/usr/include/vigra/accessor.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 | /************************************************************************/
/* */
/* Copyright 1998-2002 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_ACCESSOR_HXX
#define VIGRA_ACCESSOR_HXX
#include "metaprogramming.hxx"
#include "numerictraits.hxx"
#include "tuple.hxx"
namespace vigra {
/** \addtogroup DataAccessors Data Accessors
Basic templates to encapsulate access to the data of an iterator.
Data accessors are used to allow for flexible access to the data
an iterator points to. When we access the data directly, we
are bound to what <TT>operator*()</TT> returns, if this method exists at
all. Encapsulating access in an accessor enables a better
decoupling of data structures and algorithms.
<a href="http://hci.iwr.uni-heidelberg.de/vigra/documents/DataAccessors.ps">This paper</a> contains
a detailed description of the concept. Here is a brief list of the basic
accessor requirements:
<p>
<table border=2 cellspacing=0 cellpadding=2 width="100%">
<tr><th>
Operation
</th><th>
Result
</th><th>
Semantics
</th>
</tr>
<tr>
<td><tt>accessor(iter)</tt></td><td>convertible to <br><tt>Accessor::value_type const &</tt></td>
<td>read data at the current position of the iterator</td>
</tr>
<tr>
<td><tt>accessor(iter, index)</tt></td><td>convertible to <br><tt>Accessor::value_type const &</tt></td>
<td>read data at offset <tt>index</tt> relative to iterator's current position
(random-access iterator only)</td>
</tr>
<tr>
<td><tt>accessor.set(value, iter)</tt></td><td><tt>void</tt></td>
<td>write data <tt>value</tt> at the current position of the iterator (mutable iterator only)</td>
</tr>
<tr>
<td><tt>accessor.set(value, iter, index)</tt></td><td><tt>void</tt></td>
<td>write data <tt>value</tt> at offset <tt>index</tt> relative to iterator's current position
(mutable random-access iterator only)</td>
</tr>
<tr><td colspan=2>
<tt>Accessor::value_type</tt></td>
<td>type of the data field the accessor refers to</td>
</tr>
<tr><td colspan=3>
<tt>iter</tt> is an iterator<br>
<tt>index</tt> has the iterator's index type (<tt>Iterator::difference_type</tt>)<br>
<tt>value</tt> is convertible to <tt>Accessor::value_type const &</tt>
</td>
</tr>
</table>
</p>
The template <tt>AccessorTraits<T></tt> can be used to find the default accessor
associated with the type <tt>T</tt>, e.g.
\code
typedef typename AccessorTraits<typename Image::value_type>::default_accessor Accessor;
typedef typename AccessorTraits<typename Image::value_type>::default_const_accessor ConstAccessor;
\endcode
*/
//@{
/********************************************************/
/* */
/* StandardAccessor */
/* */
/********************************************************/
/** \brief Encapsulate access to the values an iterator points to.
StandardAccessor is a trivial accessor that simply encapsulates
the iterator's operator*() and operator[]() in its
read and write functions. It passes its arguments <em>by reference</em>.
If you want to return items by value, you
must use StandardValueAccessor instead of StandardAccessor.
Both accessors have different optimization properties --
StandardAccessor is usually faster for compound pixel types,
while StandardValueAccessor is faster for the built-in types.
When a floating point number is assigned by means of an accessor
with integral value_type, the value is rounded and clipped as appropriate.
<b>\#include</b> \<vigra/accessor.hxx\><br>
Namespace: vigra
*/
template <class VALUETYPE>
class StandardAccessor
{
public:
/** the value_type
*/
typedef VALUETYPE value_type;
/** read the current data item
*/
template <class ITERATOR>
VALUETYPE const & operator()(ITERATOR const & i) const { return *i; }
VALUETYPE const & operator()(VALUETYPE const * i) const { return *i; }
/** read the data item at an offset (can be 1D or 2D or higher order difference).
*/
template <class ITERATOR, class DIFFERENCE>
VALUETYPE const & operator()(ITERATOR const & i, DIFFERENCE const & diff) const
{
return i[diff];
}
/** Write the current data item. The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>VALUETYPE</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR>
void set(V const & value, ITERATOR const & i) const
{ *i = detail::RequiresExplicitCast<VALUETYPE>::cast(value); }
/* This overload is needed to make the accessor work with a std::back_inserter */
template <class V, class ITERATOR>
void set(V const & value, ITERATOR & i) const
{ *i = detail::RequiresExplicitCast<VALUETYPE>::cast(value); }
/** Write the data item at an offset (can be 1D or 2D or higher order difference)..
The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>VALUETYPE</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR, class DIFFERENCE>
void set(V const & value, ITERATOR const & i, DIFFERENCE const & diff) const
{
i[diff]= detail::RequiresExplicitCast<VALUETYPE>::cast(value);
}
};
/** \brief Encapsulate access to the values an iterator points to.
StandardValueAccessor is a trivial accessor that simply encapsulates
the iterator's operator*() and operator[]() in its
read and write functions. It passes its arguments <em>by value</em>.
If the iterator returns its items by reference (such as \ref vigra::ImageIterator),
you can also use StandardAccessor.
These accessors have different optimization properties --
StandardAccessor is usually faster for compound pixel types,
while StandardValueAccessor is faster for the built-in types.
When a floating point number is assigned by means of an accessor
with integral value_type, the value is rounded and clipped as appropriate.
<b>\#include</b> \<vigra/accessor.hxx\><br>
Namespace: vigra
*/
template <class VALUETYPE>
class StandardValueAccessor
{
public:
/** the value_type
*/
typedef VALUETYPE value_type;
/** Read the current data item. The type <TT>ITERATOR::reference</TT>
is automatically converted to <TT>VALUETYPE</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class ITERATOR>
VALUETYPE operator()(ITERATOR const & i) const
{ return detail::RequiresExplicitCast<VALUETYPE>::cast(*i); }
/** Read the data item at an offset (can be 1D or 2D or higher order difference).
The type <TT>ITERATOR::index_reference</TT>
is automatically converted to <TT>VALUETYPE</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class ITERATOR, class DIFFERENCE>
VALUETYPE operator()(ITERATOR const & i, DIFFERENCE const & diff) const
{
return detail::RequiresExplicitCast<VALUETYPE>::cast(i[diff]);
}
/** Write the current data item. The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>VALUETYPE</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR>
void set(V value, ITERATOR const & i) const
{ *i = detail::RequiresExplicitCast<VALUETYPE>::cast(value); }
/* This overload is needed to make the accessor work with a std::back_inserter */
template <class V, class ITERATOR>
void set(V value, ITERATOR & i) const
{ *i = detail::RequiresExplicitCast<VALUETYPE>::cast(value); }
/** Write the data item at an offset (can be 1D or 2D or higher order difference)..
The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>VALUETYPE</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR, class DIFFERENCE>
void set(V value, ITERATOR const & i, DIFFERENCE const & diff) const
{
i[diff]= detail::RequiresExplicitCast<VALUETYPE>::cast(value);
}
};
/********************************************************/
/* */
/* StandardConstAccessor */
/* */
/********************************************************/
/** \brief Encapsulate read access to the values an iterator points to.
StandardConstAccessor is a trivial accessor that simply encapsulates
the iterator's operator*() and operator[]() in its
read functions. It passes its arguments <em>by reference</em>.
If the iterator returns its items by value (such as \ref vigra::CoordinateIterator), you
must use StandardConstValueAccessor instead of StandardConstAccessor.
Both accessors also have different optimization properties --
StandardConstAccessor is usually faster for compound pixel types,
while StandardConstValueAccessor is faster for the built-in types.
<b>\#include</b> \<vigra/accessor.hxx\><br>
Namespace: vigra
*/
template <class VALUETYPE>
class StandardConstAccessor
{
public:
typedef VALUETYPE value_type;
/** read the current data item
*/
template <class ITERATOR>
VALUETYPE const & operator()(ITERATOR const & i) const
{ return *i; }
/** read the data item at an offset (can be 1D or 2D or higher order difference).
*/
template <class ITERATOR, class DIFFERENCE>
VALUETYPE const & operator()(ITERATOR const & i, DIFFERENCE const & diff) const
{
return i[diff];
}
};
/** \brief Encapsulate access to the values an iterator points to.
StandardConstValueAccessor is a trivial accessor that simply encapsulates
the iterator's operator*() and operator[]() in its
read functions. It passes its arguments <em>by value</em>.
If the iterator returns its items by reference (such as \ref vigra::ConstImageIterator),
you can also use StandardConstAccessor.
These accessors have different optimization properties --
StandardConstAccessor is usually faster for compound pixel types,
while StandardConstValueAccessor is faster for the built-in types.
When an iterator passes a floating point number to an accessor
with integral value_type, the value is rounded and clipped as appropriate.
<b>\#include</b> \<vigra/accessor.hxx\><br>
Namespace: vigra
*/
template <class VALUETYPE>
class StandardConstValueAccessor
{
public:
typedef VALUETYPE value_type;
/** Read the current data item. The type <TT>ITERATOR::reference</TT>
is automatically converted to <TT>VALUETYPE</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class ITERATOR>
VALUETYPE operator()(ITERATOR const & i) const
{ return detail::RequiresExplicitCast<VALUETYPE>::cast(*i); }
/** Read the data item at an offset (can be 1D or 2D or higher order difference).
The type <TT>ITERATOR::index_reference</TT>
is automatically converted to <TT>VALUETYPE</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class ITERATOR, class DIFFERENCE>
VALUETYPE operator()(ITERATOR const & i, DIFFERENCE const & diff) const
{
return detail::RequiresExplicitCast<VALUETYPE>::cast(i[diff]);
}
};
/********************************************************/
/* */
/* VectorComponentAccessor */
/* */
/********************************************************/
/** \brief Accessor for one component of a vector.
This accessor allows to select a single component (a single 'band')
of a vector valued pixel type. The pixel type must support
<TT>operator[]</TT>. The index of the component to be selected
is passed in the constructor. The accessor returns its items
<em>by reference</em>. If you want to pass/return items by value,
use VectorComponentValueAccessor. If a floating point number
is assigned by means of an accessor with integral value_type, the
value is rounded and clipped as appropriate.
<b>Usage:</b>
\code
vigra::BRGBImage image(w,h);
// init red channel with 255
initImage(destImageRange(image,
VectorComponentAccessor<vigra::BRGBImage::value_type>(0)),
255);
\endcode
<b>\#include</b> \<vigra/accessor.hxx\><br>
Namespace: vigra
*/
template <class VECTORTYPE>
class VectorComponentAccessor
{
int index_;
public:
/** the value_type
*/
typedef typename VECTORTYPE::value_type value_type;
/** determine the component to be accessed
*/
VectorComponentAccessor(int index)
: index_(index)
{}
/** read the current data item
*/
template <class ITERATOR>
value_type const & operator()(ITERATOR const & i) const
{ return (*i)[index_]; }
/** read the data item at an offset (can be 1D or 2D or higher order difference).
*/
template <class ITERATOR, class DIFFERENCE>
value_type const & operator()(ITERATOR const & i, DIFFERENCE const & diff) const
{
return i[diff][index_];
}
/** Write the current data item. The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR>
void set(V const & value, ITERATOR const & i) const
{
(*i)[index_] = detail::RequiresExplicitCast<value_type>::cast(value);
}
/** Write the data item at an offset (can be 1D or 2D or higher order difference)..
The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR, class DIFFERENCE>
void set(V const & value, ITERATOR const & i, DIFFERENCE const & diff) const
{
i[diff][index_]= detail::RequiresExplicitCast<value_type>::cast(value);
}
/** Reset the index to the given number.
*/
void setIndex(int i)
{
index_ = i;
}
};
/** \brief Accessor for one component of a vector.
This accessor allows to select a single component (a single 'band')
of a vector valued pixel type. The pixel type must support
<TT>operator[]</TT>. The index of the component to be selected
is passed in the constructor. The accessor returns its items
<em>by value</em>. If you want to pass/return items by reference,
use VectorComponentAccessor. If a floating point number
is assigned by means of an accessor with integral value_type, the
value is rounded and clipped as appropriate.
<b>Usage:</b>
\code
vigra::BRGBImage image(w,h);
// init red channel with 255
initImage(destImageRange(image,
VectorComponentValueAccessor<vigra::BRGBImage::value_type>(0)),
255);
\endcode
<b>\#include</b> \<vigra/accessor.hxx\><br>
Namespace: vigra
*/
template <class VECTORTYPE>
class VectorComponentValueAccessor
{
int index_;
public:
/** the value_type
*/
typedef typename VECTORTYPE::value_type value_type;
/** determine the component to be accessed
*/
VectorComponentValueAccessor(int index)
: index_(index)
{}
/** Read the current data item.
The type <TT>ITERATOR::index_reference::value_type</TT>
is automatically converted to <TT>value_type</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class ITERATOR>
value_type operator()(ITERATOR const & i) const
{ return detail::RequiresExplicitCast<value_type>::cast((*i)[index_]); }
/** Read the data item at an offset (can be 1D or 2D or higher order difference).
The type <TT>ITERATOR::index_reference::value_type</TT>
is automatically converted to <TT>value_type</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class ITERATOR, class DIFFERENCE>
value_type operator()(ITERATOR const & i, DIFFERENCE const & diff) const
{
return detail::RequiresExplicitCast<value_type>::cast(i[diff][index_]);
}
/** Write the current data item. The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR>
void set(V value, ITERATOR const & i) const
{
(*i)[index_] = detail::RequiresExplicitCast<value_type>::cast(value);
}
/** Write the data item at an offset (can be 1D or 2D or higher order difference)..
The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR, class DIFFERENCE>
void set(V value, ITERATOR const & i, DIFFERENCE const & diff) const
{
i[diff][index_]= detail::RequiresExplicitCast<value_type>::cast(value);
}
/** Reset the index to the given number.
*/
void setIndex(int i)
{
index_ = i;
}
};
/********************************************************/
/* */
/* VectorElementAccessor */
/* */
/********************************************************/
/** \brief Accessor for one component of a vector.
This works like VectorComponentAccessor, only the template parameters differ:
Here, we need a vector accessor type , whereas VectorComponentAccessor requires a vector type.
<b>Usage:</b>
\code
vigra::BRGBImage image(w,h);
// init red channel with 255
initImage(destImageRange(image,
VectorElementAccessor<vigra::BRGBImage::Accessor>(0)),
255);
\endcode
<b>\#include</b> \<vigra/accessor.hxx\><br>
Namespace: vigra
*/
template <class ACCESSOR>
class VectorElementAccessor
{
int index_;
ACCESSOR a_;
public:
/** the value_type
*/
typedef typename ACCESSOR::component_type value_type;
/** determine the component to be accessed
*/
VectorElementAccessor(int index, ACCESSOR a = ACCESSOR())
: index_(index),
a_(a)
{}
/** read the current data item
*/
template <class ITERATOR>
value_type const & operator()(ITERATOR const & i) const
{ return a_.getComponent(i, index_); }
/** read the data item at an offset (can be 1D or 2D or higher order difference).
*/
template <class ITERATOR, class DIFFERENCE>
value_type const & operator()(ITERATOR const & i, DIFFERENCE const & diff) const
{
return a_.getComponent(i, diff, index_);
}
/** Write the current data item. The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR>
void set(V const & value, ITERATOR const & i) const
{
a_.setComponent(detail::RequiresExplicitCast<value_type>::cast(value), i, index_);
}
/** Write the data item at an offset (can be 1D or 2D or higher order difference)..
The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>value_type</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR, class DIFFERENCE>
void set(V const & value, ITERATOR const & i, DIFFERENCE const & diff) const
{
a_.setComponent(detail::RequiresExplicitCast<value_type>::cast(value), i, diff, index_);
}
/** Reset the index to the given number.
*/
void setIndex(int i)
{
index_ = i;
}
};
/********************************************************/
/* */
/* SequenceAccessor */
/* */
/********************************************************/
/** \brief Accessor for items that are STL compatible sequences.
It encapsulates access to the sequences' begin() and end()
functions.
<b>Usage:</b>
<b>\#include</b> \<vigra/accessor.hxx\><br>
Namespace: vigra
\code
typedef std::list<std::list<int> > ListOfLists;
ListOfLists ll;
...
typedef vigra::SequenceAccessor<ListOfLists::value_type> ListOfListsAccessor;
ListOfListsAccessor a;
for(ListOfLists::iterator li = ll.begin(); li != ll.end(); ++li)
{
for(ListOfListsAccessor::iterator i = a.begin(li); i != a.end(li); ++i)
{
*i = 10;
}
}
\endcode
*/
template <class SEQUENCE>
class SequenceAccessor
: public StandardAccessor<SEQUENCE>
{
public:
/** the sequence's value_type
*/
typedef typename SEQUENCE::value_type component_type;
#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION
typedef typename
If<typename TypeTraits<SEQUENCE>::isConst,
typename SEQUENCE::const_iterator,
typename SEQUENCE::iterator>::type
iterator;
#else
/** the sequence's iterator type
*/
typedef typename SEQUENCE::iterator iterator;
#endif
/** get begin iterator for sequence at given iterator position
*/
template <class ITERATOR>
iterator begin(ITERATOR const & i) const
{
return (*i).begin();
}
/** get end iterator for sequence at given iterator position
*/
template <class ITERATOR>
iterator end(ITERATOR const & i) const
{
return (*i).end();
}
/** get begin iterator for sequence at an offset
of given iterator position
*/
template <class ITERATOR, class DIFFERENCE>
iterator begin(ITERATOR const & i, DIFFERENCE const & diff) const
{
return i[diff].begin();
}
/** get end iterator for sequence at a 2D difference vector
of given iterator position
*/
template <class ITERATOR, class DIFFERENCE>
iterator end(ITERATOR const & i, DIFFERENCE const & diff) const
{
return i[diff].end();
}
/** get size of sequence at given iterator position
*/
template <class ITERATOR>
unsigned int size(ITERATOR const & i) const { return (*i).size(); }
/** get size of sequence at 2D difference vector of given iterator position
*/
template <class ITERATOR, class DIFFERENCE>
unsigned int size(ITERATOR const & i, DIFFERENCE const & diff) const
{ return i[diff].size(); }
};
/********************************************************/
/* */
/* VectorAccessor */
/* */
/********************************************************/
/** \brief Accessor for items that are STL compatible vectors.
It encapsulates access to a vector's access functionality.
<b> Usage:</b>
<b>\#include</b> \<vigra/accessor.hxx\><br>
Namespace: vigra
The accessor has two modes of operation:
<ol>
<li> Access the vector's iterator via the <TT>begin()</TT> and <TT>end()</TT>
functions:
\code
typedef std::list<std::vector<int> > ListOfVectors;
ListOfVectors ll;
...
typedef vigra::SequenceAccessor<ListOfVectors::value_type> ListOfVectorsAccessor;
ListOfVectorsAccessor a;
for(ListOfVectors::iterator li = ll.begin(); li != ll.end(); ++li)
{
for(ListOfVectorsAccessor::iterator i = a.begin(li); i != a.end(li); ++i)
{
*i = 10;
}
}
\endcode
<li> Access the vector's components via an index (internally calls
the vector's <TT>operator[]</TT> ):
\code
typedef std::list<std::vector<int> > ListOfVectors;
ListOfVectors ll;
...
typedef vigra::SequenceAccessor<ListOfVectors::value_type> ListOfVectorsAccessor;
ListOfVectorsAccessor a;
for(ListOfVectors::iterator li = ll.begin(); li != ll.end(); ++li)
{
for(int i = 0; i != a.size(li); ++i)
{
a.setComponent(10, li, i);
}
}
\endcode
</ol>
<b> Required Interface:</b>
\code
VECTOR v;
VECTOR::iterator i;
value_type d;
int index;
d = v[index];
v[index] = d;
i = v.begin();
i = v.end();
v.size();
\endcode
*/
template <class VECTOR>
class VectorAccessor
: public SequenceAccessor<VECTOR>
{
public:
/** the vector's value_type
*/
typedef typename VECTOR::value_type component_type;
/** the vector element accessor associated with this vector accessor
(see \ref VectorElementAccessor)
*/
typedef VectorElementAccessor<VectorAccessor<VECTOR> > ElementAccessor;
/** Read the component data at given vector index
at given iterator position
*/
template <class ITERATOR>
component_type const & getComponent(ITERATOR const & i, int idx) const
{
return (*i)[idx];
}
/** Set the component data at given vector index
at given iterator position. The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>component_type</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR>
void setComponent(V const & value, ITERATOR const & i, int idx) const
{
(*i)[idx] = detail::RequiresExplicitCast<component_type>::cast(value);
}
/** Read the component data at given vector index
at an offset of given iterator position
*/
template <class ITERATOR, class DIFFERENCE>
component_type const & getComponent(ITERATOR const & i, DIFFERENCE const & diff, int idx) const
{
return i[diff][idx];
}
/** Set the component data at given vector index
at an offset of given iterator position. The type <TT>V</TT> of the passed
in <TT>value</TT> is automatically converted to <TT>component_type</TT>.
In case of a conversion floating point -> integral this includes rounding and clipping.
*/
template <class V, class ITERATOR, class DIFFERENCE>
void
setComponent(V const & value, ITERATOR const & i, DIFFERENCE const & diff, int idx) const
{
i[diff][idx] = detail::RequiresExplicitCast<component_type>::cast(value);
}
};
/********************************************************/
/* */
/* MultiImageAccessor2 */
/* */
/********************************************************/
/** \brief Access two images simultaneously.
This accessor is used when two images need to be treated as one
because an algorithm accepts only one image. For example,
\ref seededRegionGrowing() uses only one image two calculate
the cost for aggregating each pixel into a region. Sometimes, we
need more information to calculate this cost, for example gray value
and local gradient magnitude. These values can be stored in two images,
which appear as only one when we pass a <TT>MultiImageAccessor2</TT> to
the algorithms. Of course, the cost functor must accept a <TT>pair</TT>
of values for this to work. Instead of an actual image iterator, we
pass a <a href="CoordinateIterator.html">CoordinateIterator</a> which
selects the right pixels form both images.
<b> Usage:</b>
<b>\#include</b> \<vigra/accessor.hxx\><br>
Namespace: vigra
\code
using namespace vigra;
FImage gray_values(w,h), gradient_magnitude(w,h);
IImage seeds(w,h), labels(w,h);
seededRegionGrowing(
srcIterRange(CoordinateIterator(), CoordinateIterator(w,h),
MultiImageAccessor2<FImage::iterator, FImage::Accessor,
FImage::iterator, FImage::Accessor>
(gray_values.upperLeft(), gray_values.accessor(),
gradient_magnitude.upperLeft(), gradient_magnitude.accessor())),
srcImage(seeds),
destImage(labels),
SomeCostFunctor());
\endcode
*/
template <class Iter1, class Acc1, class Iter2, class Acc2>
class MultiImageAccessor2
{
public:
/** The accessors value_type: construct a pair that contains
the corresponding image values.
*/
typedef pair<typename Acc1::value_type, typename Acc2::value_type>
value_type;
/** Construct from two image iterators and associated accessors.
*/
MultiImageAccessor2(Iter1 i1, Acc1 a1, Iter2 i2, Acc2 a2)
: i1_(i1), a1_(a1), i2_(i2), a2_(a2)
{}
/** read the current data item
*/
template <class DIFFERENCE>
value_type operator()(DIFFERENCE const & d) const
{
return std::make_pair(a1_(i1_, d), a2_(i2_, d));
}
/** read the data item at an offset
*/
template <class DIFFERENCE1, class DIFFERENCE2>
value_type operator()(DIFFERENCE1 d1, DIFFERENCE2 const & d2) const
{
d1 += d2;
return std::make_pair(a1_(i1_, d1), a2_(i2_, d1));
}
private:
Iter1 i1_;
Acc1 a1_;
Iter2 i2_;
Acc2 a2_;
};
//@}
template <class T>
struct AccessorTraits
{
typedef StandardAccessor<T> default_accessor;
typedef StandardConstAccessor<T> default_const_accessor;
};
#define VIGRA_DEFINE_ACCESSOR_TRAITS(VALUE, ACCESSOR, CONST_ACCESSOR) \
template <> \
struct AccessorTraits<VALUE > \
{ \
typedef ACCESSOR<VALUE > default_accessor; \
typedef CONST_ACCESSOR<VALUE > default_const_accessor; \
};
VIGRA_DEFINE_ACCESSOR_TRAITS(signed char, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(unsigned char, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(short, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(unsigned short, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(int, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(unsigned int, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(long, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(unsigned long, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(float, StandardValueAccessor, StandardConstValueAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(double, StandardValueAccessor, StandardConstValueAccessor)
template <class T, unsigned int RED_IDX, unsigned int GREEN_IDX, unsigned int BLUE_IDX> class RGBValue;
template <class T> class RGBAccessor;
template <class T, int SIZE> class TinyVector;
#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION
template <class T, unsigned int RED_IDX, unsigned int GREEN_IDX, unsigned int BLUE_IDX>
struct AccessorTraits<RGBValue<T, RED_IDX, GREEN_IDX, BLUE_IDX> >
{
typedef RGBAccessor<RGBValue<T, RED_IDX, GREEN_IDX, BLUE_IDX> > default_accessor;
typedef RGBAccessor<RGBValue<T, RED_IDX, GREEN_IDX, BLUE_IDX> > default_const_accessor;
};
template <class T, int SIZE>
struct AccessorTraits<TinyVector<T, SIZE> >
{
typedef VectorAccessor<TinyVector<T, SIZE> > default_accessor;
typedef VectorAccessor<TinyVector<T, SIZE> > default_const_accessor;
};
#else // NO_PARTIAL_TEMPLATE_SPECIALIZATION
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<unsigned char>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<signed char>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<short>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<unsigned short>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<int>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<unsigned int>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<long>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<unsigned long>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<float>, RGBAccessor, RGBAccessor)
VIGRA_DEFINE_ACCESSOR_TRAITS(RGBValue<double>, RGBAccessor, RGBAccessor)
#define VIGRA_PIXELTYPE TinyVector<unsigned char, 2>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<unsigned char, 3>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<unsigned char, 4>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<short, 2>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<short, 3>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<short, 4>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<int, 2>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<int, 3>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<int, 4>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<float, 2>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<float, 3>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<float, 4>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<double, 2>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<double, 3>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#define VIGRA_PIXELTYPE TinyVector<double, 4>
VIGRA_DEFINE_ACCESSOR_TRAITS(VIGRA_PIXELTYPE, VectorAccessor, VectorAccessor)
#undef VIGRA_PIXELTYPE
#endif // NO_PARTIAL_TEMPLATE_SPECIALIZATION
#undef VIGRA_DEFINE_ACCESSOR_TRAITS
} // namespace vigra
#endif // VIGRA_ACCESSOR_HXX
|