/usr/include/vigra/multi_watersheds.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 | /************************************************************************/
/* */
/* Copyright 1998-2013 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_MULTI_WATERSHEDS_HXX
#define VIGRA_MULTI_WATERSHEDS_HXX
#include <functional>
#include "mathutil.hxx"
#include "multi_array.hxx"
#include "multi_math.hxx"
#include "multi_gridgraph.hxx"
#include "multi_localminmax.hxx"
#include "multi_labeling.hxx"
#include "watersheds.hxx"
#include "bucket_queue.hxx"
#include "union_find.hxx"
namespace vigra {
/** \addtogroup SeededRegionGrowing
*/
//@{
namespace lemon_graph {
namespace graph_detail {
template <class Graph, class T1Map, class T2Map>
void
prepareWatersheds(Graph const & g,
T1Map const & data,
T2Map & lowestNeighborIndex)
{
typedef typename Graph::NodeIt graph_scanner;
typedef typename Graph::OutArcIt neighbor_iterator;
for (graph_scanner node(g); node != INVALID; ++node)
{
typename T1Map::value_type lowestValue = data[*node];
typename T2Map::value_type lowestIndex = -1;
for(neighbor_iterator arc(g, node); arc != INVALID; ++arc)
{
if(data[g.target(*arc)] <= lowestValue)
{
lowestValue = data[g.target(*arc)];
lowestIndex = arc.neighborIndex();
}
}
lowestNeighborIndex[*node] = lowestIndex;
}
}
template <class Graph, class T1Map, class T2Map, class T3Map>
typename T2Map::value_type
unionFindWatersheds(Graph const & g,
T1Map const & data,
T2Map const & lowestNeighborIndex,
T3Map & labels)
{
typedef typename Graph::NodeIt graph_scanner;
typedef typename Graph::OutBackArcIt neighbor_iterator;
typedef typename T3Map::value_type LabelType;
vigra::detail::UnionFindArray<LabelType> regions;
// pass 1: find connected components
for (graph_scanner node(g); node != INVALID; ++node)
{
// define tentative label for current node
LabelType currentLabel = regions.nextFreeLabel();
bool hasPlateauNeighbor = false;
for (neighbor_iterator arc(g, node); arc != INVALID; ++arc)
{
// merge regions if current target is center's lowest neighbor or vice versa
if(lowestNeighborIndex[*node] == arc.neighborIndex() ||
lowestNeighborIndex[g.target(*arc)] == g.oppositeIndex(arc.neighborIndex()))
{
if(data[*node] == data[g.target(*arc)])
hasPlateauNeighbor = true;
LabelType neighborLabel = regions[labels[g.target(*arc)]];
currentLabel = regions.makeUnion(neighborLabel, currentLabel);
}
}
if(hasPlateauNeighbor)
{
// we are on a plateau => link all plateau points
for (neighbor_iterator arc(g, node); arc != INVALID; ++arc)
{
if(data[*node] == data[g.target(*arc)])
{
LabelType neighborLabel = regions[labels[g.target(*arc)]];
currentLabel = regions.makeUnion(neighborLabel, currentLabel);
}
}
}
// set label of current node
labels[*node] = regions.finalizeLabel(currentLabel);
}
LabelType count = regions.makeContiguous();
// pass 2: make component labels contiguous
for (graph_scanner node(g); node != INVALID; ++node)
{
labels[*node] = regions[labels[*node]];
}
return count;
}
template <class Graph, class T1Map, class T2Map>
typename T2Map::value_type
generateWatershedSeeds(Graph const & g,
T1Map const & data,
T2Map & seeds,
SeedOptions const & options = SeedOptions())
{
typedef typename T1Map::value_type DataType;
typedef unsigned char MarkerType;
typename Graph::template NodeMap<MarkerType> minima(g);
if(options.mini == SeedOptions::LevelSets)
{
vigra_precondition(options.thresholdIsValid<DataType>(),
"generateWatershedSeeds(): SeedOptions.levelSets() must be specified with threshold.");
using namespace multi_math;
minima = data <= DataType(options.thresh);
}
else
{
DataType threshold = options.thresholdIsValid<DataType>()
? options.thresh
: NumericTraits<DataType>::max();
if(options.mini == SeedOptions::ExtendedMinima)
extendedLocalMinMaxGraph(g, data, minima, MarkerType(1), threshold,
std::less<DataType>(), std::equal_to<DataType>(), true);
else
localMinMaxGraph(g, data, minima, MarkerType(1), threshold,
std::less<DataType>(), true);
}
return labelGraphWithBackground(g, minima, seeds, MarkerType(0), std::equal_to<MarkerType>());
}
template <class Graph, class T1Map, class T2Map>
typename T2Map::value_type
seededWatersheds(Graph const & g,
T1Map const & data,
T2Map & labels,
WatershedOptions const & options)
{
typedef typename Graph::Node Node;
typedef typename Graph::NodeIt graph_scanner;
typedef typename Graph::OutArcIt neighbor_iterator;
typedef typename T1Map::value_type CostType;
typedef typename T2Map::value_type LabelType;
PriorityQueue<Node, CostType, true> pqueue;
bool keepContours = ((options.terminate & KeepContours) != 0);
LabelType maxRegionLabel = 0;
for (graph_scanner node(g); node != INVALID; ++node)
{
LabelType label = labels[*node];
if(label != 0)
{
if(maxRegionLabel < label)
maxRegionLabel = label;
for (neighbor_iterator arc(g, node); arc != INVALID; ++arc)
{
if(labels[g.target(*arc)] == 0)
{
// register all seeds that have an unlabeled neighbor
if(label == options.biased_label)
pqueue.push(*node, data[*node] * options.bias);
else
pqueue.push(*node, data[*node]);
break;
}
}
}
}
LabelType contourLabel = maxRegionLabel + 1; // temporary contour label
// perform region growing
while(!pqueue.empty())
{
Node node = pqueue.top();
CostType cost = pqueue.topPriority();
pqueue.pop();
if((options.terminate & StopAtThreshold) && (cost > options.max_cost))
break;
LabelType label = labels[node];
if(label == contourLabel)
continue;
// Put the unlabeled neighbors in the priority queue.
for (neighbor_iterator arc(g, node); arc != INVALID; ++arc)
{
LabelType neighborLabel = labels[g.target(*arc)];
if(neighborLabel == 0)
{
labels[g.target(*arc)] = label;
CostType priority = (label == options.biased_label)
? data[g.target(*arc)] * options.bias
: data[g.target(*arc)];
if(priority < cost)
priority = cost;
pqueue.push(g.target(*arc), priority);
}
else if(keepContours && (label != neighborLabel) && (neighborLabel != contourLabel))
{
// The present neighbor is adjacent to more than one region
// => mark it as contour.
CostType priority = (neighborLabel == options.biased_label)
? data[g.target(*arc)] * options.bias
: data[g.target(*arc)];
if(cost < priority) // neighbor not yet processed
labels[g.target(*arc)] = contourLabel;
}
}
}
if(keepContours)
{
// Replace the temporary contour label with label 0.
typename T2Map::iterator k = labels.begin(),
end = labels.end();
for(; k != end; ++k)
if(*k == contourLabel)
*k = 0;
}
return maxRegionLabel;
}
} // namespace graph_detail
template <class Graph, class T1Map, class T2Map>
typename T2Map::value_type
watershedsGraph(Graph const & g,
T1Map const & data,
T2Map & labels,
WatershedOptions const & options)
{
if(options.method == WatershedOptions::UnionFind)
{
vigra_precondition(g.maxDegree() <= NumericTraits<unsigned short>::max(),
"watershedsGraph(): cannot handle nodes with degree > 65535.");
typename Graph::template NodeMap<unsigned short> lowestNeighborIndex(g);
graph_detail::prepareWatersheds(g, data, lowestNeighborIndex);
return graph_detail::unionFindWatersheds(g, data, lowestNeighborIndex, labels);
}
else if(options.method == WatershedOptions::RegionGrowing)
{
SeedOptions seed_options;
// check if the user has explicitly requested seed computation
if(options.seed_options.mini != SeedOptions::Unspecified)
{
seed_options = options.seed_options;
}
else
{
// otherwise, don't compute seeds if 'labels' already contains them
if(labels.any())
seed_options.mini = SeedOptions::Unspecified;
}
if(seed_options.mini != SeedOptions::Unspecified)
{
graph_detail::generateWatershedSeeds(g, data, labels, seed_options);
}
return graph_detail::seededWatersheds(g, data, labels, options);
}
else
{
vigra_precondition(false,
"watershedsGraph(): invalid method in watershed options.");
return 0;
}
}
} // namespace lemon_graph
// documentation is in watersheds.hxx
template <unsigned int N, class T, class S1,
class Label, class S2>
inline Label
generateWatershedSeeds(MultiArrayView<N, T, S1> const & data,
MultiArrayView<N, Label, S2> seeds,
NeighborhoodType neighborhood = IndirectNeighborhood,
SeedOptions const & options = SeedOptions())
{
vigra_precondition(data.shape() == seeds.shape(),
"generateWatershedSeeds(): Shape mismatch between input and output.");
GridGraph<N, undirected_tag> graph(data.shape(), neighborhood);
return lemon_graph::graph_detail::generateWatershedSeeds(graph, data, seeds, options);
}
/** \brief Watershed segmentation of an arbitrary-dimensional array.
This function implements variants of the watershed algorithms
described in
[1] L. Vincent and P. Soille: <em>"Watersheds in digital spaces: An efficient algorithm
based on immersion simulations"</em>, IEEE Trans. Patt. Analysis Mach. Intell. 13(6):583-598, 1991
[2] J. Roerdink, R. Meijster: <em>"The watershed transform: definitions, algorithms,
and parallelization strategies"</em>, Fundamenta Informaticae, 41:187-228, 2000
The source array \a data is a boundary indicator such as the gaussianGradientMagnitude()
or the trace of the \ref boundaryTensor(), and the destination \a labels is a label array
designating membership of each point in one of the regions found. Plateaus in the boundary
indicator are handled via simple tie breaking strategies. Argument \a neighborhood
specifies the connectivity between points and can be <tt>DirectNeighborhood</tt> (meaning
4-neighborhood in 2D and 6-neighborhood in 3D, default) or <tt>IndirectNeighborhood</tt>
(meaning 8-neighborhood in 2D and 26-neighborhood in 3D).
The watershed variant to be applied can be selected in the \ref WatershedOptions
object: When you call <tt>WatershedOptions::regionGrowing()</tt> (default), the flooding
algorithm from [1] is used. Alternatively, <tt>WatershedOptions::unionFind()</tt> uses
the scan-line algorithm 4.7 from [2]. The latter is faster, but does not support any options
(if you pass options nonetheless, they are silently ignored).
The region growing algorithm needs a seed for each region. Seeds can either be provided in
the destination array \a labels (which will then be overwritten with the result) or computed
automatically by an internal call to generateWatershedSeeds(). In the former case you have
full control over seed placement, while the latter is more convenient. Automatic seed
computation is performed when you provide seeding options via <tt>WatershedOptions::seedOptions()</tt>
or when the array \a labels is empty (all zeros), in which case default seeding options
are chosen. The destination image should be zero-initialized for automatic seed computation.
Further options to be specified via \ref WatershedOptions are:
<ul>
<li> <tt>keepContours()</tt>: Whether to keep a 1-pixel-wide contour (with label 0) between
regions (otherwise, a complete grow is performed, i.e. all pixels are assigned to a region).
<li> <tt>stopAtThreshold()</tt>: Whether to stop growing when the boundaryness exceeds a threshold
(remaining pixels keep label 0).
<li> <tt>biasLabel()</tt>: Whether one region (label) is to be preferred or discouraged by biasing its cost
with a given factor (smaller than 1 for preference, larger than 1 for discouragement).
</ul>
The option <tt>turboAlgorithm()</tt> is implied by method <tt>regionGrowing()</tt> (this is
in contrast to watershedsRegionGrowing(), which supports an additional algorithm in 2D only).
watershedsMultiArray() returns the number of regions found (= the highest region label, because
labels start at 1).
<b> Declaration:</b>
\code
namespace vigra {
template <unsigned int N, class T, class S1,
class Label, class S2>
Label
watershedsMultiArray(MultiArrayView<N, T, S1> const & data,
MultiArrayView<N, Label, S2> labels, // may also hold input seeds
NeighborhoodType neighborhood = DirectNeighborhood,
WatershedOptions const & options = WatershedOptions());
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<vigra/multi_watersheds.hxx\><br>
Namespace: vigra
Example: watersheds of the gradient magnitude (the example works likewise for higher dimensions).
\code
MultiArray<2, unsigned char> src(Shape2(w, h));
... // read input data
// compute gradient magnitude at scale 1.0 as a boundary indicator
MultiArray<2, float> gradMag(src.shape());
gaussianGradientMagnitude(srcImageRange(src), destImage(gradMag), 1.0);
// example 1
{
// the pixel type of the destination image must be large enough to hold
// numbers up to 'max_region_label' to prevent overflow
MultiArray<2, unsigned int> labeling(src.shape());
// call region-growing algorithm for 4-neighborhood, leave a 1-pixel boundary between
// regions, and autogenerate seeds from all gradient minima where the magnitude is
// less than 2.0.
unsigned int max_region_label =
watershedsMultiArray(gradMag, labeling, DirectNeighborhood,
WatershedOptions().keepContours()
.seedOptions(SeedOptions().minima().threshold(2.0)));
}
// example 2
{
MultiArray<2, unsigned int> labeling(src.shape());
// compute seeds beforehand (use connected components of all pixels
// where the gradient is below 4.0)
unsigned int max_region_label = generateWatershedSeeds(gradMag, labeling,
SeedOptions().levelSets(4.0));
// quantize the gradient image to 256 gray levels
float m, M;
gradMag.minmax(&m, &M);
using namespace multi_math;
MultiArray<2, unsigned char> gradMag256(255.0 / (M - m) * (gradMag - m));
// call region-growing algorithm with 8-neighborhood,
// since the data are 8-bit, a faster priority queue will be used
watershedsMultiArray(gradMag256, labeling, IndirectNeighborhood);
}
// example 3
{
MultiArray<2, unsigned int> labeling(src.shape());
.. // put seeds in 'labeling', e.g. from an interactive labeling program,
// make sure that label 1 corresponds to the background
// bias the watershed algorithm so that the background is preferred
// by reducing the cost for label 1 to 90%
watershedsMultiArray(gradMag, labeling,
WatershedOptions().biasLabel(1, 0.9));
}
// example 4
{
MultiArray<2, unsigned int> labeling(src.shape());
// use the fast union-find algorithm with 4-neighborhood
watershedsMultiArray(gradMag, labeling, WatershedOptions().unionFind());
}
\endcode
*/
doxygen_overloaded_function(template <...> Label watershedsMultiArray)
template <unsigned int N, class T, class S1,
class Label, class S2>
inline Label
watershedsMultiArray(MultiArrayView<N, T, S1> const & data,
MultiArrayView<N, Label, S2> labels, // may also hold input seeds
NeighborhoodType neighborhood = DirectNeighborhood,
WatershedOptions const & options = WatershedOptions())
{
vigra_precondition(data.shape() == labels.shape(),
"watershedsMultiArray(): Shape mismatch between input and output.");
GridGraph<N, undirected_tag> graph(data.shape(), neighborhood);
return lemon_graph::watershedsGraph(graph, data, labels, options);
}
//@}
} // namespace vigra
#endif // VIGRA_MULTI_WATERSHEDS_HXX
|