This file is indexed.

/usr/include/vigra/numpy_array.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
/************************************************************************/
/*                                                                      */
/*       Copyright 2009 by Ullrich Koethe and Hans Meine                */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_NUMPY_ARRAY_HXX
#define VIGRA_NUMPY_ARRAY_HXX

#ifndef NPY_NO_DEPRECATED_API
# define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#endif 

#include <Python.h>
#include <string>
#include <iostream>
#include <numpy/arrayobject.h>
#include "multi_array.hxx"
#include "array_vector.hxx"
#include "python_utility.hxx"
#include "numpy_array_traits.hxx"
#include "numpy_array_taggedshape.hxx"

// NumPy function called by NumPy's import_array() macro (and our import_vigranumpy() below)
int _import_array();

namespace vigra {

static inline void import_vigranumpy()
{
    // roughly equivalent to import_array():
    if(_import_array() < 0)
        pythonToCppException(0);

    // Import vigra to activate the numpy array converters, but ensure that 
    // cyclic imports (from within vigra itself) are avoided.
    char const * load_vigra = 
        "import sys\n"
        "if not sys.modules.has_key('vigra.vigranumpycore'):\n"
        "    import vigra\n";
    pythonToCppException(PyRun_SimpleString(load_vigra) == 0);
}

/********************************************************/
/*                                                      */
/*               MultibandVectorAccessor                */
/*                                                      */
/********************************************************/

template <class T>
class MultibandVectorAccessor
{
    MultiArrayIndex size_, stride_;

  public:
    MultibandVectorAccessor(MultiArrayIndex size, MultiArrayIndex stride)
    : size_(size),
      stride_(stride)
    {}


    typedef Multiband<T> value_type;

        /** the vector's value_type
        */
    typedef T component_type;

    typedef VectorElementAccessor<MultibandVectorAccessor<T> > ElementAccessor;

        /** Read the component data at given vector index
            at given iterator position
        */
    template <class ITERATOR>
    component_type const & getComponent(ITERATOR const & i, int idx) const
    {
        return *(&*i+idx*stride_);
    }

        /** Set the component data at given vector index
            at given iterator position. The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>component_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR>
    void setComponent(V const & value, ITERATOR const & i, int idx) const
    {
        *(&*i+idx*stride_) = detail::RequiresExplicitCast<component_type>::cast(value);
    }

        /** Read the component data at given vector index
            at an offset of given iterator position
        */
    template <class ITERATOR, class DIFFERENCE>
    component_type const & getComponent(ITERATOR const & i, DIFFERENCE const & diff, int idx) const
    {
        return *(&i[diff]+idx*stride_);
    }

    /** Set the component data at given vector index
        at an offset of given iterator position. The type <TT>V</TT> of the passed
        in <TT>value</TT> is automatically converted to <TT>component_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
    */
    template <class V, class ITERATOR, class DIFFERENCE>
    void
    setComponent(V const & value, ITERATOR const & i, DIFFERENCE const & diff, int idx) const
    {
        *(&i[diff]+idx*stride_) = detail::RequiresExplicitCast<component_type>::cast(value);
    }

    template <class U>
    MultiArrayIndex size(U) const
    {
        return size_;
    }
};

/********************************************************/

template <class TYPECODE> // pseudo-template to avoid inline expansion of the function
                          // will always be NPY_TYPES
PyObject *
constructArray(TaggedShape tagged_shape, TYPECODE typeCode, bool init,
               python_ptr arraytype = python_ptr());

/********************************************************/
/*                                                      */
/*                    NumpyAnyArray                     */
/*                                                      */
/********************************************************/

/** Wrapper class for a Python array.

    This class stores a reference-counted pointer to an Python numpy array object,
    i.e. an object where <tt>PyArray_Check(object)</tt> returns true (in Python, the
    object is then a subclass of <tt>numpy.ndarray</tt>). This class is mainly used
    as a smart pointer to these arrays, but some basic access and conversion functions
    are also provided.

    <b>\#include</b> \<vigra/numpy_array.hxx\><br>
    Namespace: vigra
*/
class NumpyAnyArray
{
  protected:
    python_ptr pyArray_;

  public:

        /// difference type
    typedef ArrayVector<npy_intp> difference_type;

    static python_ptr getArrayTypeObject()
    {
        return detail::getArrayTypeObject();
    }

    static std::string defaultOrder(std::string defaultValue = "C")
    {
        return detail::defaultOrder(defaultValue);
    }

    static python_ptr defaultAxistags(int ndim, std::string order = "")
    {
        return detail::defaultAxistags(ndim, order);
    }

    static python_ptr emptyAxistags(int ndim)
    {
        return detail::emptyAxistags(ndim);
    }

        /**
         Construct from a Python object. If \a obj is NULL, or is not a subclass
         of numpy.ndarray, the resulting NumpyAnyArray will have no data (i.e.
         hasData() returns false). Otherwise, it creates a new reference to the array
         \a obj, unless \a createCopy is true, where a new array is created by calling
         the C-equivalent of obj->copy().
         */
    explicit NumpyAnyArray(PyObject * obj = 0, bool createCopy = false, PyTypeObject * type = 0)
    {
        if(obj == 0)
            return;
        vigra_precondition(type == 0 || PyType_IsSubtype(type, &PyArray_Type),
             "NumpyAnyArray(obj, createCopy, type): type must be numpy.ndarray or a subclass thereof.");
        if(createCopy)
            makeCopy(obj, type);
        else
            vigra_precondition(makeReference(obj, type), "NumpyAnyArray(obj): obj isn't a numpy array.");
    }

        /**
         Copy constructor. By default, it creates a new reference to the array
         \a other. When \a createCopy is true, a new array is created by calling
         the C-equivalent of other.copy().
         */
    NumpyAnyArray(NumpyAnyArray const & other, bool createCopy = false, PyTypeObject * type = 0)
    {
        if(!other.hasData())
            return;
        vigra_precondition(type == 0 || PyType_IsSubtype(type, &PyArray_Type),
             "NumpyAnyArray(obj, createCopy, type): type must be numpy.ndarray or a subclass thereof.");
        if(createCopy)
            makeCopy(other.pyObject(), type);
        else
            makeReference(other.pyObject(), type);
    }

    // auto-generated destructor is ok

        /**
         * Assignment operator. If this is already a view with data
         * (i.e. hasData() is true) and the shapes match, the RHS
         * array contents are copied via the C-equivalent of
         * 'self[...] = other[...]'. If the shapes don't matched,
         * broadcasting is tried on the trailing (i.e. channel)
         * dimension.
         * If the LHS is an empty view, assignment is identical to
         * makeReference(other.pyObject()).
         */
    NumpyAnyArray & operator=(NumpyAnyArray const & other)
    {
        if(hasData())
        {
            vigra_precondition(other.hasData(),
                "NumpyArray::operator=(): Cannot assign from empty array.");

            python_ptr arraytype = getArrayTypeObject();
            python_ptr f(PyString_FromString("_copyValuesImpl"), python_ptr::keep_count);
            if(PyObject_HasAttr(arraytype, f))
            {
                python_ptr res(PyObject_CallMethodObjArgs(arraytype, f.get(),
                                                          pyArray_.get(), other.pyArray_.get(), NULL),
                               python_ptr::keep_count);
                vigra_postcondition(res.get() != 0,
                       "NumpyArray::operator=(): VigraArray._copyValuesImpl() failed.");
            }
            else
            {
                PyArrayObject * sarray = (PyArrayObject *)pyArray_.get();
                PyArrayObject * tarray = (PyArrayObject *)other.pyArray_.get();

                if(PyArray_CopyInto(tarray, sarray) == -1)
                    pythonToCppException(0);
            }
        }
        else
        {
            pyArray_ = other.pyArray_;
        }
        return *this;
    }

        /**
         Returns the number of dimensions of this array, or 0 if
         hasData() is false.
         */
    MultiArrayIndex ndim() const
    {
        if(hasData())
            return PyArray_NDIM(pyArray());
        return 0;
    }

        /**
         Returns the number of spatial dimensions of this array, or 0 if
         hasData() is false. If the enclosed Python array does not define
         the attribute spatialDimensions, ndim() is returned.
         */
    MultiArrayIndex spatialDimensions() const
    {
        if(!hasData())
            return 0;
        return pythonGetAttr(pyObject(), "spatialDimensions", ndim());
    }

    bool hasChannelAxis() const
    {
        if(!hasData())
            return false;
        return channelIndex() == ndim();
    }

    MultiArrayIndex channelIndex() const
    {
        if(!hasData())
            return 0;
        return pythonGetAttr(pyObject(), "channelIndex", ndim());
    }

    MultiArrayIndex innerNonchannelIndex() const
    {
        if(!hasData())
            return 0;
        return pythonGetAttr(pyObject(), "innerNonchannelIndex", ndim());
    }

        /**
         Returns the shape of this array. The size of
         the returned shape equals ndim().
         */
    difference_type shape() const
    {
        if(hasData())
            return difference_type(PyArray_DIMS(pyArray()), PyArray_DIMS(pyArray()) + ndim());
        return difference_type();
    }

        /** Compute the ordering of the strides of this array.
            The result is describes the current permutation of the axes relative
            to an ascending stride order.
        */
    difference_type strideOrdering() const
    {
        if(!hasData())
            return difference_type();
        MultiArrayIndex N = ndim();
        difference_type stride(PyArray_STRIDES(pyArray()), PyArray_STRIDES(pyArray()) + N),
                        permutation(N);
        for(MultiArrayIndex k=0; k<N; ++k)
            permutation[k] = k;
        for(MultiArrayIndex k=0; k<N-1; ++k)
        {
            MultiArrayIndex smallest = k;
            for(MultiArrayIndex j=k+1; j<N; ++j)
            {
                if(stride[j] < stride[smallest])
                    smallest = j;
            }
            if(smallest != k)
            {
                std::swap(stride[k], stride[smallest]);
                std::swap(permutation[k], permutation[smallest]);
            }
        }
        difference_type ordering(N);
        for(MultiArrayIndex k=0; k<N; ++k)
            ordering[permutation[k]] = k;
        return ordering;
    }

        // /**
         // Returns the the permutation that will transpose this array into
         // canonical ordering (currently: F-order). The size of
         // the returned permutation equals ndim().
         // */
    // difference_type permutationToNormalOrder() const
    // {
        // if(!hasData())
            // return difference_type();

        // // difference_type res(detail::getAxisPermutationImpl(pyArray_,
                                               // // "permutationToNormalOrder", true));
        // difference_type res;
        // detail::getAxisPermutationImpl(res, pyArray_, "permutationToNormalOrder", true);
        // if(res.size() == 0)
        // {
            // res.resize(ndim());
            // linearSequence(res.begin(), res.end(), ndim()-1, MultiArrayIndex(-1));
        // }
        // return res;
    // }

        /**
         Returns the value type of the elements in this array, or -1
         when hasData() is false.
         */
    int dtype() const
    {
        if(hasData())
            return PyArray_DESCR(pyArray())->type_num;
        return -1;
    }

        /**
         * Return the AxisTags of this array or a NULL pointer when the attribute
           'axistags' is missing in the Python object or this array has no data.
         */
    python_ptr axistags() const
    {
        python_ptr axistags;
        if(pyObject())
        {
            python_ptr key(PyString_FromString("axistags"), python_ptr::keep_count);
            axistags.reset(PyObject_GetAttr(pyObject(), key), python_ptr::keep_count);
            if(!axistags)
                PyErr_Clear();
        }
        return axistags;
    }

        /**
         * Return a borrowed reference to the internal PyArrayObject.
         */
    PyArrayObject * pyArray() const
    {
        return (PyArrayObject *)pyArray_.get();
    }

        /**
         * Return a borrowed reference to the internal PyArrayObject
         * (see pyArray()), cast to PyObject for your convenience.
         */
    PyObject * pyObject() const
    {
        return pyArray_.get();
    }

        /**
           Reset the NumpyAnyArray to the given object. If \a obj is a numpy array object,
           a new reference to that array is created, and the function returns
           true. Otherwise, it returns false and the NumpyAnyArray remains unchanged.
           If \a type is given, the new reference will be a view with that type, provided
           that \a type is a numpy ndarray or a subclass thereof. Otherwise, an
           exception is thrown.
         */
    bool makeReference(PyObject * obj, PyTypeObject * type = 0)
    {
        if(obj == 0 || !PyArray_Check(obj))
            return false;
        if(type != 0)
        {
            vigra_precondition(PyType_IsSubtype(type, &PyArray_Type) != 0,
                "NumpyAnyArray::makeReference(obj, type): type must be numpy.ndarray or a subclass thereof.");
            obj = PyArray_View((PyArrayObject*)obj, 0, type);
            pythonToCppException(obj);
        }
        pyArray_.reset(obj);
        return true;
    }

        /**
           Create a copy of the given array object. If \a obj is a numpy array object,
           a copy is created via the C-equivalent of 'obj->copy()'. If
           this call fails, or obj was not an array, an exception is thrown
           and the NumpyAnyArray remains unchanged.
         */
    void makeCopy(PyObject * obj, PyTypeObject * type = 0)
    {
        vigra_precondition(obj && PyArray_Check(obj),
             "NumpyAnyArray::makeCopy(obj): obj is not an array.");
        vigra_precondition(type == 0 || PyType_IsSubtype(type, &PyArray_Type),
             "NumpyAnyArray::makeCopy(obj, type): type must be numpy.ndarray or a subclass thereof.");
        python_ptr array(PyArray_NewCopy((PyArrayObject*)obj, NPY_ANYORDER), python_ptr::keep_count);
        pythonToCppException(array);
        makeReference(array, type);
    }

         /**
           Check whether this NumpyAnyArray actually points to a Python array.
         */
    bool hasData() const
    {
        return pyArray_ != 0;
    }
};

/********************************************************/
/*                                                      */
/*                    constructArray                    */
/*                                                      */
/********************************************************/

namespace detail {

inline bool
nontrivialPermutation(ArrayVector<npy_intp> const & p)
{
    for(unsigned int k=0; k<p.size(); ++k)
        if(p[k] != k)
            return true;
    return false;
}

} // namespace detail

template <class TYPECODE> // pseudo-template to avoid inline expansion of the function
                          // will always be NPY_TYPES
PyObject *
constructArray(TaggedShape tagged_shape, TYPECODE typeCode, bool init, python_ptr arraytype)
{
    ArrayVector<npy_intp> shape = finalizeTaggedShape(tagged_shape);
    PyAxisTags axistags(tagged_shape.axistags);

    int ndim = (int)shape.size();
    ArrayVector<npy_intp> inverse_permutation;
    int order = 1; // Fortran order

    if(axistags)
    {
        if(!arraytype)
            arraytype = NumpyAnyArray::getArrayTypeObject();

        inverse_permutation = axistags.permutationFromNormalOrder();
        vigra_precondition(ndim == (int)inverse_permutation.size(),
                     "axistags.permutationFromNormalOrder(): permutation has wrong size.");
    }
    else
    {
        arraytype = python_ptr((PyObject*)&PyArray_Type);
        order = 0; // C order
    }

//    std::cerr << "constructArray: " << shape << "\n" << inverse_permutation << "\n";

    python_ptr array(PyArray_New((PyTypeObject *)arraytype.get(), ndim, shape.begin(),
                                  typeCode, 0, 0, 0, order, 0),
                     python_ptr::keep_count);
    pythonToCppException(array);

    if(detail::nontrivialPermutation(inverse_permutation))
    {
        PyArray_Dims permute = { inverse_permutation.begin(), ndim };
        array = python_ptr(PyArray_Transpose((PyArrayObject*)array.get(), &permute),
                           python_ptr::keep_count);
        pythonToCppException(array);
    }

    if(arraytype != (PyObject*)&PyArray_Type && axistags)
        pythonToCppException(PyObject_SetAttrString(array, "axistags", axistags.axistags) != -1);

    if(init)
        PyArray_FILLWBYTE((PyArrayObject *)array.get(), 0);

    return array.release();
}

// FIXME: reimplement in terms of TaggedShape?
template <class TINY_VECTOR>
inline
python_ptr constructNumpyArrayFromData(
    TINY_VECTOR const & shape, npy_intp *strides,
    NPY_TYPES typeCode, void *data)
{
    ArrayVector<npy_intp> pyShape(shape.begin(), shape.end());

#ifndef NPY_ARRAY_WRITEABLE
#  define NPY_ARRAY_WRITEABLE NPY_WRITEABLE    // old API compatibility
#endif

    python_ptr array(PyArray_New(&PyArray_Type, shape.size(), pyShape.begin(),
                                 typeCode, strides, data, 0, NPY_ARRAY_WRITEABLE, 0),
                     python_ptr::keep_count);
    pythonToCppException(array);

    return array;
}

/********************************************************/
/*                                                      */
/*                     NumpyArray                       */
/*                                                      */
/********************************************************/

/** Provide the MultiArrayView interface for a Python array.

    This class inherits from both \ref vigra::MultiArrayView and \ref vigra::NumpyAnyArray
    in order to support easy and save application of VIGRA functions to Python arrays.

    <b>\#include</b> \<vigra/numpy_array.hxx\><br>
    Namespace: vigra
*/
template <unsigned int N, class T, class Stride = StridedArrayTag>
class NumpyArray
: public MultiArrayView<N, typename NumpyArrayTraits<N, T, Stride>::value_type, Stride>,
  public NumpyAnyArray
{
  public:
    typedef NumpyArrayTraits<N, T, Stride> ArrayTraits;
    typedef typename ArrayTraits::dtype dtype;
    typedef T pseudo_value_type;

    static NPY_TYPES const typeCode = ArrayTraits::typeCode;

        /** the view type associated with this array.
         */
    typedef MultiArrayView<N, typename ArrayTraits::value_type, Stride> view_type;

    enum { actual_dimension = view_type::actual_dimension };

        /** the array's value type
         */
    typedef typename view_type::value_type value_type;

        /** pointer type
         */
    typedef typename view_type::pointer pointer;

        /** const pointer type
         */
    typedef typename view_type::const_pointer const_pointer;

        /** reference type (result of operator[])
         */
    typedef typename view_type::reference reference;

        /** const reference type (result of operator[] const)
         */
    typedef typename view_type::const_reference const_reference;

        /** size type
         */
    typedef typename view_type::size_type size_type;

        /** difference type (used for multi-dimensional offsets and indices)
         */
    typedef typename view_type::difference_type difference_type;

        /** difference and index type for a single dimension
         */
    typedef typename view_type::difference_type_1 difference_type_1;

        /** type of an array specifying an axis permutation
         */
    typedef typename NumpyAnyArray::difference_type permutation_type;

        /** traverser type
         */
    typedef typename view_type::traverser traverser;

        /** traverser type to const data
         */
    typedef typename view_type::const_traverser const_traverser;

        /** sequential (random access) iterator type
         */
    typedef typename view_type::iterator iterator;

        /** sequential (random access) const iterator type
         */
    typedef typename view_type::const_iterator const_iterator;

    using view_type::shape;   // resolve ambiguity of multiple inheritance
    using view_type::hasData; // resolve ambiguity of multiple inheritance
    using view_type::strideOrdering; // resolve ambiguity of multiple inheritance

  protected:

    // this function assumes that pyArray_ has already been set, and compatibility been checked
    void setupArrayView();

    static python_ptr init(difference_type const & shape, bool init = true,
                           std::string const & order = "")
    {
        vigra_precondition(order == "" || order == "C" || order == "F" ||
                           order == "V" || order == "A",
            "NumpyArray.init(): order must be in ['C', 'F', 'V', 'A', ''].");
        return python_ptr(constructArray(ArrayTraits::taggedShape(shape, order), typeCode, init),
                          python_ptr::keep_count);
    }

  public:

    using view_type::init;

        /**
         * Construct from a given PyObject pointer. When the given
         * python object is NULL, the internal python array will be
         * NULL and hasData() will return false.
         *
         * Otherwise, the function attempts to create a
         * new reference to the given Python object, unless
         * copying is forced by setting \a createCopy to true.
         * If either of this fails, the function throws an exception.
         * This will not happen if isReferenceCompatible(obj) (in case
         * of creating a new reference) or isCopyCompatible(obj)
         * (in case of copying) have returned true beforehand.
         */
    explicit NumpyArray(PyObject *obj = 0, bool createCopy = false)
    {
        if(obj == 0)
            return;
        if(createCopy)
            makeCopy(obj);
        else
            vigra_precondition(makeReference(obj),
                  "NumpyArray(obj): Cannot construct from incompatible array.");
    }

       /**
         * Copy constructor; does not copy the memory, but creates a
         * new reference to the same underlying python object, unless
         * a copy is forced by setting \a createCopy to true.
         * (If the source object has no data, this one will have
         * no data, too.)
         */
    NumpyArray(const NumpyArray &other, bool createCopy = false)
    : view_type(),
      NumpyAnyArray()
    {
        if(!other.hasData())
            return;
        if(createCopy)
            makeCopy(other.pyObject());
        else
            makeReferenceUnchecked(other.pyObject());
    }

       /**
         * Allocate new memory and copy data from a MultiArrayView.
         */
    template <class U, class S>
    explicit NumpyArray(const MultiArrayView<N, U, S> &other)
    {
        if(!other.hasData())
            return;
        vigra_postcondition(makeReference(init(other.shape(), false)),
                  "NumpyArray(MultiArrayView): Python constructor did not produce a compatible array.");
        view_type::operator=(other);
    }

        /**
         * Construct a new array object, allocating an internal python
         * ndarray of the given shape in the given order (default: VIGRA order), initialized
         * with zeros.
         *
         * An exception is thrown when construction fails.
         */
    explicit NumpyArray(difference_type const & shape, std::string const & order = "")
    {
        vigra_postcondition(makeReference(init(shape, true, order)),
                     "NumpyArray(shape): Python constructor did not produce a compatible array.");
    }

        /**
         * Construct a new array object, allocating an internal python
         * ndarray according to the given tagged shape, initialized with zeros.
         *
         * An exception is thrown when construction fails.
         */
    explicit NumpyArray(TaggedShape const & tagged_shape)
    {
        reshapeIfEmpty(tagged_shape,
           "NumpyArray(tagged_shape): Python constructor did not produce a compatible array.");
    }

        /**
         * Constructor from NumpyAnyArray.
         * Equivalent to NumpyArray(other.pyObject())
         */
    explicit NumpyArray(const NumpyAnyArray &other, bool createCopy = false)
    {
        if(!other.hasData())
            return;
        if(createCopy)
            makeCopy(other.pyObject());
        else
            vigra_precondition(makeReference(other.pyObject()), //, false),
                   "NumpyArray(NumpyAnyArray): Cannot construct from incompatible or empty array.");
    }

        /**
         * Assignment operator. If this is already a view with data
         * (i.e. hasData() is true) and the shapes match, the RHS
         * array contents are copied.  If this is an empty view,
         * assignment is identical to makeReferenceUnchecked(other.pyObject()).
         * See MultiArrayView::operator= for further information on
         * semantics.
         */
    NumpyArray &operator=(const NumpyArray &other)
    {
        if(hasData())
            view_type::operator=(other);
        else
            makeReferenceUnchecked(other.pyObject());
        return *this;
    }

        /**
         * Assignment operator. If this is already a view with data
         * (i.e. hasData() is true) and the shapes match, the RHS
         * array contents are copied.  If this is an empty view,
         * assignment is identical to makeReferenceUnchecked(other.pyObject()).
         * See MultiArrayView::operator= for further information on
         * semantics.
         */
    template <class U, class S>
    NumpyArray &operator=(const NumpyArray<N, U, S> &other)
    {
        if(hasData())
        {
            vigra_precondition(shape() == other.shape(),
                "NumpyArray::operator=(): shape mismatch.");
            view_type::operator=(other);
        }
        else if(other.hasData())
        {
            NumpyArray copy;
            copy.reshapeIfEmpty(other.taggedShape(),
                "NumpyArray::operator=(): reshape failed unexpectedly.");
            copy = other;
            makeReferenceUnchecked(copy.pyObject());
        }
        return *this;
    }

        /**
         * Assignment operator. If this is already a view with data
         * (i.e. hasData() is true) and the shapes match, the RHS
         * array contents are copied.  If this is an empty view,
         * a new buffer with the RHS shape is allocated before copying.
         */
    template <class U, class S>
    NumpyArray &operator=(const MultiArrayView<N, U, S> &other)
    {
        if(hasData())
        {
            vigra_precondition(shape() == other.shape(),
                "NumpyArray::operator=(): shape mismatch.");
            view_type::operator=(other);
        }
        else if(other.hasData())
        {
            NumpyArray copy;
            copy.reshapeIfEmpty(other.shape(),
                "NumpyArray::operator=(): reshape failed unexpectedly.");
            copy = other;
            makeReferenceUnchecked(copy.pyObject());
        }
        return *this;
    }

        /**
         * Assignment operator. If this is already a view with data
         * (i.e. hasData() is true) and the shapes match, the RHS
         * array contents are copied.
         * If this is an empty view, assignment is identical to
         * makeReference(other.pyObject()).
         * Otherwise, an exception is thrown.
         */
    NumpyArray &operator=(const NumpyAnyArray &other)
    {
        if(hasData())
        {
            NumpyAnyArray::operator=(other);
        }
        else if(isReferenceCompatible(other.pyObject()))
        {
            makeReferenceUnchecked(other.pyObject());
        }
        else
        {
            vigra_precondition(false,
                "NumpyArray::operator=(): Cannot assign from incompatible array.");
        }
        return *this;
    }

        /**
         Permute the entries of the given array \a data exactly like the axes of this NumpyArray
         were permuted upon conversion from numpy.
         */
    template <class U>
    ArrayVector<U>
    permuteLikewise(ArrayVector<U> const & data) const
    {
        vigra_precondition(hasData(),
            "NumpyArray::permuteLikewise(): array has no data.");

        ArrayVector<U> res(data.size());
        ArrayTraits::permuteLikewise(this->pyArray_, data, res);
        return res;
    }

        /**
         Permute the entries of the given array \a data exactly like the axes of this NumpyArray
         were permuted upon conversion from numpy.
         */
    template <class U, int K>
    TinyVector<U, K>
    permuteLikewise(TinyVector<U, K> const & data) const
    {
        vigra_precondition(hasData(),
            "NumpyArray::permuteLikewise(): array has no data.");

        TinyVector<U, K> res;
        ArrayTraits::permuteLikewise(this->pyArray_, data, res);
        return res;
    }

        /**
         Get the permutation of the axes of this NumpyArray
         that was performed upon conversion from numpy.
         */
    template <int K>
    TinyVector<npy_intp, K>
    permuteLikewise() const
    {
        vigra_precondition(hasData(),
            "NumpyArray::permuteLikewise(): array has no data.");

        TinyVector<npy_intp, K> data, res;
        linearSequence(data.begin(), data.end());
        ArrayTraits::permuteLikewise(this->pyArray_, data, res);
        return res;
    }

        /**
         * Test whether a given python object is a numpy array that can be
         * converted (copied) into an array compatible to this NumpyArray type.
         * This means that the array's shape conforms to the requirements of
         * makeCopy().
         */
    static bool isCopyCompatible(PyObject *obj)
    {
#if VIGRA_CONVERTER_DEBUG
        std::cerr << "class " << typeid(NumpyArray).name() << " got " << obj->ob_type->tp_name << "\n";
        std::cerr << "using traits " << typeid(ArrayTraits).name() << "\n";
        std::cerr<<"isArray: "<< ArrayTraits::isArray(obj)<<std::endl;
        std::cerr<<"isShapeCompatible: "<< ArrayTraits::isShapeCompatible((PyArrayObject *)obj)<<std::endl;
#endif

        return ArrayTraits::isArray(obj) &&
               ArrayTraits::isShapeCompatible((PyArrayObject *)obj);
    }

        /**
         * Test whether a given python object is a numpy array with a
         * compatible dtype and the correct shape and strides, so that it
         * can be referenced as a view by this NumpyArray type (i.e.
         * it conforms to the requirements of makeReference()).
         */
    static bool isReferenceCompatible(PyObject *obj)
    {
        return ArrayTraits::isArray(obj) &&
               ArrayTraits::isPropertyCompatible((PyArrayObject *)obj);
    }

        /**
         * Deprecated, use isReferenceCompatible(obj) instead.
         */
    static bool isStrictlyCompatible(PyObject *obj)
    {
        return isReferenceCompatible(obj);
    }

        /**
         * Create a vector representing the standard stride ordering of a NumpyArray.
         * That is, we get a vector representing the range [0,...,N-1], which
         * denotes the stride ordering for Fortran order.
         */
    static difference_type standardStrideOrdering()
    {
        difference_type strideOrdering;
        for(unsigned int k=0; k<N; ++k)
            strideOrdering[k] = k;
        return strideOrdering;
    }

        /**
         * Set up a view to the given object without checking compatibility.
         * This function must not be used unless isReferenceCompatible(obj) returned
         * true on the given object (otherwise, a crash is likely).
         */
    void makeReferenceUnchecked(PyObject *obj)
    {
        NumpyAnyArray::makeReference(obj);
        setupArrayView();
    }

        /**
         * Try to set up a view referencing the given PyObject.
         * Returns false if the python object is not a compatible
         * numpy array (see isReferenceCompatible()).
         *
         * The second parameter ('strict') is deprecated and will be ignored.
         */
    bool makeReference(PyObject *obj, bool /* strict */ = false)
    {
        if(!isReferenceCompatible(obj))
            return false;
        makeReferenceUnchecked(obj);
        return true;
    }

        /**
         * Try to set up a view referencing the same data as the given
         * NumpyAnyArray.  This overloaded variant simply calls
         * makeReference() on array.pyObject(). The parameter \a strict
         * is deprecated and will be ignored.
         */
    bool makeReference(const NumpyAnyArray &array, bool strict = false)
    {
        return makeReference(array.pyObject(), strict);
    }

        /**
         * Set up an unsafe reference to the given MultiArrayView.
         * ATTENTION: This creates a numpy.ndarray that points to the
         * same data, but does not own it, so it must be ensured by
         * other means that the memory does not get freed before the
         * end of the ndarray's lifetime!  (One elegant way would be
         * to set the 'base' attribute of the resulting ndarray to a
         * python object which directly or indirectly holds the memory
         * of the given MultiArrayView.)
         */
    void makeUnsafeReference(const view_type &multiArrayView)
    {
        vigra_precondition(!hasData(),
            "makeUnsafeReference(): cannot replace existing view with given buffer");

        // construct an ndarray that points to our data (taking strides into account):
        python_ptr array(ArrayTraits::unsafeConstructorFromData(multiArrayView.shape(),
                                  multiArrayView.data(), multiArrayView.stride()));

        view_type::operator=(multiArrayView);
        pyArray_ = array;
    }

        /**
         Try to create a copy of the given PyObject.
         Raises an exception when obj is not a compatible array
         (see isCopyCompatible() or isReferenceCompatible(), according to the
         parameter \a strict) or the Python constructor call failed.
         */
    void makeCopy(PyObject *obj, bool strict = false)
    {
#if VIGRA_CONVERTER_DEBUG
        int ndim = PyArray_NDIM((PyArrayObject *)obj);
        npy_intp * s = PyArray_DIMS((PyArrayObject *)obj);
        std::cerr << "makeCopy: " << ndim << " " <<  ArrayVectorView<npy_intp>(ndim, s) <<
                     ", strides " << ArrayVectorView<npy_intp>(ndim, PyArray_STRIDES((PyArrayObject *)obj)) << "\n";
        std::cerr << "for " << typeid(*this).name() << "\n";
#endif
        vigra_precondition(strict ? isReferenceCompatible(obj) : isCopyCompatible(obj),
                     "NumpyArray::makeCopy(obj): Cannot copy an incompatible array.");

        NumpyAnyArray copy(obj, true);
        makeReferenceUnchecked(copy.pyObject());
    }

        /**
            Allocate new memory with the given shape and initialize with zeros.<br>
            If a stride ordering is given, the resulting array will have this stride
            ordering, when it is compatible with the array's memory layout (unstrided
            arrays only permit the standard ascending stride ordering).

            <em>Note:</em> this operation invalidates dependent objects
            (MultiArrayViews and iterators)
         */
    void reshape(difference_type const & shape)
    {
        vigra_postcondition(makeReference(init(shape)),
                "NumpyArray.reshape(shape): Python constructor did not produce a compatible array.");
    }

        /**
            When this array has no data, allocate new memory with the given \a shape and
            initialize with zeros. Otherwise, check if the new shape matches the old shape
            and throw a precondition exception with the given \a message if not.
         */
    void reshapeIfEmpty(difference_type const & shape, std::string message = "")
    {
        // FIXME: is this really a good replacement?
        // reshapeIfEmpty(shape, standardStrideOrdering(), message);
        reshapeIfEmpty(TaggedShape(shape), message);
    }

        /**
            When this array has no data, allocate new memory with the given \a shape and
            initialize with zeros. Otherwise, check if the new shape matches the old shape
            and throw a precondition exception with the given \a message if not.
         */
    void reshapeIfEmpty(TaggedShape tagged_shape, std::string message = "")
    {
        ArrayTraits::finalizeTaggedShape(tagged_shape);

        if(hasData())
        {
            vigra_precondition(tagged_shape.compatible(taggedShape()), message.c_str());
        }
        else
        {
            python_ptr array(constructArray(tagged_shape, typeCode, true),
                             python_ptr::keep_count);
            vigra_postcondition(makeReference(NumpyAnyArray(array.get())),
                  "NumpyArray.reshapeIfEmpty(): Python constructor did not produce a compatible array.");
        }
    }

    TaggedShape taggedShape() const
    {
        return ArrayTraits::taggedShape(this->shape(), PyAxisTags(this->axistags(), true));
    }
};

    // this function assumes that pyArray_ has already been set, and compatibility been checked
template <unsigned int N, class T, class Stride>
void NumpyArray<N, T, Stride>::setupArrayView()
{
    if(NumpyAnyArray::hasData())
    {
        permutation_type permute;
        ArrayTraits::permutationToSetupOrder(this->pyArray_, permute);

        vigra_precondition(abs((int)permute.size() - actual_dimension) <= 1,
            "NumpyArray::setupArrayView(): got array of incompatible shape (should never happen).");

        applyPermutation(permute.begin(), permute.end(),
                         PyArray_DIMS(pyArray()), this->m_shape.begin());
        applyPermutation(permute.begin(), permute.end(),
                         PyArray_STRIDES(pyArray()), this->m_stride.begin());

        if((int)permute.size() == actual_dimension - 1)
        {
            this->m_shape[actual_dimension-1] = 1;
            this->m_stride[actual_dimension-1] = sizeof(value_type);
        }

        this->m_stride /= sizeof(value_type);
        this->m_ptr = reinterpret_cast<pointer>(PyArray_DATA(pyArray()));
        vigra_precondition(this->checkInnerStride(Stride()),
            "NumpyArray<..., UnstridedArrayTag>::setupArrayView(): First dimension of given array is not unstrided (should never happen).");

    }
    else
    {
        this->m_ptr = 0;
    }
}


typedef NumpyArray<2, float >  NumpyFArray2;
typedef NumpyArray<3, float >  NumpyFArray3;
typedef NumpyArray<4, float >  NumpyFArray4;
typedef NumpyArray<2, Singleband<float> >  NumpyFImage;
typedef NumpyArray<3, Singleband<float> >  NumpyFVolume;
typedef NumpyArray<2, RGBValue<float> >  NumpyFRGBImage;
typedef NumpyArray<3, RGBValue<float> >  NumpyFRGBVolume;
typedef NumpyArray<3, Multiband<float> >  NumpyFMultibandImage;
typedef NumpyArray<4, Multiband<float> >  NumpyFMultibandVolume;

/********************************************************/
/*                                                      */
/*   NumpyArray Multiband Argument Object Factories     */
/*                                                      */
/********************************************************/

template <class PixelType, class Stride>
inline triple<ConstStridedImageIterator<PixelType>,
              ConstStridedImageIterator<PixelType>,
              MultibandVectorAccessor<PixelType> >
srcImageRange(NumpyArray<3, Multiband<PixelType>, Stride> const & img)
{
    ConstStridedImageIterator<PixelType>
        ul(img.data(), 1, img.stride(0), img.stride(1));
    return triple<ConstStridedImageIterator<PixelType>,
                  ConstStridedImageIterator<PixelType>,
                  MultibandVectorAccessor<PixelType> >
        (ul, ul + Size2D(img.shape(0), img.shape(1)), MultibandVectorAccessor<PixelType>(img.shape(2), img.stride(2)));
}

template <class PixelType, class Stride>
inline pair< ConstStridedImageIterator<PixelType>,
             MultibandVectorAccessor<PixelType> >
srcImage(NumpyArray<3, Multiband<PixelType>, Stride> const & img)
{
    ConstStridedImageIterator<PixelType>
        ul(img.data(), 1, img.stride(0), img.stride(1));
    return pair<ConstStridedImageIterator<PixelType>, MultibandVectorAccessor<PixelType> >
        (ul, MultibandVectorAccessor<PixelType>(img.shape(2), img.stride(2)));
}

template <class PixelType, class Stride>
inline triple< StridedImageIterator<PixelType>,
               StridedImageIterator<PixelType>,
               MultibandVectorAccessor<PixelType> >
destImageRange(NumpyArray<3, Multiband<PixelType>, Stride> & img)
{
    StridedImageIterator<PixelType>
        ul(img.data(), 1, img.stride(0), img.stride(1));
    return triple<StridedImageIterator<PixelType>,
                  StridedImageIterator<PixelType>,
                  MultibandVectorAccessor<PixelType> >
        (ul, ul + Size2D(img.shape(0), img.shape(1)),
        MultibandVectorAccessor<PixelType>(img.shape(2), img.stride(2)));
}

template <class PixelType, class Stride>
inline pair< StridedImageIterator<PixelType>,
             MultibandVectorAccessor<PixelType> >
destImage(NumpyArray<3, Multiband<PixelType>, Stride> & img)
{
    StridedImageIterator<PixelType>
        ul(img.data(), 1, img.stride(0), img.stride(1));
    return pair<StridedImageIterator<PixelType>, MultibandVectorAccessor<PixelType> >
        (ul, MultibandVectorAccessor<PixelType>(img.shape(2), img.stride(2)));
}

template <class PixelType, class Stride>
inline pair< ConstStridedImageIterator<PixelType>,
             MultibandVectorAccessor<PixelType> >
maskImage(NumpyArray<3, Multiband<PixelType>, Stride> const & img)
{
    ConstStridedImageIterator<PixelType>
        ul(img.data(), 1, img.stride(0), img.stride(1));
    return pair<ConstStridedImageIterator<PixelType>, MultibandVectorAccessor<PixelType> >
        (ul, MultibandVectorAccessor<PixelType>(img.shape(2), img.stride(2)));
}

} // namespace vigra

#endif // VIGRA_NUMPY_ARRAY_HXX