if (I1.getBitWidth() > I2.getBitWidth())
      return I1 == I2.zext(I1.getBitWidth());

    return I1.zext(I2.getBitWidth()) == I2;
  }

  /// \brief Overload to compute a hash_code for an APInt value.
  friend hash_code hash_value(const APInt &Arg);

  /// This function returns a pointer to the internal storage of the APInt.
  /// This is useful for writing out the APInt in binary form without any
  /// conversions.
  const uint64_t *getRawData() const {
    if (isSingleWord())
      return &VAL;
    return &pVal[0];
  }

  /// @}
  /// \name Unary Operators
  /// @{

  /// \brief Postfix increment operator.
  ///
  /// \returns a new APInt value representing *this incremented by one
  const APInt operator++(int) {
    APInt API(*this);
    ++(*this);
    return API;
  }

  /// \brief Prefix increment operator.
  ///
  /// \returns *this incremented by one
  APInt &operator++();

  /// \brief Postfix decrement operator.
  ///
  /// \returns a new APInt representing *this decremented by one.
  const APInt operator--(int) {
    APInt API(*this);
    --(*this);
    return API;
  }

  /// \brief Prefix decrement operator.
  ///
  /// \returns *this decremented by one.
  APInt &operator--();

  /// \brief Unary bitwise complement operator.
  ///
  /// Performs a bitwise complement operation on this APInt.
  ///
  /// \returns an APInt that is the bitwise complement of *this
  APInt operator~() const {
    APInt Result(*this);
    Result.flipAllBits();
    return Result;
  }

  /// \brief Unary negation operator
  ///
  /// Negates *this using two's complement logic.
  ///
  /// \returns An APInt value representing the negation of *this.
  APInt operator-() const { return APInt(BitWidth, 0) - (*this); }

  /// \brief Logical negation operator.
  ///
  /// Performs logical negation operation on this APInt.
  ///
  /// \returns true if *this is zero, false otherwise.
  bool operator!() const {
    if (isSingleWord())
      return !VAL;

    for (unsigned i = 0; i != getNumWords(); ++i)
      if (pVal[i])
        return false;
    return true;
  }

  /// @}
  /// \name Assignment Operators
  /// @{

  /// \brief Copy assignment operator.
  ///
  /// \returns *this after assignment of RHS.
  APInt &operator=(const APInt &RHS) {
    // If the bitwidths are the same, we can avoid mucking with memory
    if (isSingleWord() && RHS.isSingleWord()) {
      VAL = RHS.VAL;
      BitWidth = RHS.BitWidth;
      return clearUnusedBits();
    }

    return AssignSlowCase(RHS);
  }

#if LLVM_HAS_RVALUE_REFERENCES
  /// @brief Move assignment operator.
  APInt &operator=(APInt &&that) {
    if (!isSingleWord())
      delete[] pVal;

    BitWidth = that.BitWidth;
    VAL = that.VAL;

    that.BitWidth = 0;

    return *this;
  }
#endif

  /// \brief Assignment operator.
  ///
  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
  /// the bit width, the excess bits are truncated. If the bit width is larger
  /// than 64, the value is zero filled in the unspecified high order bits.
  ///
  /// \returns *this after assignment of RHS value.
  APInt &operator=(uint64_t RHS);

  /// \brief Bitwise AND assignment operator.
  ///
  /// Performs a bitwise AND operation on this APInt and RHS. The result is
  /// assigned to *this.
  ///
  /// \returns *this after ANDing with RHS.
  APInt &operator&=(const APInt &RHS);

  /// \brief Bitwise OR assignment operator.
  ///
  /// Performs a bitwise OR operation on this APInt and RHS. The result is
  /// assigned *this;
  ///
  /// \returns *this after ORing with RHS.
  APInt &operator|=(const APInt &RHS);

  /// \brief Bitwise OR assignment operator.
  ///
  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
  /// logically zero-extended or truncated to match the bit-width of
  /// the LHS.
  APInt &operator|=(uint64_t RHS) {
    if (isSingleWord()) {
      VAL |= RHS;
      clearUnusedBits();
    } else {
      pVal[0] |= RHS;
    }
    return *this;
  }

  /// \brief Bitwise XOR assignment operator.
  ///
  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
  /// assigned to *this.
  ///
  /// \returns *this after XORing with RHS.
  APInt &operator^=(const APInt &RHS);

  /// \brief Multiplication assignment operator.
  ///
  /// Multiplies this APInt by RHS and assigns the result to *this.
  ///
  /// \returns *this
  APInt &operator*=(const APInt &RHS);

  /// \brief Addition assignment operator.
  ///
  /// Adds RHS to *this and assigns the result to *this.
  ///
  /// \returns *this
  APInt &operator+=(const APInt &RHS);

  /// \brief Subtraction assignment operator.
  ///
  /// Subtracts RHS from *this and assigns the result to *this.
  ///
  /// \returns *this
  APInt &operator-=(const APInt &RHS);

  /// \brief Left-shift assignment function.
  ///
  /// Shifts *this left by shiftAmt and assigns the result to *this.
  ///
  /// \returns *this after shifting left by shiftAmt
  APInt &operator<<=(unsigned shiftAmt) {
    *this = shl(shiftAmt);
    return *this;
  }

  /// @}
  /// \name Binary Operators
  /// @{

  /// \brief Bitwise AND operator.
  ///
  /// Performs a bitwise AND operation on *this and RHS.
  ///
  /// \returns An APInt value representing the bitwise AND of *this and RHS.
  APInt operator&(const APInt &RHS) const {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      return APInt(getBitWidth(), VAL & RHS.VAL);
    return AndSlowCase(RHS);
  }
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
    return this->operator&(RHS);
  }

  /// \brief Bitwise OR operator.
  ///
  /// Performs a bitwise OR operation on *this and RHS.
  ///
  /// \returns An APInt value representing the bitwise OR of *this and RHS.
  APInt operator|(const APInt &RHS) const {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      return APInt(getBitWidth(), VAL | RHS.VAL);
    return OrSlowCase(RHS);
  }

  /// \brief Bitwise OR function.
  ///
  /// Performs a bitwise or on *this and RHS. This is implemented bny simply
  /// calling operator|.
  ///
  /// \returns An APInt value representing the bitwise OR of *this and RHS.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
    return this->operator|(RHS);
  }

  /// \brief Bitwise XOR operator.
  ///
  /// Performs a bitwise XOR operation on *this and RHS.
  ///
  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
  APInt operator^(const APInt &RHS) const {
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    if (isSingleWord())
      return APInt(BitWidth, VAL ^ RHS.VAL);
    return XorSlowCase(RHS);
  }

  /// \brief Bitwise XOR function.
  ///
  /// Performs a bitwise XOR operation on *this and RHS. This is implemented
  /// through the usage of operator^.
  ///
  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
    return this->operator^(RHS);
  }

  /// \brief Multiplication operator.
  ///
  /// Multiplies this APInt by RHS and returns the result.
  APInt operator*(const APInt &RHS) const;

  /// \brief Addition operator.
  ///
  /// Adds RHS to this APInt and returns the result.
  APInt operator+(const APInt &RHS) const;
  APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }

  /// \brief Subtraction operator.
  ///
  /// Subtracts RHS from this APInt and returns the result.
  APInt operator-(const APInt &RHS) const;
  APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }

  /// \brief Left logical shift operator.
  ///
  /// Shifts this APInt left by \p Bits and returns the result.
  APInt operator<<(unsigned Bits) const { return shl(Bits); }

  /// \brief Left logical shift operator.
  ///
  /// Shifts this APInt left by \p Bits and returns the result.
  APInt operator<<(const APInt &Bits) const { return shl(Bits); }

  /// \brief Arithmetic right-shift function.
  ///
  /// Arithmetic right-shift this APInt by shiftAmt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;

  /// \brief Logical right-shift function.
  ///
  /// Logical right-shift this APInt by shiftAmt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;

  /// \brief Left-shift function.
  ///
  /// Left-shift this APInt by shiftAmt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
    assert(shiftAmt <= BitWidth && "Invalid shift amount");
    if (isSingleWord()) {
      if (shiftAmt >= BitWidth)
        return APInt(BitWidth, 0); // avoid undefined shift results
      return APInt(BitWidth, VAL << shiftAmt);
    }
    return shlSlowCase(shiftAmt);
  }

  /// \brief Rotate left by rotateAmt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;

  /// \brief Rotate right by rotateAmt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;

  /// \brief Arithmetic right-shift function.
  ///
  /// Arithmetic right-shift this APInt by shiftAmt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;

  /// \brief Logical right-shift function.
  ///
  /// Logical right-shift this APInt by shiftAmt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;

  /// \brief Left-shift function.
  ///
  /// Left-shift this APInt by shiftAmt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;

  /// \brief Rotate left by rotateAmt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;

  /// \brief Rotate right by rotateAmt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;

  /// \brief Unsigned division operation.
  ///
  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
  /// RHS are treated as unsigned quantities for purposes of this division.
  ///
  /// \returns a new APInt value containing the division result
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;

  /// \brief Signed division function for APInt.
  ///
  /// Signed divide this APInt by APInt RHS.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;

  /// \brief Unsigned remainder operation.
  ///
  /// Perform an unsigned remainder operation on this APInt with RHS being the
  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
  /// of this operation. Note that this is a true remainder operation and not a
  /// modulo operation because the sign follows the sign of the dividend which
  /// is *this.
  ///
  /// \returns a new APInt value containing the remainder result
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;

  /// \brief Function for signed remainder operation.
  ///
  /// Signed remainder operation on APInt.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;

  /// \brief Dual division/remainder interface.
  ///
  /// Sometimes it is convenient to divide two APInt values and obtain both the
  /// quotient and remainder. This function does both operations in the same
  /// computation making it a little more efficient. The pair of input arguments
  /// may overlap with the pair of output arguments. It is safe to call
  /// udivrem(X, Y, X, Y), for example.
  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
                      APInt &Remainder);

  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
                      APInt &Remainder);

  // Operations that return overflow indicators.
  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
  APInt sshl_ov(unsigned Amt, bool &Overflow) const;

  /// \brief Array-indexing support.
  ///
  /// \returns the bit value at bitPosition
  bool operator[](unsigned bitPosition) const {
    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
    return (maskBit(bitPosition) &
            (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
           0;
  }

  /// @}
  /// \name Comparison Operators
  /// @{

  /// \brief Equality operator.
  ///
  /// Compares this APInt with RHS for the validity of the equality
  /// relationship.
  bool operator==(const APInt &RHS) const {
    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
    if (isSingleWord())
      return VAL == RHS.VAL;
    return EqualSlowCase(RHS);
  }

  /// \brief Equality operator.
  ///
  /// Compares this APInt with a uint64_t for the validity of the equality
  /// relationship.
  ///
  /// \returns true if *this == Val
  bool operator==(uint64_t Val) const {
    if (isSingleWord())
      return VAL == Val;
    return EqualSlowCase(Val);
  }

  /// \brief Equality comparison.
  ///
  /// Compares this APInt with RHS for the validity of the equality
  /// relationship.
  ///
  /// \returns true if *this == Val
  bool eq(const APInt &RHS) const { return (*this) == RHS; }

  /// \brief Inequality operator.
  ///
  /// Compares this APInt with RHS for the validity of the inequality
  /// relationship.
  ///
  /// \returns true if *this != Val
  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }

  /// \brief Inequality operator.
  ///
  /// Compares this APInt with a uint64_t for the validity of the inequality
  /// relationship.
  ///
  /// \returns true if *this != Val
  bool operator!=(uint64_t Val) const { return !((*this) == Val); }

  /// \brief Inequality comparison
  ///
  /// Compares this APInt with RHS for the validity of the inequality
  /// relationship.
  ///
  /// \returns true if *this != Val
  bool ne(const APInt &RHS) const { return !((*this) == RHS); }

  /// \brief Unsigned less than comparison
  ///
  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// the validity of the less-than relationship.
  ///
  /// \returns true if *this < RHS when both are considered unsigned.
  bool ult(const APInt &RHS) const;

  /// \brief Unsigned less than comparison
  ///
  /// Regards both *this as an unsigned quantity and compares it with RHS for
  /// the validity of the less-than relationship.
  ///
  /// \returns true if *this < RHS when considered unsigned.
  bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }

  /// \brief Signed less than comparison
  ///
  /// Regards both *this and RHS as signed quantities and compares them for
  /// validity of the less-than relationship.
  ///
  /// \returns true if *this < RHS when both are considered signed.
  bool slt(const APInt &RHS) const;

  /// \brief Signed less than comparison
  ///
  /// Regards both *this as a signed quantity and compares it with RHS for
  /// the validity of the less-than relationship.
  ///
  /// \returns true if *this < RHS when considered signed.
  bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }

  /// \brief Unsigned less or equal comparison
  ///
  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// validity of the less-or-equal relationship.
  ///
  /// \returns true if *this <= RHS when both are considered unsigned.
  bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }

  /// \brief Unsigned less or equal comparison
  ///
  /// Regards both *this as an unsigned quantity and compares it with RHS for
  /// the validity of the less-or-equal relationship.
  ///
  /// \returns true if *this <= RHS when considered unsigned.
  bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }

  /// \brief Signed less or equal comparison
  ///
  /// Regards both *this and RHS as signed quantities and compares them for
  /// validity of the less-or-equal relationship.
  ///
  /// \returns true if *this <= RHS when both are considered signed.
  bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }

  /// \brief Signed less or equal comparison
  ///
  /// Regards both *this as a signed quantity and compares it with RHS for the
  /// validity of the less-or-equal relationship.
  ///
  /// \returns true if *this <= RHS when considered signed.
  bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }

  /// \brief Unsigned greather than comparison
  ///
  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// the validity of the greater-than relationship.
  ///
  /// \returns true if *this > RHS when both are considered unsigned.
  bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }

  /// \brief Unsigned greater than comparison
  ///
  /// Regards both *this as an unsigned quantity and compares it with RHS for
  /// the validity of the greater-than relationship.
  ///
  /// \returns true if *this > RHS when considered unsigned.
  bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }

  /// \brief Signed greather than comparison
  ///
  /// Regards both *this and RHS as signed quantities and compares them for the
  /// validity of the greater-than relationship.
  ///
  /// \returns true if *this > RHS when both are considered signed.
  bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }

  /// \brief Signed greater than comparison
  ///
  /// Regards both *this as a signed quantity and compares it with RHS for
  /// the validity of the greater-than relationship.
  ///
  /// \returns true if *this > RHS when considered signed.
  bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }

  /// \brief Unsigned greater or equal comparison
  ///
  /// Regards both *this and RHS as unsigned quantities and compares them for
  /// validity of the greater-or-equal relationship.
  ///
  /// \returns true if *this >= RHS when both are considered unsigned.
  bool uge(const APInt &RHS) const { return !ult(RHS); }

  /// \brief Unsigned greater or equal comparison
  ///
  /// Regards both *this as an unsigned quantity and compares it with RHS for
  /// the validity of the greater-or-equal relationship.
  ///
  /// \returns true if *this >= RHS when considered unsigned.
  bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }

  /// \brief Signed greather or equal comparison
  ///
  /// Regards both *this and RHS as signed quantities and compares them for
  /// validity of the greater-or-equal relationship.
  ///
  /// \returns true if *this >= RHS when both are considered signed.
  bool sge(const APInt &RHS) const { return !slt(RHS); }

  /// \brief Signed greater or equal comparison
  ///
  /// Regards both *this as a signed quantity and compares it with RHS for
  /// the validity of the greater-or-equal relationship.
  ///
  /// \returns true if *this >= RHS when considered signed.
  bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }

  /// This operation tests if there are any pairs of corresponding bits
  /// between this APInt and RHS that are both set.
  bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }

  /// @}
  /// \name Resizing Operators
  /// @{

  /// \brief Truncate to new width.
  ///
  /// Truncate the APInt to a specified width. It is an error to specify a width
  /// that is greater than or equal to the current width.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;

  /// \brief Sign extend to a new width.
  ///
  /// This operation sign extends the APInt to a new width. If the high order
  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
  /// It is an error to specify a width that is less than or equal to the
  /// current width.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;

  /// \brief Zero extend to a new width.
  ///
  /// This operation zero extends the APInt to a new width. The high order bits
  /// are filled with 0 bits.  It is an error to specify a width that is less
  /// than or equal to the current width.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;

  /// \brief Sign extend or truncate to width
  ///
  /// Make this APInt have the bit width given by \p width. The value is sign
  /// extended, truncated, or left alone to make it that width.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;

  /// \brief Zero extend or truncate to width
  ///
  /// Make this APInt have the bit width given by \p width. The value is zero
  /// extended, truncated, or left alone to make it that width.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;

  /// \brief Sign extend or truncate to width
  ///
  /// Make this APInt have the bit width given by \p width. The value is sign
  /// extended, or left alone to make it that width.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;

  /// \brief Zero extend or truncate to width
  ///
  /// Make this APInt have the bit width given by \p width. The value is zero
  /// extended, or left alone to make it that width.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;

  /// @}
  /// \name Bit Manipulation Operators
  /// @{

  /// \brief Set every bit to 1.
  void setAllBits() {
    if (isSingleWord())
      VAL = UINT64_MAX;
    else {
      // Set all the bits in all the words.
      for (unsigned i = 0; i < getNumWords(); ++i)
        pVal[i] = UINT64_MAX;
    }
    // Clear the unused ones
    clearUnusedBits();
  }

  /// \brief Set a given bit to 1.
  ///
  /// Set the given bit to 1 whose position is given as "bitPosition".
  void setBit(unsigned bitPosition);

  /// \brief Set every bit to 0.
  void clearAllBits() {
    if (isSingleWord())
      VAL = 0;
    else
      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
  }

  /// \brief Set a given bit to 0.
  ///
  /// Set the given bit to 0 whose position is given as "bitPosition".
  void clearBit(unsigned bitPosition);

  /// \brief Toggle every bit to its opposite value.
  void flipAllBits() {
    if (isSingleWord())
      VAL ^= UINT64_MAX;
    else {
      for (unsigned i = 0; i < getNumWords(); ++i)
        pVal[i] ^= UINT64_MAX;
    }
    clearUnusedBits();
  }

  /// \brief Toggles a given bit to its opposite value.
  ///
  /// Toggle a given bit to its opposite value whose position is given
  /// as "bitPosition".
  void flipBit(unsigned bitPosition);

  /// @}
  /// \name Value Characterization Functions
  /// @{

  /// \brief Return the number of bits in the APInt.
  unsigned getBitWidth() const { return BitWidth; }

  /// \brief Get the number of words.
  ///
  /// Here one word's bitwidth equals to that of uint64_t.
  ///
  /// \returns the number of words to hold the integer value of this APInt.
  unsigned getNumWords() const { return getNumWords(BitWidth); }

  /// \brief Get the number of words.
  ///
  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
  ///
  /// \returns the number of words to hold the integer value with a given bit
  /// width.
  static unsigned getNumWords(unsigned BitWidth) {
    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
  }

  /// \brief Compute the number of active bits in the value
  ///
  /// This function returns the number of active bits which is defined as the
  /// bit width minus the number of leading zeros. This is used in several
  /// computations to see how "wide" the value is.
  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }

  /// \brief Compute the number of active words in the value of this APInt.
  ///
  /// This is used in conjunction with getActiveData to extract the raw value of
  /// the APInt.
  unsigned getActiveWords() const {
    unsigned numActiveBits = getActiveBits();
    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
  }

  /// \brief Get the minimum bit size for this signed APInt
  ///
  /// Computes the minimum bit width for this APInt while considering it to be a
  /// signed (and probably negative) value. If the value is not negative, this
  /// function returns the same value as getActiveBits()+1. Otherwise, it
  /// returns the smallest bit width that will retain the negative value. For
  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
  /// for -1, this function will always return 1.
  unsigned getMinSignedBits() const {
    if (isNegative())
      return BitWidth - countLeadingOnes() + 1;
    return getActiveBits() + 1;
  }

  /// \brief Get zero extended value
  ///
  /// This method attempts to return the value of this APInt as a zero extended
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
  /// uint64_t. Otherwise an assertion will result.
  uint64_t getZExtValue() const {
    if (isSingleWord())
      return VAL;
    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
    return pVal[0];
  }

  /// \brief Get sign extended value
  ///
  /// This method attempts to return the value of this APInt as a sign extended
  /// int64_t. The bit width must be <= 64 or the value must fit within an
  /// int64_t. Otherwise an assertion will result.
  int64_t getSExtValue() const {
    if (isSingleWord())
      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
             (APINT_BITS_PER_WORD - BitWidth);
    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
    return int64_t(pVal[0]);
  }

  /// \brief Get bits required for string value.
  ///
  /// This method determines how many bits are required to hold the APInt
  /// equivalent of the string given by \p str.
  static unsigned getBitsNeeded(StringRef str, uint8_t radix);

  /// \brief The APInt version of the countLeadingZeros functions in
  ///   MathExtras.h.
  ///
  /// It counts the number of zeros from the most significant bit to the first
  /// one bit.
  ///
  /// \returns BitWidth if the value is zero, otherwise returns the number of
  ///   zeros from the most significant bit to the first one bits.
  unsigned countLeadingZeros() const {
    if (isSingleWord()) {
      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
      return llvm::countLeadingZeros(VAL) - unusedBits;
    }
    return countLeadingZerosSlowCase();
  }

  /// \brief Count the number of leading one bits.
  ///
  /// This function is an APInt version of the countLeadingOnes_{32,64}
  /// functions in MathExtras.h. It counts the number of ones from the most
  /// significant bit to the first zero bit.
  ///
  /// \returns 0 if the high order bit is not set, otherwise returns the number
  /// of 1 bits from the most significant to the least
  unsigned countLeadingOnes() const;

  /// Computes the number of leading bits of this APInt that are equal to its
  /// sign bit.
  unsigned getNumSignBits() const {
    return isNegative() ? countLeadingOnes() : countLeadingZeros();
  }

  /// \brief Count the number of trailing zero bits.
  ///
  /// This function is an APInt version of the countTrailingZeros_{32,64}
  /// functions in MathExtras.h. It counts the number of zeros from the least
  /// significant bit to the first set bit.
  ///
  /// \returns BitWidth if the value is zero, otherwise returns the number of
  /// zeros from the least significant bit to the first one bit.
  unsigned countTrailingZeros() const;

  /// \brief Count the number of trailing one bits.
  ///
  /// This function is an APInt version of the countTrailingOnes_{32,64}
  /// functions in MathExtras.h. It counts the number of ones from the least
  /// significant bit to the first zero bit.
  ///
  /// \returns BitWidth if the value is all ones, otherwise returns the number
  /// of ones from the least significant bit to the first zero bit.
  unsigned countTrailingOnes() const {
    if (isSingleWord())
      return CountTrailingOnes_64(VAL);
    return countTrailingOnesSlowCase();
  }

  /// \brief Count the number of bits set.
  ///
  /// This function is an APInt version of the countPopulation_{32,64} functions
  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
  ///
  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
  unsigned countPopulation() const {
    if (isSingleWord())
      return CountPopulation_64(VAL);
    return countPopulationSlowCase();
  }

  /// @}
  /// \name Conversion Functions
  /// @{
  void print(raw_ostream &OS, bool isSigned) const;

  /// Converts an APInt to a string and append it to Str.  Str is commonly a
  /// SmallString.
  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
                bool formatAsCLiteral = false) const;

  /// Considers the APInt to be unsigned and converts it into a string in the
  /// radix given. The radix can be 2, 8, 10 16, or 36.
  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
    toString(Str, Radix, false, false);
  }

  /// Considers the APInt to be signed and converts it into a string in the
  /// radix given. The radix can be 2, 8, 10, 16, or 36.
  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
    toString(Str, Radix, true, false);
  }

  /// \brief Return the APInt as a std::string.
  ///
  /// Note that this is an inefficient method.  It is better to pass in a
  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
  /// for the string.
  std::string toString(unsigned Radix, bool Signed) const;

  /// \returns a byte-swapped representation of this APInt Value.
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;

  /// \brief Converts this APInt to a double value.
  double roundToDouble(bool isSigned) const;

  /// \brief Converts this unsigned APInt to a double value.
  double roundToDouble() const { return roundToDouble(false); }

  /// \brief Converts this signed APInt to a double value.
  double signedRoundToDouble() const { return roundToDouble(true); }

  /// \brief Converts APInt bits to a double
  ///
  /// The conversion does not do a translation from integer to double, it just
  /// re-interprets the bits as a double. Note that it is valid to do this on
  /// any bit width. Exactly 64 bits will be translated.
  double bitsToDouble() const {
    union {
      uint64_t I;
      double D;
    } T;
    T.I = (isSingleWord() ? VAL : pVal[0]);
    return T.D;
  }

  /// \brief Converts APInt bits to a double
  ///
  /// The conversion does not do a translation from integer to float, it just
  /// re-interprets the bits as a float. Note that it is valid to do this on
  /// any bit width. Exactly 32 bits will be translated.
  float bitsToFloat() const {
    union {
      unsigned I;
      float F;
    } T;
    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
    return T.F;
  }

  /// \brief Converts a double to APInt bits.
  ///
  /// The conversion does not do a translation from double to integer, it just
  /// re-interprets the bits of the double.
  static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
    union {
      uint64_t I;
      double D;
    } T;
    T.D = V;
    return APInt(sizeof T * CHAR_BIT, T.I);
  }

  /// \brief Converts a float to APInt bits.
  ///
  /// The conversion does not do a translation from float to integer, it just
  /// re-interprets the bits of the float.
  static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
    union {
      unsigned I;
      float F;
    } T;
    T.F = V;
    return APInt(sizeof T * CHAR_BIT, T.I);
  }

  /// @}
  /// \name Mathematics Operations
  /// @{

  /// \returns the floor log base 2 of this APInt.
  unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }

  /// \returns the ceil log base 2 of this APInt.
  unsigned ceilLogBase2() const {
    return BitWidth - (*this - 1).countLeadingZeros();
  }

  /// \returns the log base 2 of this APInt if its an exact power of two, -1
  /// otherwise
  int32_t exactLogBase2() const {
    if (!isPowerOf2())
      return -1;
    return logBase2();
  }

  /// \brief Compute the square root
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;

  /// \brief Get the absolute value;
  ///
  /// If *this is < 0 then return -(*this), otherwise *this;
  APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
    if (isNegative())
      return -(*this);
    return *this;
  }

  /// \returns the multiplicative inverse for a given modulo.
  APInt multiplicativeInverse(const APInt &modulo) const;

  /// @}
  /// \name Support for division by constant
  /// @{

  /// Calculate the magic number for signed division by a constant.
  struct ms;
  ms magic() const;

  /// Calculate the magic number for unsigned division by a constant.
  struct mu;
  mu magicu(unsigned LeadingZeros = 0) const;

  /// @}
  /// \name Building-block Operations for APInt and APFloat
  /// @{

  // These building block operations operate on a representation of arbitrary
  // precision, two's-complement, bignum integer values. They should be
  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
  // generally a pointer to the base of an array of integer parts, representing
  // an unsigned bignum, and a count of how many parts there are.

  /// Sets the least significant part of a bignum to the input value, and zeroes
  /// out higher parts.
  static void tcSet(integerPart *, integerPart, unsigned int);

  /// Assign one bignum to another.
  static void tcAssign(integerPart *, const integerPart *, unsigned int);

  /// Returns true if a bignum is zero, false otherwise.
  static bool tcIsZero(const integerPart *, unsigned int);

  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
  static int tcExtractBit(const integerPart *, unsigned int bit);

  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
  /// significant bit of DST.  All high bits above srcBITS in DST are
  /// zero-filled.
  static void tcExtract(integerPart *, unsigned int dstCount,
                        const integerPart *, unsigned int srcBits,
                        unsigned int srcLSB);

  /// Set the given bit of a bignum.  Zero-based.
  static void tcSetBit(integerPart *, unsigned int bit);

  /// Clear the given bit of a bignum.  Zero-based.
  static void tcClearBit(integerPart *, unsigned int bit);

  /// Returns the bit number of the least or most significant set bit of a
  /// number.  If the input number has no bits set -1U is returned.
  static unsigned int tcLSB(const integerPart *, unsigned int);
  static unsigned int tcMSB(const integerPart *parts, unsigned int n);

  /// Negate a bignum in-place.
  static void tcNegate(integerPart *, unsigned int);

  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
  static integerPart tcAdd(integerPart *, const integerPart *,
                           integerPart carry, unsigned);

  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
  static integerPart tcSubtract(integerPart *, const integerPart *,
                                integerPart carry, unsigned);

  /// DST += SRC * MULTIPLIER + PART   if add is true
  /// DST  = SRC * MULTIPLIER + PART   if add is false
  ///
  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
  /// start at the same point, i.e. DST == SRC.
  ///
  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
  /// result, and if all of the omitted higher parts were zero return zero,
  /// otherwise overflow occurred and return one.
  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
                            integerPart multiplier, integerPart carry,
                            unsigned int srcParts, unsigned int dstParts,
                            bool add);

  /// DST = LHS * RHS, where DST has the same width as the operands and is
  /// filled with the least significant parts of the result.  Returns one if
  /// overflow occurred, otherwise zero.  DST must be disjoint from both
  /// operands.
  static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
                        unsigned);

  /// DST = LHS * RHS, where DST has width the sum of the widths of the
  /// operands.  No overflow occurs.  DST must be disjoint from both
  /// operands. Returns the number of parts required to hold the result.
  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
                                     const integerPart *, unsigned, unsigned);

  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
  /// REMAINDER to the remainder, return zero.  i.e.
  ///
  ///  OLD_LHS = RHS * LHS + REMAINDER
  ///
  /// SCRATCH is a bignum of the same size as the operands and result for use by
  /// the routine; its contents need not be initialized and are destroyed.  LHS,
  /// REMAINDER and SCRATCH must be distinct.
  static int tcDivide(integerPart *lhs, const integerPart *rhs,
                      integerPart *remainder, integerPart *scratch,
                      unsigned int parts);

  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
  /// restrictions on COUNT.
  static void tcShiftLeft(integerPart *, unsigned int parts,
                          unsigned int count);

  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
  /// restrictions on COUNT.
  static void tcShiftRight(integerPart *, unsigned int parts,
                           unsigned int count);

  /// The obvious AND, OR and XOR and complement operations.
  static void tcAnd(integerPart *, const integerPart *, unsigned int);
  static void tcOr(integerPart *, const integerPart *, unsigned int);
  static void tcXor(integerPart *, const integerPart *, unsigned int);
  static void tcComplement(integerPart *, unsigned int);

  /// Comparison (unsigned) of two bignums.
  static int tcCompare(const integerPart *, const integerPart *, unsigned int);

  /// Increment a bignum in-place.  Return the carry flag.
  static integerPart tcIncrement(integerPart *, unsigned int);

  /// Decrement a bignum in-place.  Return the borrow flag.
  static integerPart tcDecrement(integerPart *, unsigned int);

  /// Set the least significant BITS and clear the rest.
  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
                                        unsigned int bits);

  /// \brief debug method
  void dump() const;

  /// @}
};

/// Magic data for optimising signed division by a constant.
struct APInt::ms {
  APInt m;    ///< magic number
  unsigned s; ///< shift amount
};

/// Magic data for optimising unsigned division by a constant.
struct APInt::mu {
  APInt m;    ///< magic number
  bool a;     ///< add indicator
  unsigned s; ///< shift amount
};

inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }

inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }

inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
  I.print(OS, true);
  return OS;
}

namespace APIntOps {

/// \brief Determine the smaller of two APInts considered to be signed.
inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }

/// \brief Determine the larger of two APInts considered to be signed.
inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }

/// \brief Determine the smaller of two APInts considered to be signed.
inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }

/// \brief Determine the larger of two APInts considered to be unsigned.
inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }

/// \brief Check if the specified APInt has a N-bits unsigned integer value.
inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }

/// \brief Check if the specified APInt has a N-bits signed integer value.
inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
  return APIVal.isSignedIntN(N);
}

/// \returns true if the argument APInt value is a sequence of ones starting at
/// the least significant bit with the remainder zero.
inline bool isMask(unsigned numBits, const APInt &APIVal) {
  return numBits <= APIVal.getBitWidth() &&
         APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
}

/// \brief Return true if the argument APInt value contains a sequence of ones
/// with the remainder zero.
inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
  return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
}

/// \brief Returns a byte-swapped representation of the specified APInt Value.
inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }

/// \brief Returns the floor log base 2 of the specified APInt value.
inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }

/// \brief Compute GCD of two APInt values.
///
/// This function returns the greatest common divisor of the two APInt values
/// using Euclid's algorithm.
///
/// \returns the greatest common divisor of Val1 and Val2
APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);

/// \brief Converts the given APInt to a double value.
///
/// Treats the APInt as an unsigned value for conversion purposes.
inline double RoundAPIntToDouble(const APInt &APIVal) {
  return APIVal.roundToDouble();
}

/// \brief Converts the given APInt to a double value.
///
/// Treats the APInt as a signed value for conversion purposes.
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
  return APIVal.signedRoundToDouble();
}

/// \brief Converts the given APInt to a float vlalue.
inline float RoundAPIntToFloat(const APInt &APIVal) {
  return float(RoundAPIntToDouble(APIVal));
}

/// \brief Converts the given APInt to a float value.
///
/// Treast the APInt as a signed value for conversion purposes.
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
  return float(APIVal.signedRoundToDouble());
}

/// \brief Converts the given double value into a APInt.
///
/// This function convert a double value to an APInt value.
APInt RoundDoubleToAPInt(double Double, unsigned width);

/// \brief Converts a float value into a APInt.
///
/// Converts a float value into an APInt value.
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
  return RoundDoubleToAPInt(double(Float), width);
}

/// \brief Arithmetic right-shift function.
///
/// Arithmetic right-shift the APInt by shiftAmt.
inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
  return LHS.ashr(shiftAmt);
}

/// \brief Logical right-shift function.
///
/// Logical right-shift the APInt by shiftAmt.
inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
  return LHS.lshr(shiftAmt);
}

/// \brief Left-shift function.
///
/// Left-shift the APInt by shiftAmt.
inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
  return LHS.shl(shiftAmt);
}

/// \brief Signed division function for APInt.
///
/// Signed divide APInt LHS by APInt RHS.
inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }

/// \brief Unsigned division function for APInt.
///
/// Unsigned divide APInt LHS by APInt RHS.
inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }

/// \brief Function for signed remainder operation.
///
/// Signed remainder operation on APInt.
inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }

/// \brief Function for unsigned remainder operation.
///
/// Unsigned remainder operation on APInt.
inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }

/// \brief Function for multiplication operation.
///
/// Performs multiplication on APInt values.
inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }

/// \brief Function for addition operation.
///
/// Performs addition on APInt values.
inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }

/// \brief Function for subtraction operation.
///
/// Performs subtraction on APInt values.
inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }

/// \brief Bitwise AND function for APInt.
///
/// Performs bitwise AND operation on APInt LHS and
/// APInt RHS.
inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }

/// \brief Bitwise OR function for APInt.
///
/// Performs bitwise OR operation on APInt LHS and APInt RHS.
inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }

/// \brief Bitwise XOR function for APInt.
///
/// Performs bitwise XOR operation on APInt.
inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }

/// \brief Bitwise complement function.
///
/// Performs a bitwise complement operation on APInt.
inline APInt Not(const APInt &APIVal) { return ~APIVal; }

} // End of APIntOps namespace

// See friend declaration above. This additional declaration is required in
// order to compile LLVM with IBM xlC compiler.
hash_code hash_value(const APInt &Arg);
} // End of llvm namespace

#endif