This file is indexed.

/usr/include/vigra/accessor.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
/************************************************************************/
/*                                                                      */
/*               Copyright 1998-2002 by Ullrich Koethe                  */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */                
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_ACCESSOR_HXX
#define VIGRA_ACCESSOR_HXX

#include "metaprogramming.hxx"
#include "numerictraits.hxx"
#include "tuple.hxx"

namespace vigra {

/** \addtogroup DataAccessors Data Accessors

Basic templates to encapsulate access to the data of an iterator.

Data accessors are used to allow for flexible access to the data
an iterator points to. When we access the data directly, we
are bound to what <TT>operator*()</TT> returns, if this method exists at
all. Encapsulating access in an accessor enables a better
decoupling of data structures and algorithms.
<a href="http://hci.iwr.uni-heidelberg.de/vigra/documents/DataAccessors.ps">This paper</a> contains
a detailed description of the concept. Here is a brief list of the basic
accessor requirements:

<p>
<table border=2 cellspacing=0 cellpadding=2 width="100%">
<tr><th>
    Operation
    </th><th>
    Result
    </th><th>
    Semantics
    </th>
</tr>
<tr>
    <td><tt>accessor(iter)</tt></td><td>convertible to <br><tt>Accessor::value_type const &</tt></td>
    <td>read data at the current position of the iterator</td>
</tr>
<tr>
    <td><tt>accessor(iter, index)</tt></td><td>convertible to <br><tt>Accessor::value_type const &</tt></td>
    <td>read data at offset <tt>index</tt> relative to iterator's current position
    (random-access iterator only)</td>
</tr>
<tr>
    <td><tt>accessor.set(value, iter)</tt></td><td><tt>void</tt></td>
    <td>write data <tt>value</tt> at the current position of the iterator (mutable iterator only)</td>
</tr>
<tr>
    <td><tt>accessor.set(value, iter, index)</tt></td><td><tt>void</tt></td>
    <td>write data <tt>value</tt> at offset <tt>index</tt> relative to iterator's current position
    (mutable random-access iterator only)</td>
</tr>
<tr><td colspan=2>
    <tt>Accessor::value_type</tt></td>
    <td>type of the data field the accessor refers to</td>
</tr>
<tr><td colspan=3>
        <tt>iter</tt> is an iterator<br>
        <tt>index</tt> has the iterator's index type (<tt>Iterator::difference_type</tt>)<br>
        <tt>value</tt> is convertible to <tt>Accessor::value_type const &</tt>
    </td>
</tr>
</table>
</p>

The template <tt>AccessorTraits<T></tt> can be used to find the default accessor
associated with the type <tt>T</tt>, e.g.

\code
typedef typename AccessorTraits<typename Image::value_type>::default_accessor       Accessor;
typedef typename AccessorTraits<typename Image::value_type>::default_const_accessor ConstAccessor;
\endcode
*/
//@{

/********************************************************/
/*                                                      */
/*                     StandardAccessor                 */
/*                                                      */
/********************************************************/

/** \brief Encapsulate access to the values an iterator points to.

    StandardAccessor is a trivial accessor that simply encapsulates
    the iterator's operator*() and operator[]() in its
    read and write functions. It passes its arguments <em>by reference</em>.
    If you want to return items by value, you
    must use StandardValueAccessor instead of StandardAccessor.
    Both accessors have different optimization properties --
    StandardAccessor is usually faster for compound pixel types,
    while StandardValueAccessor is faster for the built-in types.

    When a floating point number is assigned by means of an accessor
    with integral value_type, the value is rounded and clipped as appropriate.

    <b>\#include</b> \<vigra/accessor.hxx\><br>
    Namespace: vigra
*/
template <class VALUETYPE>
class StandardAccessor
{
  public:
        /** the value_type
        */
    typedef VALUETYPE value_type;

        /** read the current data item
        */
    template <class ITERATOR>
    VALUETYPE const & operator()(ITERATOR const & i) const { return *i; }

    VALUETYPE const & operator()(VALUETYPE const * i) const { return *i; }

        /** read the data item at an offset (can be 1D or 2D or higher order difference).
        */
    template <class ITERATOR, class DIFFERENCE>
    VALUETYPE const & operator()(ITERATOR const & i, DIFFERENCE const & diff) const
    {
        return i[diff];
    }

        /** Write the current data item. The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>VALUETYPE</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR>
    void set(V const & value, ITERATOR const & i) const
    { *i = detail::RequiresExplicitCast<VALUETYPE>::cast(value); }

        /* This overload is needed to make the accessor work with a std::back_inserter */
    template <class V, class ITERATOR>
    void set(V const & value, ITERATOR & i) const
    { *i = detail::RequiresExplicitCast<VALUETYPE>::cast(value); }

        /** Write the data item at an offset (can be 1D or 2D or higher order difference)..
            The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>VALUETYPE</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR, class DIFFERENCE>
    void set(V const & value, ITERATOR const & i, DIFFERENCE const & diff) const
    {
        i[diff]= detail::RequiresExplicitCast<VALUETYPE>::cast(value);
    }
};

/** \brief Encapsulate access to the values an iterator points to.

    StandardValueAccessor is a trivial accessor that simply encapsulates
    the iterator's operator*() and operator[]() in its
    read and write functions. It passes its arguments <em>by value</em>.
    If the iterator returns its items by reference (such as \ref vigra::ImageIterator),
    you can also use StandardAccessor.
    These accessors have different optimization properties --
    StandardAccessor is usually faster for compound pixel types,
    while StandardValueAccessor is faster for the built-in types.

    When a floating point number is assigned by means of an accessor
    with integral value_type, the value is rounded and clipped as appropriate.

    <b>\#include</b> \<vigra/accessor.hxx\><br>
    Namespace: vigra
*/
template <class VALUETYPE>
class StandardValueAccessor
{
  public:
        /** the value_type
        */
    typedef VALUETYPE value_type;

        /** Read the current data item. The type <TT>ITERATOR::reference</TT>
            is automatically converted to <TT>VALUETYPE</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class ITERATOR>
    VALUETYPE operator()(ITERATOR const & i) const
        { return detail::RequiresExplicitCast<VALUETYPE>::cast(*i); }

        /** Read the data item at an offset (can be 1D or 2D or higher order difference).
            The type <TT>ITERATOR::index_reference</TT>
            is automatically converted to <TT>VALUETYPE</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class ITERATOR, class DIFFERENCE>
    VALUETYPE operator()(ITERATOR const & i, DIFFERENCE const & diff) const
    {
        return detail::RequiresExplicitCast<VALUETYPE>::cast(i[diff]);
    }
        /** Write the current data item. The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>VALUETYPE</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR>
    void set(V value, ITERATOR const & i) const
        { *i = detail::RequiresExplicitCast<VALUETYPE>::cast(value); }

        /* This overload is needed to make the accessor work with a std::back_inserter */
    template <class V, class ITERATOR>
    void set(V value, ITERATOR & i) const
        { *i = detail::RequiresExplicitCast<VALUETYPE>::cast(value); }

        /** Write the data item at an offset (can be 1D or 2D or higher order difference)..
            The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>VALUETYPE</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR, class DIFFERENCE>
    void set(V value, ITERATOR const & i, DIFFERENCE const & diff) const
    {
        i[diff]= detail::RequiresExplicitCast<VALUETYPE>::cast(value);
    }
};

/********************************************************/
/*                                                      */
/*                StandardConstAccessor                 */
/*                                                      */
/********************************************************/

/** \brief Encapsulate read access to the values an iterator points to.

    StandardConstAccessor is a trivial accessor that simply encapsulates
    the iterator's operator*() and operator[]() in its
    read functions. It passes its arguments <em>by reference</em>.
    If the iterator returns its items by value (such as \ref vigra::CoordinateIterator), you
    must use StandardConstValueAccessor instead of StandardConstAccessor.
    Both accessors also have different optimization properties --
    StandardConstAccessor is usually faster for compound pixel types,
    while StandardConstValueAccessor is faster for the built-in types.

    <b>\#include</b> \<vigra/accessor.hxx\><br>
    Namespace: vigra
*/
template <class VALUETYPE>
class StandardConstAccessor
{
  public:
    typedef VALUETYPE value_type;

        /** read the current data item
        */
    template <class ITERATOR>
    VALUETYPE const & operator()(ITERATOR const & i) const
        { return *i; }

        /** read the data item at an offset (can be 1D or 2D or higher order difference).
        */
    template <class ITERATOR, class DIFFERENCE>
    VALUETYPE const & operator()(ITERATOR const & i, DIFFERENCE const & diff) const
    {
        return i[diff];
    }
};

/** \brief Encapsulate access to the values an iterator points to.

    StandardConstValueAccessor is a trivial accessor that simply encapsulates
    the iterator's operator*() and operator[]() in its
    read functions. It passes its arguments <em>by value</em>.
    If the iterator returns its items by reference (such as \ref vigra::ConstImageIterator),
    you can also use StandardConstAccessor.
    These accessors have different optimization properties --
    StandardConstAccessor is usually faster for compound pixel types,
    while StandardConstValueAccessor is faster for the built-in types.

    When an iterator passes a floating point number to an accessor
    with integral value_type, the value is rounded and clipped as appropriate.

    <b>\#include</b> \<vigra/accessor.hxx\><br>
    Namespace: vigra
*/
template <class VALUETYPE>
class StandardConstValueAccessor
{
  public:
    typedef VALUETYPE value_type;

        /** Read the current data item. The type <TT>ITERATOR::reference</TT>
            is automatically converted to <TT>VALUETYPE</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class ITERATOR>
    VALUETYPE operator()(ITERATOR const & i) const
        { return detail::RequiresExplicitCast<VALUETYPE>::cast(*i); }

        /** Read the data item at an offset (can be 1D or 2D or higher order difference).
            The type <TT>ITERATOR::index_reference</TT>
            is automatically converted to <TT>VALUETYPE</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class ITERATOR, class DIFFERENCE>
    VALUETYPE operator()(ITERATOR const & i, DIFFERENCE const & diff) const
    {
        return detail::RequiresExplicitCast<VALUETYPE>::cast(i[diff]);
    }
};

/********************************************************/
/*                                                      */
/*                 VectorComponentAccessor              */
/*                                                      */
/********************************************************/

/** \brief Accessor for one component of a vector.

    This accessor allows to select a single component (a single 'band')
    of a vector valued pixel type. The pixel type must support
    <TT>operator[]</TT>. The index of the component to be selected
    is passed in the constructor. The accessor returns its items
    <em>by reference</em>. If you want to pass/return items by value,
    use VectorComponentValueAccessor. If a floating point number
    is assigned by means of an accessor with integral value_type, the
    value is rounded and clipped as appropriate.

    <b>Usage:</b>

    \code
    vigra::BRGBImage image(w,h);

    // init red channel with 255
    initImage(destImageRange(image,
                             VectorComponentAccessor<vigra::BRGBImage::value_type>(0)),
              255);
    \endcode

    <b>\#include</b> \<vigra/accessor.hxx\><br>
    Namespace: vigra

*/
template <class VECTORTYPE>
class VectorComponentAccessor
{
    int index_;
  public:
        /** the value_type
        */
    typedef typename VECTORTYPE::value_type value_type;

        /** determine the component to be accessed
        */
    VectorComponentAccessor(int index)
    : index_(index)
    {}

        /** read the current data item
        */
    template <class ITERATOR>
    value_type const & operator()(ITERATOR const & i) const
        { return (*i)[index_]; }

        /** read the data item at an offset (can be 1D or 2D or higher order difference).
        */
    template <class ITERATOR, class DIFFERENCE>
    value_type const & operator()(ITERATOR const & i, DIFFERENCE const & diff) const
    {
        return i[diff][index_];
    }

        /** Write the current data item. The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR>
    void set(V const & value, ITERATOR const & i) const
    {
        (*i)[index_] = detail::RequiresExplicitCast<value_type>::cast(value);
    }

        /** Write the data item at an offset (can be 1D or 2D or higher order difference)..
            The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR, class DIFFERENCE>
    void set(V const & value, ITERATOR const & i, DIFFERENCE const & diff) const 
    { 
        i[diff][index_]= detail::RequiresExplicitCast<value_type>::cast(value); 
    }
    
        /** Reset the index to the given number.
        */
    void setIndex(int i)
    {
        index_ = i;
    }
};

/** \brief Accessor for one component of a vector.

    This accessor allows to select a single component (a single 'band')
    of a vector valued pixel type. The pixel type must support
    <TT>operator[]</TT>. The index of the component to be selected
    is passed in the constructor. The accessor returns its items
    <em>by value</em>. If you want to pass/return items by reference,
    use VectorComponentAccessor. If a floating point number
    is assigned by means of an accessor with integral value_type, the
    value is rounded and clipped as appropriate.

    <b>Usage:</b>

    \code
    vigra::BRGBImage image(w,h);

    // init red channel with 255
    initImage(destImageRange(image,
                             VectorComponentValueAccessor<vigra::BRGBImage::value_type>(0)),
              255);
    \endcode

    <b>\#include</b> \<vigra/accessor.hxx\><br>
    Namespace: vigra

*/
template <class VECTORTYPE>
class VectorComponentValueAccessor
{
    int index_;
  public:
        /** the value_type
        */
    typedef typename VECTORTYPE::value_type value_type;

        /** determine the component to be accessed
        */
    VectorComponentValueAccessor(int index)
    : index_(index)
    {}

        /** Read the current data item.
            The type <TT>ITERATOR::index_reference::value_type</TT>
            is automatically converted to <TT>value_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class ITERATOR>
    value_type operator()(ITERATOR const & i) const
        { return detail::RequiresExplicitCast<value_type>::cast((*i)[index_]); }

        /** Read the data item at an offset (can be 1D or 2D or higher order difference).
            The type <TT>ITERATOR::index_reference::value_type</TT>
            is automatically converted to <TT>value_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class ITERATOR, class DIFFERENCE>
    value_type operator()(ITERATOR const & i, DIFFERENCE const & diff) const
    { 
        return detail::RequiresExplicitCast<value_type>::cast(i[diff][index_]); 
    }
    
        /** Write the current data item. The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR>
    void set(V value, ITERATOR const & i) const 
    { 
        (*i)[index_] = detail::RequiresExplicitCast<value_type>::cast(value); 
    }
    
        /** Write the data item at an offset (can be 1D or 2D or higher order difference)..
            The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR, class DIFFERENCE>
    void set(V value, ITERATOR const & i, DIFFERENCE const & diff) const 
    { 
        i[diff][index_]= detail::RequiresExplicitCast<value_type>::cast(value); 
    }
    
        /** Reset the index to the given number.
        */
    void setIndex(int i)
    {
        index_ = i;
    }
};

/********************************************************/
/*                                                      */
/*                   VectorElementAccessor              */
/*                                                      */
/********************************************************/

/** \brief Accessor for one component of a vector.

    This works like VectorComponentAccessor, only the template parameters differ: 
    Here, we need a vector accessor type , whereas VectorComponentAccessor requires a vector type.

    <b>Usage:</b>
    
    \code
    vigra::BRGBImage image(w,h);
    
    // init red channel with 255
    initImage(destImageRange(image, 
                             VectorElementAccessor<vigra::BRGBImage::Accessor>(0)),
              255);
    \endcode
    
    <b>\#include</b> \<vigra/accessor.hxx\><br>
    Namespace: vigra
    
*/
template <class ACCESSOR>
class VectorElementAccessor
{
    int index_;
    ACCESSOR a_;
  public:
        /** the value_type
        */
    typedef typename ACCESSOR::component_type value_type;
    
        /** determine the component to be accessed
        */
    VectorElementAccessor(int index, ACCESSOR a = ACCESSOR())
    : index_(index),
      a_(a)
    {}
    
        /** read the current data item
        */
    template <class ITERATOR>
    value_type const & operator()(ITERATOR const & i) const 
        { return a_.getComponent(i, index_); }
    
        /** read the data item at an offset (can be 1D or 2D or higher order difference).
        */
    template <class ITERATOR, class DIFFERENCE>
    value_type const & operator()(ITERATOR const & i, DIFFERENCE const & diff) const
    { 
        return a_.getComponent(i, diff, index_); 
    }
    
        /** Write the current data item. The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR>
    void set(V const & value, ITERATOR const & i) const 
    { 
        a_.setComponent(detail::RequiresExplicitCast<value_type>::cast(value), i, index_); 
    }

        /** Write the data item at an offset (can be 1D or 2D or higher order difference)..
            The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR, class DIFFERENCE>
    void set(V const & value, ITERATOR const & i, DIFFERENCE const & diff) const 
    { 
       a_.setComponent(detail::RequiresExplicitCast<value_type>::cast(value), i, diff, index_); 
    }
    
        /** Reset the index to the given number.
        */
    void setIndex(int i)
    {
        index_ = i;
    }
};

/********************************************************/
/*                                                      */
/*                    SequenceAccessor                  */
/*                                                      */
/********************************************************/

/** \brief Accessor for items that are STL compatible sequences.

    It encapsulates access to the sequences' begin() and end()
    functions.

    <b>Usage:</b>

    <b>\#include</b> \<vigra/accessor.hxx\><br>
    Namespace: vigra

    \code
    typedef std::list<std::list<int> > ListOfLists;

    ListOfLists ll;
    ...

    typedef vigra::SequenceAccessor<ListOfLists::value_type> ListOfListsAccessor;
    ListOfListsAccessor a;
    for(ListOfLists::iterator li = ll.begin(); li != ll.end(); ++li)
    {
        for(ListOfListsAccessor::iterator i = a.begin(li); i != a.end(li); ++i)
        {
            *i = 10;
        }
    }
    \endcode
*/
template <class SEQUENCE>
class SequenceAccessor
: public StandardAccessor<SEQUENCE>
{
  public:
        /** the sequence's value_type
        */
    typedef typename SEQUENCE::value_type component_type;

#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION
    typedef typename
            If<typename TypeTraits<SEQUENCE>::isConst,
               typename SEQUENCE::const_iterator,
               typename SEQUENCE::iterator>::type 
            iterator;
#else
        /** the sequence's iterator type
        */
    typedef typename SEQUENCE::iterator iterator;
#endif

        /** get begin iterator for sequence at given iterator position
        */
    template <class ITERATOR>
    iterator begin(ITERATOR const & i) const
    {
        return (*i).begin();
    }

        /** get end iterator for sequence at given iterator position
        */
    template <class ITERATOR>
    iterator end(ITERATOR const & i)  const
    {
         return (*i).end();
    }

        /** get begin iterator for sequence at an offset
            of given iterator position
        */
    template <class ITERATOR, class DIFFERENCE>
    iterator begin(ITERATOR const & i, DIFFERENCE const & diff)  const
    {
        return i[diff].begin();
    }

        /** get end iterator for sequence at a 2D difference vector
            of given iterator position
        */
    template <class ITERATOR, class DIFFERENCE>
    iterator end(ITERATOR const & i, DIFFERENCE const & diff)  const
    {
        return i[diff].end();
    }

        /** get size of sequence at given iterator position
        */
    template <class ITERATOR>
    unsigned int size(ITERATOR const & i) const { return (*i).size(); }

        /** get size of sequence at 2D difference vector of given iterator position
        */
    template <class ITERATOR, class DIFFERENCE>
    unsigned int size(ITERATOR const & i, DIFFERENCE const & diff) const
    { return i[diff].size(); }
};

/********************************************************/
/*                                                      */
/*                     VectorAccessor                   */
/*                                                      */
/********************************************************/

/** \brief Accessor for items that are STL compatible vectors.

    It encapsulates access to a vector's access functionality.

    <b> Usage:</b>

    <b>\#include</b> \<vigra/accessor.hxx\><br>
    Namespace: vigra

    The accessor has two modes of operation:

    <ol>
    <li> Access the vector's iterator via the <TT>begin()</TT> and <TT>end()</TT>
    functions:

    \code
    typedef std::list<std::vector<int> > ListOfVectors;

    ListOfVectors ll;
    ...

    typedef vigra::SequenceAccessor<ListOfVectors::value_type> ListOfVectorsAccessor;
    ListOfVectorsAccessor a;
    for(ListOfVectors::iterator li = ll.begin(); li != ll.end(); ++li)
    {
        for(ListOfVectorsAccessor::iterator i = a.begin(li); i != a.end(li); ++i)
        {
            *i = 10;
        }
    }
    \endcode
    <li> Access the vector's components via an index (internally calls
    the vector's <TT>operator[]</TT> ):
    \code
    typedef std::list<std::vector<int> > ListOfVectors;

    ListOfVectors ll;
    ...

    typedef vigra::SequenceAccessor<ListOfVectors::value_type> ListOfVectorsAccessor;
    ListOfVectorsAccessor a;
    for(ListOfVectors::iterator li = ll.begin(); li != ll.end(); ++li)
    {
        for(int i = 0; i != a.size(li); ++i)
        {
            a.setComponent(10, li, i);
        }
    }
    \endcode
    </ol>

    <b> Required Interface:</b>

    \code
    VECTOR v;
    VECTOR::iterator i;
    value_type d;
    int index;

    d = v[index];
    v[index] = d;
    i = v.begin();
    i = v.end();
    v.size();
    \endcode
*/
template <class VECTOR>
class VectorAccessor
: public SequenceAccessor<VECTOR>
{
  public:
        /** the vector's value_type
        */
    typedef typename VECTOR::value_type component_type;

        /** the vector element accessor associated with this vector accessor
            (see \ref VectorElementAccessor)
        */
    typedef VectorElementAccessor<VectorAccessor<VECTOR> > ElementAccessor;

        /** Read the component data at given vector index
            at given iterator position
        */
    template <class ITERATOR>
    component_type const & getComponent(ITERATOR const & i, int idx) const
    {
        return (*i)[idx];
    }

        /** Set the component data at given vector index
            at given iterator position. The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>component_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
        */
    template <class V, class ITERATOR>
    void setComponent(V const & value, ITERATOR const & i, int idx) const
    {
        (*i)[idx] = detail::RequiresExplicitCast<component_type>::cast(value);
    }

        /** Read the component data at given vector index
            at an offset of given iterator position
        */
    template <class ITERATOR, class DIFFERENCE>
    component_type const & getComponent(ITERATOR const & i, DIFFERENCE const & diff, int idx) const
    {
        return i[diff][idx];
    }

    /** Set the component data at given vector index
        at an offset of given iterator position. The type <TT>V</TT> of the passed
        in <TT>value</TT> is automatically converted to <TT>component_type</TT>.
            In case of a conversion floating point -> integral this includes rounding and clipping.
    */
    template <class V, class ITERATOR, class DIFFERENCE>
    void
    setComponent(V const & value, ITERATOR const & i, DIFFERENCE const & diff, int idx) const
    {
        i[diff][idx] = detail::RequiresExplicitCast<component_type>::cast(value);
    }
};


/********************************************************/
/*                                                      */
/*                 MultiImageAccessor2                  */
/*                                                      */
/********************************************************/

/** \brief Access two images simultaneously.

    This accessor is used when two images need to be treated as one
    because an algorithm accepts only one image. For example,
    \ref seededRegionGrowing() uses only one image two calculate
    the cost for aggregating each pixel into a region. Sometimes, we
    need more information to calculate this cost, for example gray value
    and local gradient magnitude. These values can be stored in two images,
    which appear as only one when we pass a <TT>MultiImageAccessor2</TT> to
    the algorithms. Of course, the cost functor must accept a <TT>pair</TT>
    of values for this to work. Instead of an actual image iterator, we
    pass a <a href="CoordinateIterator.html">CoordinateIterator</a> which
    selects the right pixels form both images.

    <b> Usage:</b>

    <b>\#include</b> \<vigra/accessor.hxx\><br>
    Namespace: vigra

    \code
    using namespace vigra;

    FImage gray_values(w,h), gradient_magnitude(w,h);
    IImage seeds(w,h), labels(w,h);

    seededRegionGrowing(
        srcIterRange(CoordinateIterator(), CoordinateIterator(w,h),
           MultiImageAccessor2<FImage::iterator, FImage::Accessor,
                               FImage::iterator, FImage::Accessor>
                              (gray_values.upperLeft(), gray_values.accessor(),
                               gradient_magnitude.upperLeft(), gradient_magnitude.accessor())),
        srcImage(seeds),
        destImage(labels),
        SomeCostFunctor());
    \endcode
*/

template <class Iter1, class Acc1, class Iter2, class Acc2>
class MultiImageAccessor2
{
  public:
        /** The accessors value_type: construct a pair that contains
            the corresponding image values.
        */
    typedef pair<typename Acc1::value_type, typename Acc2::value_type>
            value_type;

        /** Construct from two image iterators and associated accessors.
        */
    MultiImageAccessor2(Iter1 i1, Acc1 a1, Iter2 i2, Acc2 a2)
    : i1_(i1), a1_(a1), i2_(i2), a2_(a2)
    {}

        /** read the current data item
        */
    template <class DIFFERENCE>
    value_type operator()(DIFFERENCE const & d) const
    {
        return std::make_pair(a1_(i1_, d), a2_(i2_, d));
    }

        /** read the data item at an offset
        */
    template <class DIFFERENCE1, class DIFFERENCE2>
    value_type operator()(DIFFERENCE1 d1, DIFFERENCE2 const & d2) const
    {
        d1 += d2;
        return std::make_pair(a1_(i1_, d1), a2_(i2_, d1));
    }

  private:
    Iter1 i1_;
    Acc1 a1_;
    Iter2 i2_;
    Acc2 a2_;
};

//@}

template <class T>
struct AccessorTraits
{
    typedef StandardAccessor<T>        default_accessor;
    typedef StandardConstAccessor<T>   default_const_accessor;
};

#define VIGRA_DEFINE_ACCESSOR_TRAITS(VALUE, ACCESSOR, CONST_ACCESSOR) \
    template <> \
    struct AccessorTraits<VALUE > \
    { \
        typedef ACCESSOR<VALUE >         default_accessor; \
        typedef CONST_ACCESSOR<VALUE >   default_const_accessor; \
    };

VIGRA_DEFINE_ACCESSOR_TRAITS(signed char, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(unsigned char, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(short, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(unsigned short, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(int, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(unsigned int, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(long, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(unsigned long, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(float, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(double, StandardValueAccessor, StandardConstValueAccessor)

template <class T, unsigned int RED_IDX, unsigned int GREEN_IDX, unsigned int BLUE_IDX> class RGBValue;
template <class T> class RGBAccessor;
template <class T, int SIZE> class TinyVector;

#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION

template <class T, unsigned int RED_IDX, unsigned int GREEN_IDX, unsigned int BLUE_IDX>
struct AccessorTraits<RGBValue<T, RED_IDX, GREEN_IDX, BLUE_IDX> >
{
    typedef RGBAccessor<RGBValue<T, RED_IDX, GREEN_IDX, BLUE_IDX> >   default_accessor;
    typedef RGBAccessor<RGBValue<T, RED_IDX, GREEN_IDX, BLUE_IDX> >   default_const_accessor;
};

template <class T, int SIZE>
struct AccessorTraits<TinyVector<T, SIZE> >
{
    typedef VectorAccessor<TinyVector<T, SIZE> >   default_accessor;
    typedef VectorAccessor<TinyVector<T, SIZE> >   default_const_accessor;
};

#else // NO_PARTIAL_TEMPLATE_SPECIALIZATION

VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<unsigned char>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<signed char>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<short>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<unsigned short>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<int>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<unsigned int>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<long>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<unsigned long>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<float>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<double>, RGBAccessor, RGBAccessor)

#define VIGRA_PIXELTYPE TinyVector<unsigned char, 2>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<unsigned char, 3>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<unsigned char, 4>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<short, 2>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<short, 3>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<short, 4>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<int, 2>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<int, 3>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<int, 4>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<float, 2>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<float, 3>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<float, 4>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<double, 2>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<double, 3>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<double, 4>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE

#endif // NO_PARTIAL_TEMPLATE_SPECIALIZATION

#undef VIGRA_DEFINE_ACCESSOR_TRAITS

} // namespace vigra

#endif // VIGRA_ACCESSOR_HXX