This file is indexed.

/usr/lib/perl5/NetAddr/IP.pm is in libnetaddr-ip-perl 4.071+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
#!/usr/bin/perl -w

package NetAddr::IP;

use strict;
#use diagnostics;
use Carp;
use NetAddr::IP::Lite 1.51 qw(Zero Zeros Ones V4mask V4net);
use NetAddr::IP::Util 1.50 qw(
	sub128
	inet_aton
	inet_any2n
	ipv6_aton
	isIPv4
	ipv4to6
	mask4to6
	shiftleft
	addconst
	hasbits
	notcontiguous
);

use AutoLoader qw(AUTOLOAD);

use vars qw(
	@EXPORT_OK
	@EXPORT_FAIL
	@ISA
	$VERSION
	$_netlimit
	$rfc3021
);
require Exporter;

@EXPORT_OK = qw(Compact Coalesce Zero Zeros Ones V4mask V4net netlimit);
@EXPORT_FAIL = qw($_netlimit);

@ISA = qw(Exporter NetAddr::IP::Lite);

$VERSION = do { sprintf " %d.%03d", (q$Revision: 4.71 $ =~ /\d+/g) };

$rfc3021 = 0;

=pod

=encoding UTF-8

=head1 NAME

NetAddr::IP - Manages IPv4 and IPv6 addresses and subnets

=head1 SYNOPSIS

  use NetAddr::IP qw(
	Compact
	Coalesce
	Zeros
	Ones
	V4mask
	V4net
	netlimit
	:aton		DEPRECATED
	:lower
	:upper
	:old_storable
	:old_nth
	:rfc3021
  );

  NOTE: NetAddr::IP::Util has a full complement of network address
	utilities to convert back and forth between binary and text.

	inet_aton, inet_ntoa, ipv6_aton, ipv6_ntoa 
	ipv6_n2x, ipv6_n2d inet_any2d, inet_n2dx, 
	inet_n2ad, inetanyto6, ipv6to4

See L<NetAddr::IP::Util>


  my $ip = new NetAddr::IP '127.0.0.1';
	 or if you prefer
  my $ip = NetAddr::IP->new('127.0.0.1);
	or from a packed IPv4 address
  my $ip = new_from_aton NetAddr::IP (inet_aton('127.0.0.1'));
	or from an octal filtered IPv4 address
  my $ip = new_no NetAddr::IP '127.012.0.0';

  print "The address is ", $ip->addr, " with mask ", $ip->mask, "\n" ;

  if ($ip->within(new NetAddr::IP "127.0.0.0", "255.0.0.0")) {
      print "Is a loopback address\n";
  }

				# This prints 127.0.0.1/32
  print "You can also say $ip...\n";

* The following four functions return ipV6 representations of:

  ::                                       = Zeros();
  FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF  = Ones();
  FFFF:FFFF:FFFF:FFFF:FFFF:FFFF::          = V4mask();
  ::FFFF:FFFF                              = V4net();


###### DEPRECATED, will be remove in version 5 ############

  * To accept addresses in the format as returned by
  inet_aton, invoke the module as:

  use NetAddr::IP qw(:aton);

###### USE new_from_aton instead ##########################

* To enable usage of legacy data files containing NetAddr::IP
objects stored using the L<Storable> module.

  use NetAddr::IP qw(:old_storable);

* To compact many smaller subnets (see: C<$me-E<gt>compact($addr1,$addr2,...)>

  @compacted_object_list = Compact(@object_list)

* Return a reference to list of C<NetAddr::IP> subnets of
C<$masklen> mask length, when C<$number> or more addresses from
C<@list_of_subnets> are found to be contained in said subnet.

  $arrayref = Coalesce($masklen, $number, @list_of_subnets)

* By default B<NetAddr::IP> functions and methods return string IPv6
addresses in uppercase.  To change that to lowercase:

NOTE: the AUGUST 2010 RFC5952 states:

    4.3. Lowercase

      The characters "a", "b", "c", "d", "e", and "f" in an IPv6
      address MUST be represented in lowercase.

It is recommended that all NEW applications using NetAddr::IP be
invoked as shown on the next line.

  use NetAddr::IP qw(:lower);

* To ensure the current IPv6 string case behavior even if the default changes:

  use NetAddr::IP qw(:upper);

* To set a limit on the size of B<nets> processed or returned by NetAddr::IP.

Set the maximum number of nets beyond which NetAddr::IP will return
an error as a power of 2 (default 16 or 65536 nets). Each 2**16
consumes approximately 4 megs of memory. A 2**20 consumes 64 megs of
memory, A 2**24 consumes 1 gigabyte of memory.

  use NetAddr::IP qw(netlimit);
  netlimit 20;

The maximum B<netlimit> allowed is 2**24. Attempts to set limits below
the default of 16 or above the maximum of 24 are ignored.

Returns true on success, otherwise C<undef>.

=cut

$_netlimit = 2 ** 16;			# default

sub netlimit($) {
  return undef unless $_[0];
  return undef if $_[0] =~ /\D/;
  return undef if $_[0] < 16;
  return undef if $_[0] > 24;
  $_netlimit = 2 ** $_[0];
};

=head1 INSTALLATION

Un-tar the distribution in an appropriate directory and type:

	perl Makefile.PL
	make
	make test
	make install

B<NetAddr::IP> depends on B<NetAddr::IP::Util> which installs by
default with its primary functions compiled using Perl's XS extensions
to build a C library. If you do not have a C complier available or
would like the slower Pure Perl version for some other reason, then
type:

	perl Makefile.PL -noxs
	make
	make test
	make install

=head1 DESCRIPTION

This module provides an object-oriented abstraction on top of IP
addresses or IP subnets that allows for easy manipulations.  Version
4.xx of NetAddr::IP will work with older versions of Perl and is
compatible with Math::BigInt.

The internal representation of all IP objects is in 128 bit IPv6 notation.
IPv4 and IPv6 objects may be freely mixed.

=head2 Overloaded Operators

Many operators have been overloaded, as described below:

=cut

				#############################################
				# These are the overload methods, placed here
				# for convenience.
				#############################################

use overload

    '@{}'	=> sub {
	return [ $_[0]->hostenum ];
    };

=pod

=over

=item B<Assignment (C<=>)>

Has been optimized to copy one NetAddr::IP object to another very quickly.

=item B<C<-E<gt>copy()>>

The B<assignment (C<=>)> operation is only put in to operation when the
copied object is further mutated by another overloaded operation. See
L<overload> B<SPECIAL SYMBOLS FOR "use overload"> for details.

B<C<-E<gt>copy()>> actually creates a new object when called.

=item B<Stringification>

An object can be used just as a string. For instance, the following code

	my $ip = new NetAddr::IP '192.168.1.123';
	print "$ip\n";

Will print the string 192.168.1.123/32.

=item B<Equality>

You can test for equality with either C<eq> or C<==>. C<eq> allows
comparison with arbitrary strings as well as NetAddr::IP objects. The
following example:

    if (NetAddr::IP->new('127.0.0.1','255.0.0.0') eq '127.0.0.1/8')
       { print "Yes\n"; }

will print out "Yes".

Comparison with C<==> requires both operands to be NetAddr::IP objects.

In both cases, a true value is returned if the CIDR representation of
the operands is equal.

=item B<Comparison via E<gt>, E<lt>, E<gt>=, E<lt>=, E<lt>=E<gt> and C<cmp>>

Internally, all network objects are represented in 128 bit format.
The numeric representation of the network is compared through the
corresponding operation. Comparisons are tried first on the address portion
of the object and if that is equal then the NUMERIC cidr portion of the
masks are compared. This leads to the counterintuitive result that

	/24 > /16

Comparison should not be done on netaddr objects with different CIDR as
this may produce indeterminate - unexpected results,
rather the determination of which netblock is larger or smaller should be
done by comparing

	$ip1->masklen <=> $ip2->masklen

=item B<Addition of a constant (C<+>)>

Add a 32 bit signed constant to the address part of a NetAddr object.
This operation changes the address part to point so many hosts above the
current objects start address. For instance, this code:

    print NetAddr::IP->new('127.0.0.1/8') + 5;

will output 127.0.0.6/8. The address will wrap around at the broadcast
back to the network address. This code:

    print NetAddr::IP->new('10.0.0.1/24') + 255;

    outputs 10.0.0.0/24.

Returns the the unchanged object when the constant is missing or out of
range.

    2147483647 <= constant >= -2147483648

=item B<Subtraction of a constant (C<->)>

The complement of the addition of a constant.

=item B<Difference (C<->)>

Returns the difference between the address parts of two NetAddr::IP
objects address parts as a 32 bit signed number.

Returns B<undef> if the difference is out of range.

(See range restrictions on Addition above)

=item B<Auto-increment>

Auto-incrementing a NetAddr::IP object causes the address part to be
adjusted to the next host address within the subnet. It will wrap at
the broadcast address and start again from the network address.

=item B<Auto-decrement>

Auto-decrementing a NetAddr::IP object performs exactly the opposite
of auto-incrementing it, as you would expect.

=cut

				#############################################
				# End of the overload methods.
				#############################################


# Preloaded methods go here.

=pod

=back

=head2 Serializing and Deserializing

This module defines hooks to collaborate with L<Storable> for
serializing C<NetAddr::IP> objects, through compact and human readable
strings. You can revert to the old format by invoking this module as

  use NetAddr::IP ':old_storable';

You must do this if you have legacy data files containing NetAddr::IP
objects stored using the L<Storable> module.

=cut

my $full_format = "%04X:%04X:%04X:%04X:%04X:%04X:%D.%D.%D.%D";
my $full6_format = "%04X:%04X:%04X:%04X:%04X:%04X:%04X:%04X";

sub import
{
    if (grep { $_ eq ':old_storable' } @_) {
	@_ = grep { $_ ne ':old_storable' } @_;
    } else {
	*{STORABLE_freeze} = sub
	{
	    my $self = shift;
	    return $self->cidr();	# use stringification
	};
	*{STORABLE_thaw} = sub
	{
	    my $self	= shift;
	    my $cloning	= shift;	# Not used
	    my $serial	= shift;

	    my $ip = new NetAddr::IP $serial;
	    $self->{addr} = $ip->{addr};
	    $self->{mask} = $ip->{mask};
	    $self->{isv6} = $ip->{isv6};
	    return;
	};
    }

    if (grep { $_ eq ':aton' } @_)
    {
	$NetAddr::IP::Lite::Accept_Binary_IP = 1;
	@_ = grep { $_ ne ':aton' } @_;
    }
    if (grep { $_ eq ':old_nth' } @_)
    {
	$NetAddr::IP::Lite::Old_nth = 1;
	@_ = grep { $_ ne ':old_nth' } @_;
    }
    if (grep { $_ eq ':lower' } @_)
    {
        $full_format = lc($full_format);
        $full6_format = lc($full6_format);
        NetAddr::IP::Util::lower();
	@_ = grep { $_ ne ':lower' } @_;
    }
    if (grep { $_ eq ':upper' } @_)
    {
        $full_format = uc($full_format);
        $full6_format = uc($full6_format);
        NetAddr::IP::Util::upper();
	@_ = grep { $_ ne ':upper' } @_;
    }
    if (grep { $_ eq ':rfc3021' } @_)
    {
	$rfc3021 = 1;
        @_ = grep { $_ ne ':rfc3021' } @_;
    }
    NetAddr::IP->export_to_level(1, @_);
}

sub compact {
    return (ref $_[0] eq 'ARRAY')
	? compactref($_[0])	# Compact(\@list)
	: @{compactref(\@_)};	# Compact(@list)  or ->compact(@list)
}

*Compact = \&compact;

sub Coalesce {
  return &coalesce;
}

sub hostenumref($) {
  my $r = _splitref(0,$_[0]);
  unless ((notcontiguous($_[0]->{mask}))[1] == 128 ||
	  ($rfc3021 && $_[0]->masklen == 31) ) {
    splice(@$r, 0, 1);
    splice(@$r, scalar @$r - 1, 1);
  }
  return $r;
}

sub splitref {
  unshift @_, 0;	# mark as no reverse
# perl 5.8.4 fails with this operation. see perl bug [ 23429]
#  goto &_splitref;
  &_splitref;
}

sub rsplitref {
  unshift @_, 1;	# mark as reversed
# perl 5.8.4 fails with this operation. see perl bug [ 23429]
#  goto &_splitref;
  &_splitref;
}

sub split {
  unshift @_, 0;	# mark as no reverse
  my $rv = &_splitref;
  return $rv ? @$rv : ();
}

sub rsplit {
  unshift @_, 1;	# mark as reversed
  my $rv = &_splitref;
  return $rv ? @$rv : ();
}

sub full($) {
  if (! $_[0]->{isv6} && isIPv4($_[0]->{addr})) {
    my @hex = (unpack("n8",$_[0]->{addr}));
    $hex[9] = $hex[7] & 0xff;
    $hex[8] = $hex[7] >> 8;
    $hex[7] = $hex[6] & 0xff;
    $hex[6] >>= 8;
    return sprintf($full_format,@hex);
  } else {
    &full6;
  }
}

sub full6($) {
  my @hex = (unpack("n8",$_[0]->{addr}));
  return sprintf($full6_format,@hex);
}

sub DESTROY {};

1;
__END__

sub do_prefix ($$$) {
    my $mask	= shift;
    my $faddr	= shift;
    my $laddr	= shift;

    if ($mask > 24) {
	return "$faddr->[0].$faddr->[1].$faddr->[2].$faddr->[3]-$laddr->[3]";
    }
    elsif ($mask == 24) {
	return "$faddr->[0].$faddr->[1].$faddr->[2].";
    }
    elsif ($mask > 16) {
	return "$faddr->[0].$faddr->[1].$faddr->[2]-$laddr->[2].";
    }
    elsif ($mask == 16) {
	return "$faddr->[0].$faddr->[1].";
    }
    elsif ($mask > 8) {
	return "$faddr->[0].$faddr->[1]-$laddr->[1].";
    }
    elsif ($mask == 8) {
	return "$faddr->[0].";
    }
    else {
	return "$faddr->[0]-$laddr->[0]";
    }
}

=pod

=head2 Methods

=over

=item C<-E<gt>new([$addr, [ $mask|IPv6 ]])>

=item C<-E<gt>new6([$addr, [ $mask]])>

=item C<-E<gt>new_no([$addr, [ $mask]])>

=item C<-E<gt>new_from_aton($netaddr)>

=item new_cis and new_cis6 are DEPRECATED 

=item C<-E<gt>new_cis("$addr $mask)>

=item C<-E<gt>new_cis6("$addr $mask)>

The first two methods create a new address with the supplied address in
C<$addr> and an optional netmask C<$mask>, which can be omitted to get 
a /32 or /128 netmask for IPv4 / IPv6 addresses respectively.

The third method C<new_no> is exclusively for IPv4 addresses and filters
improperly formatted
dot quad strings for leading 0's that would normally be interpreted as octal
format by NetAddr per the specifications for inet_aton.

B<new_from_aton> takes a packed IPv4 address and assumes a /32 mask. This
function replaces the DEPRECATED :aton functionality which is fundamentally
broken.

The last two methods B<new_cis> and B<new_cis6> differ from B<new> and
B<new6> only in that they except the common Cisco address notation for
address/mask pairs with a B<space> as a separator instead of a slash (/)

These methods are DEPRECATED because the functionality is now included
in the other "new" methods

  i.e.  ->new_cis('1.2.3.0 24')
        or
        ->new_cis6('::1.2.3.0 120')

C<-E<gt>new6> and
C<-E<gt>new_cis6> mark the address as being in ipV6 address space even
if the format would suggest otherwise.

  i.e.  ->new6('1.2.3.4') will result in ::102:304

  addresses submitted to ->new in ipV6 notation will
  remain in that notation permanently. i.e.
        ->new('::1.2.3.4') will result in ::102:304
  whereas new('1.2.3.4') would print out as 1.2.3.4

  See "STRINGIFICATION" below.

C<$addr> can be almost anything that can be resolved to an IP address
in all the notations I have seen over time. It can optionally contain
the mask in CIDR notation.

B<prefix> notation is understood, with the limitation that the range
specified by the prefix must match with a valid subnet.

Addresses in the same format returned by C<inet_aton> or
C<gethostbyname> can also be understood, although no mask can be
specified for them. The default is to not attempt to recognize this
format, as it seems to be seldom used.

To accept addresses in that format, invoke the module as in

  use NetAddr::IP ':aton'

If called with no arguments, 'default' is assumed.

If called with an empty string as the argument, returns 'undef'

C<$addr> can be any of the following and possibly more...

  n.n
  n.n/mm
  n.n.n
  n.n.n/mm
  n.n.n.n
  n.n.n.n/mm		32 bit cidr notation
  n.n.n.n/m.m.m.m
  loopback, localhost, broadcast, any, default
  x.x.x.x/host
  0xABCDEF, 0b111111000101011110, (a bcd number)
  a netaddr as returned by 'inet_aton'


Any RFC1884 notation

  ::n.n.n.n
  ::n.n.n.n/mmm		128 bit cidr notation
  ::n.n.n.n/::m.m.m.m
  ::x:x
  ::x:x/mmm
  x:x:x:x:x:x:x:x
  x:x:x:x:x:x:x:x/mmm
  x:x:x:x:x:x:x:x/m:m:m:m:m:m:m:m any RFC1884 notation
  loopback, localhost, unspecified, any, default
  ::x:x/host
  0xABCDEF, 0b111111000101011110 within the limits
  of perl's number resolution
  123456789012  a 'big' bcd number (bigger than perl likes)
  and Math::BigInt

If called with no arguments, 'default' is assumed.

If called with an empty string as the argument, returns 'undef'

=item C<-E<gt>broadcast()>

Returns a new object referring to the broadcast address of a given
subnet. The broadcast address has all ones in all the bit positions
where the netmask has zero bits. This is normally used to address all
the hosts in a given subnet.

=item C<-E<gt>network()>

Returns a new object referring to the network address of a given
subnet. A network address has all zero bits where the bits of the
netmask are zero. Normally this is used to refer to a subnet.

=item C<-E<gt>addr()>

Returns a scalar with the address part of the object as an IPv4 or IPv6 text
string as appropriate. This is useful for printing or for passing the
address part of the NetAddr::IP object to other components that expect an IP
address. If the object is an ipV6 address or was created using ->new6($ip)
it will be reported in ipV6 hex format otherwise it will be reported in dot
quad format only if it resides in ipV4 address space.

=item C<-E<gt>mask()>

Returns a scalar with the mask as an IPv4 or IPv6 text string as
described above.

=item C<-E<gt>masklen()>

Returns a scalar the number of one bits in the mask.

=item C<-E<gt>bits()>

Returns the width of the address in bits. Normally 32 for v4 and 128 for v6.

=item C<-E<gt>version()>

Returns the version of the address or subnet. Currently this can be
either 4 or 6.

=item C<-E<gt>cidr()>

Returns a scalar with the address and mask in CIDR notation. A
NetAddr::IP object I<stringifies> to the result of this function.
(see comments about ->new6() and ->addr() for output formats)

=item C<-E<gt>aton()>

Returns the address part of the NetAddr::IP object in the same format
as the C<inet_aton()> or C<ipv6_aton> function respectively. If the object
was created using ->new6($ip), the address returned will always be in ipV6
format, even for addresses in ipV4 address space.

=item C<-E<gt>range()>

Returns a scalar with the base address and the broadcast address
separated by a dash and spaces. This is called range notation.

=item C<-E<gt>prefix()>

Returns a scalar with the address and mask in ipV4 prefix
representation. This is useful for some programs, which expect its
input to be in this format. This method will include the broadcast
address in the encoding.

=cut

# only applicable to ipV4
sub prefix($) {
    return undef if $_[0]->{isv6};
    my $mask = (notcontiguous($_[0]->{mask}))[1];
    return $_[0]->addr if $mask == 128;
    $mask -= 96;
    my @faddr = split (/\./, $_[0]->first->addr);
    my @laddr = split (/\./, $_[0]->broadcast->addr);
    return do_prefix $mask, \@faddr, \@laddr;
}

=item C<-E<gt>nprefix()>

Just as C<-E<gt>prefix()>, but does not include the broadcast address.

=cut

# only applicable to ipV4
sub nprefix($) {
    return undef if $_[0]->{isv6};
    my $mask = (notcontiguous($_[0]->{mask}))[1];
    return $_[0]->addr if $mask == 128;
    $mask -= 96;
    my @faddr = split (/\./, $_[0]->first->addr);
    my @laddr = split (/\./, $_[0]->last->addr);
    return do_prefix $mask, \@faddr, \@laddr;
}

=pod

=item C<-E<gt>numeric()>

When called in a scalar context, will return a numeric representation
of the address part of the IP address. When called in an array
contest, it returns a list of two elements. The first element is as
described, the second element is the numeric representation of the
netmask.

This method is essential for serializing the representation of a
subnet.

=item C<-E<gt>bigint()>

When called in scalar context, will return a Math::BigInt
representation of the address part of the IP address. When called in
an array context, it returns a list of two elements, The first
element is as described, the second element is the Math::BigInt
representation of the netmask.

=item C<-E<gt>wildcard()>

When called in a scalar context, returns the wildcard bits
corresponding to the mask, in dotted-quad or ipV6 format as applicable.

When called in an array context, returns a two-element array. The
first element, is the address part. The second element, is the
wildcard translation of the mask.

=cut

sub wildcard($) {
  my $copy = $_[0]->copy;
  $copy->{addr} = ~ $copy->{mask};
  $copy->{addr} &= V4net unless $copy->{isv6};
  if (wantarray) {
    return ($_[0]->addr, $copy->addr);
  }
  return $copy->addr;
}

=pod

=item C<-E<gt>short()>

Returns the address part in a short or compact notation.

  (ie, 127.0.0.1 becomes 127.1).

Works with both, V4 and V6.

=cut

sub _compact_v6 ($) {
    my $addr = shift;

    my @o = split /:/, $addr;
    return $addr unless @o and grep { $_ =~ m/^0+$/ } @o;

    my @candidates	= ();
    my $start		= undef;

    for my $i (0 .. $#o)
    {
	if (defined $start)
	{
	    if ($o[$i] !~ m/^0+$/)
	    {
		push @candidates, [ $start, $i - $start ];
		$start = undef;
	    }
	}
	else
	{
	    $start = $i if $o[$i] =~ m/^0+$/;
	}
    }

    push @candidates, [$start, 8 - $start] if defined $start;

    my $l = (sort { $b->[1] <=> $a->[1] } @candidates)[0];

    return $addr unless defined $l;

    $addr = $l->[0] == 0 ? '' : join ':', @o[0 .. $l->[0] - 1];
    $addr .= '::';
    $addr .= join ':', @o[$l->[0] + $l->[1] .. $#o];
    $addr =~ s/(^|:)0{1,3}/$1/g;

    return $addr;
}


#sub _old_compV6 {
#  my @addr = split(':',shift);
#  my $found = 0;
#  my $v;
#  foreach(0..$#addr) {
#    ($v = $addr[$_]) =~ s/^0+//;
#    $addr[$_] = $v || 0;
#  }
#  @_ = reverse(1..$#addr);
#  foreach(@_) {
#    if ($addr[$_] || $addr[$_ -1]) {
#      last if $found;
#      next;
#    }
#    $addr[$_] = $addr[$_ -1] = '';
#    $found = '1';
#  }
#  (my $rv = join(':',@addr)) =~ s/:+:/::/;
#  return $rv;
#}

# thanks to Rob Riepel <riepel@networking.Stanford.EDU>
# for this faster and more compact solution 11-17-08
sub _compV6 ($) {
    my $ip = shift;
    return $ip unless my @candidates = $ip =~ /((?:^|:)0(?::0)+(?::|$))/g;
    my $longest = (sort { length($b) <=> length($a) } @candidates)[0];
    $ip =~ s/$longest/::/;
    return $ip;
}

sub short($) {
  my $addr = $_[0]->addr;
  if (! $_[0]->{isv6} && isIPv4($_[0]->{addr})) {
    my @o = split(/\./, $addr, 4);
    splice(@o, 1, 2) if $o[1] == 0 and $o[2] == 0;
    return join '.', @o;
  }
  return _compV6($addr);
}

=item C<-E<gt>canon()>

Returns the address part in canonical notation as a string.  For
ipV4, this is dotted quad, and is the same as the return value from 
"->addr()".  For ipV6 it is as per RFC5952, and is the same as the LOWER CASE value
returned by "->short()".

=cut

sub canon($) {
  my $addr = $_[0]->addr;
  return $_[0]->{isv6} ? lc _compV6($addr) : $addr;
}

=item C<-E<gt>full()>

Returns the address part in FULL notation for
ipV4 and ipV6 respectively.

  i.e. for ipV4
    0000:0000:0000:0000:0000:0000:127.0.0.1

       for ipV6
    0000:0000:0000:0000:0000:0000:0000:0000

To force ipV4 addresses into full ipV6 format use:

=item C<-E<gt>full6()>

Returns the address part in FULL ipV6 notation

=item C<$me-E<gt>contains($other)>

Returns true when C<$me> completely contains C<$other>. False is
returned otherwise and C<undef> is returned if C<$me> and C<$other>
are not both C<NetAddr::IP> objects.

=item C<$me-E<gt>within($other)>

The complement of C<-E<gt>contains()>. Returns true when C<$me> is
completely contained within C<$other>.

Note that C<$me> and C<$other> must be C<NetAddr::IP> objects.

=item C-E<gt>is_rfc1918()>

Returns true when C<$me> is an RFC 1918 address.

  10.0.0.0      -   10.255.255.255  (10/8 prefix)
  172.16.0.0    -   172.31.255.255  (172.16/12 prefix)
  192.168.0.0   -   192.168.255.255 (192.168/16 prefix)

=item C<-E<gt>splitref($bits,[optional $bits1,$bits2,...])>

Returns a reference to a list of objects, representing subnets of C<bits> mask
produced by splitting the original object, which is left
unchanged. Note that C<$bits> must be longer than the original
mask in order for it to be splittable.

ERROR conditions:

  ->splitref will DIE with the message 'netlimit exceeded'
    if the number of return objects exceeds 'netlimit'.
    See function 'netlimit' above (default 2**16 or 65536 nets).

  ->splitref returns undef when C<bits> or the (bits list)
    will not fit within the original object.

  ->splitref returns undef if a supplied ipV4, ipV6, or NetAddr
    mask in inappropriately formatted,

B<bits> may be a CIDR mask, a dot quad or ipV6 string or a NetAddr::IP object.
If C<bits> is missing, the object is split for into all available addresses
within the ipV4 or ipV6 object ( auto-mask of CIDR 32, 128 respectively ).

With optional additional C<bits> list, the original object is split into
parts sized based on the list. NOTE: a short list will replicate the last
item. If the last item is too large to for what remains of the object after
splitting off the first parts of the list, a "best fits" list of remaining
objects will be returned based on an increasing sort of the CIDR values of
the C<bits> list.

  i.e.	my $ip = new NetAddr::IP('192.168.0.0/24');
	my $objptr = $ip->split(28, 29, 28, 29, 26);

   has split plan 28 29 28 29 26 26 26 28
   and returns this list of objects

	192.168.0.0/28
	192.168.0.16/29
	192.168.0.24/28
	192.168.0.40/29
	192.168.0.48/26
	192.168.0.112/26
	192.168.0.176/26
	192.168.0.240/28

NOTE: that /26 replicates twice beyond the original request and /28 fills
the remaining return object requirement.

=item C<-E<gt>rsplitref($bits,[optional $bits1,$bits2,...])>

C<-E<gt>rsplitref> is the same as C<-E<gt>splitref> above except that the split plan is
applied to the original object in reverse order.

  i.e.	my $ip = new NetAddr::IP('192.168.0.0/24');
	my @objects = $ip->split(28, 29, 28, 29, 26);

   has split plan 28 26 26 26 29 28 29 28
   and returns this list of objects

	192.168.0.0/28
	192.168.0.16/26
	192.168.0.80/26
	192.168.0.144/26
	192.168.0.208/29
	192.168.0.216/28
	192.168.0.232/29
	192.168.0.240/28

=item C<-E<gt>split($bits,[optional $bits1,$bits2,...])>

Similar to C<-E<gt>splitref> above but returns the list rather than a list
reference. You may not want to use this if a large number of objects is
expected.

=item C<-E<gt>rsplit($bits,[optional $bits1,$bits2,...])>

Similar to C<-E<gt>rsplitref> above but returns the list rather than a list
reference. You may not want to use this if a large number of objects is
expected.

=cut

# input:	$naip,
#		@bits,		 list of masks for splits
#
#  returns:	empty array request will not fit in submitted net
#		(\@bits,undef)	 if there is just one plan item i.e. return original net
#		(\@bits,\%masks) for a real plan
#
sub _splitplan {
  my($ip,@bits) = @_;
  my $addr = $ip->addr();
  my $isV6 = $ip->{isv6};
  unless (@bits) {
    $bits[0] = $isV6 ? 128 : 32;
  }
  my $basem = $ip->masklen();

  my(%nets,$dif);
  my $denom = 0;

  my($x,$maddr);
  foreach(@bits) {
    if (ref $_) {	# is a NetAddr::IP
      $x = $_->{isv6} ? $_->{addr} : $_->{addr} | V4mask;
      ($x,$maddr) = notcontiguous($x);
      return () if $x;	# spurious bits
      $_ = $isV6 ? $maddr : $maddr - 96;
    }
    elsif ( $_ =~ /^d+$/ ) {		# is a negative number of the form -nnnn
	;
    }
    elsif ($_ = NetAddr::IP->new($addr,$_,$isV6)) { # will be undefined if bad mask and will fall into oops!
      $_ = $_->masklen();
    }
    else {
      return ();	# oops!
    }
    $dif = $_ - $basem;			# for normalization
    return () if $dif < 0;		# overange nets not allowed
    return (\@bits,undef) unless ($dif || $#bits);	# return if original net = mask alone
    $denom = $dif if $dif > $denom;
    next if exists $nets{$_};
    $nets{$_} = $_ - $basem;		# for normalization
  }

# $denom is the normalization denominator, since these are all exponents
# normalization can use add/subtract to accomplish normalization
#
# keys of %nets are the masks used by this split
# values of %nets are the normalized weighting for
# calculating when the split is "full" or complete
# %masks values contain the actual masks for each split subnet
# @bits contains the masks in the order the user actually wants them
#
  my %masks;					# calculate masks
  my $maskbase = $isV6 ? 128 : 32;
  foreach( keys %nets ) {
    $nets{$_} = 2 ** ($denom - $nets{$_});
    $masks{$_} = shiftleft(Ones, $maskbase - $_);
  }

  my @plan;
  my $idx = 0;
  $denom = 2 ** $denom;
  PLAN:
  while ($denom > 0) {				# make a net plan
    my $nexmask = ($idx < $#bits) ? $bits[$idx] : $bits[$#bits];
    ++$idx;
    unless (($denom -= $nets{$nexmask}) < 0) {
      return () if (push @plan, $nexmask) > $_netlimit;
      next;
    }
# a fractional net is needed that is not in the mask list or the replicant
    $denom += $nets{$nexmask};			# restore mistake
  TRY:
    foreach (sort { $a <=> $b } keys %nets) {
      next TRY if $nexmask > $_;
      do {
	next TRY if $denom - $nets{$_} < 0;
	return () if (push @plan, $_) > $_netlimit;
	$denom -= $nets{$_};
      } while $denom;
    }
    die 'ERROR: miscalculated weights' if $denom;
  }
  return () if $idx < @bits;			# overrange original subnet request
  return (\@plan,\%masks);
}

# input:	$rev,	# t/f
#		$naip,
#		@bits	# list of masks for split
#
sub _splitref {
  my $rev = shift;
  my($plan,$masks) = &_splitplan;
# bug report 82719
  croak("netmask error: overrange or spurious bits") unless defined $plan;
#  return undef unless $plan;
  my $net = $_[0]->network();
  return [$net] unless $masks;
  my $addr = $net->{addr};
  my $isV6 = $net->{isv6};
  my @plan = $rev ? reverse @$plan : @$plan;
# print "plan @plan\n";

# create splits
  my @ret;
  while ($_ = shift @plan) {
    my $mask = $masks->{$_};
    push @ret, $net->_new($addr,$mask,$isV6);
    last unless @plan;
    $addr = (sub128($addr,$mask))[1];
  }
  return \@ret;
}

=pod

=item C<-E<gt>hostenum()>

Returns the list of hosts within a subnet.

ERROR conditions:

  ->hostenum will DIE with the message 'netlimit exceeded'
    if the number of return objects exceeds 'netlimit'.
    See function 'netlimit' above (default 2**16 or 65536 nets).

=cut

sub hostenum ($) {
    return @{$_[0]->hostenumref};
}

=pod

=item C<-E<gt>hostenumref()>

Faster version of C<-E<gt>hostenum()>, returning a reference to a list.

NOTE: hostenum and hostenumref report zero (0) useable hosts in a /31
network. This is the behavior expected prior to RFC 3021. To report 2
useable hosts for use in point-to-point networks, use B<:rfc3021> tag.

	use NetAddr::IP qw(:rfc3021);

This will cause hostenum and hostenumref to return two (2) useable hosts in
a /31 network.
 
=item C<$me-E<gt>compact($addr1, $addr2, ...)>

=item C<@compacted_object_list = Compact(@object_list)>

Given a list of objects (including C<$me>), this method will compact
all the addresses and subnets into the largest (ie, least specific)
subnets possible that contain exactly all of the given objects.

Note that in versions prior to 3.02, if fed with the same IP subnets
multiple times, these subnets would be returned. From 3.02 on, a more
"correct" approach has been adopted and only one address would be
returned.

Note that C<$me> and all C<$addr>'s must be C<NetAddr::IP> objects.

=item C<$me-E<gt>compactref(\@list)>

=item C<$compacted_object_list = Compact(\@list)>

As usual, a faster version of C<-E<gt>compact()> that returns a
reference to a list. Note that this method takes a reference to a list
instead.

Note that C<$me> must be a C<NetAddr::IP> object.

=cut

sub compactref($) {
#  my @r = sort { NetAddr::IP::Lite::comp_addr_mask($a,$b) } @{$_[0]}		# use overload 'cmp' function
#	or return [];
#  return [] unless @r;

  my @r;
  {
    my $unr  = [];
    my $args = $_[0];

    if (ref $_[0] eq __PACKAGE__ and ref $_[1] eq 'ARRAY') {
      # ->compactref(\@list)
      #
      $unr = [$_[0], @{$_[1]}]; # keeping structures intact
    }
    else {
      # Compact(@list) or ->compact(@list) or Compact(\@list)
      #
      $unr = $args;
    }

    return [] unless @$unr;

    foreach(@$unr) {
      $_->{addr} = $_->network->{addr};
    }

    @r = sort @$unr;
  }

  my $changed;
  do {
    $changed = 0;
    for(my $i=0; $i <= $#r -1;$i++) {
      if ($r[$i]->contains($r[$i +1])) {
        splice(@r,$i +1,1);
        ++$changed;
        --$i;
      }
      elsif ((notcontiguous($r[$i]->{mask}))[1] == (notcontiguous($r[$i +1]->{mask}))[1]) {		# masks the same
        if (hasbits($r[$i]->{addr} ^ $r[$i +1]->{addr})) {	# if not the same netblock
          my $upnet = $r[$i]->copy;
          $upnet->{mask} = shiftleft($upnet->{mask},1);
          if ($upnet->contains($r[$i +1])) {					# adjacent nets in next net up
      $r[$i] = $upnet;
      splice(@r,$i +1,1);
      ++$changed;
      --$i;
          }
        } else {									# identical nets
          splice(@r,$i +1,1);
          ++$changed;
          --$i;
        }
      }
    }
  } while $changed;
  return \@r;
}

=pod

=item C<$me-E<gt>coalesce($masklen, $number, @list_of_subnets)>

=item C<$arrayref = Coalesce($masklen,$number,@list_of_subnets)>

Will return a reference to list of C<NetAddr::IP> subnets of
C<$masklen> mask length, when C<$number> or more addresses from
C<@list_of_subnets> are found to be contained in said subnet.

Subnets from C<@list_of_subnets> with a mask shorter than C<$masklen>
are passed "as is" to the return list.

Subnets from C<@list_of_subnets> with a mask longer than C<$masklen>
will be counted (actually, the number of IP addresses is counted)
towards C<$number>.

Called as a method, the array will include C<$me>.

WARNING: the list of subnet must be the same type. i.e ipV4 or ipV6

=cut

sub coalesce
{
    my $masklen	= shift;
    if (ref $masklen && ref $masklen eq __PACKAGE__ ) {	# if called as a method
      push @_,$masklen;
      $masklen = shift;
    }

    my $number	= shift;

    # Addresses are at @_
    return [] unless @_;
    my %ret = ();
    my $type = $_[0]->{isv6};
    return [] unless defined $type;

    for my $ip (@_)
    {
	return [] unless $ip->{isv6} == $type;
	$type = $ip->{isv6};
	my $n = NetAddr::IP->new($ip->addr . '/' . $masklen)->network;
	if ($ip->masklen > $masklen)
	{
	    $ret{$n} += $ip->num + $NetAddr::IP::Lite::Old_nth;
	}
    }

    my @ret = ();

    # Add to @ret any arguments with netmasks longer than our argument
    for my $c (sort { $a->masklen <=> $b->masklen }
	       grep { $_->masklen <= $masklen } @_)
    {
	next if grep { $_->contains($c) } @ret;
	push @ret, $c->network;
    }

    # Now add to @ret all the subnets with more than $number hits
    for my $c (map { new NetAddr::IP $_ }
	       grep { $ret{$_} >= $number }
	       keys %ret)
    {
	next if grep { $_->contains($c) } @ret;
	push @ret, $c;
    }

    return \@ret;
}

=pod

=item C<-E<gt>first()>

Returns a new object representing the first usable IP address within
the subnet (ie, the first host address).

=item C<-E<gt>last()>

Returns a new object representing the last usable IP address within
the subnet (ie, one less than the broadcast address).

=item C<-E<gt>nth($index)>

Returns a new object representing the I<n>-th usable IP address within
the subnet (ie, the I<n>-th host address).  If no address is available
(for example, when the network is too small for C<$index> hosts),
C<undef> is returned.

Version 4.00 of NetAddr::IP and version 1.00 of NetAddr::IP::Lite implements
C<-E<gt>nth($index)> and C<-E<gt>num()> exactly as the documentation states.
Previous versions behaved slightly differently and not in a consistent
manner. See the README file for details.

To use the old behavior for C<-E<gt>nth($index)> and C<-E<gt>num()>:

  use NetAddr::IP::Lite qw(:old_nth);

  old behavior:
  NetAddr::IP->new('10/32')->nth(0) == undef
  NetAddr::IP->new('10/32')->nth(1) == undef
  NetAddr::IP->new('10/31')->nth(0) == undef
  NetAddr::IP->new('10/31')->nth(1) == 10.0.0.1/31
  NetAddr::IP->new('10/30')->nth(0) == undef
  NetAddr::IP->new('10/30')->nth(1) == 10.0.0.1/30
  NetAddr::IP->new('10/30')->nth(2) == 10.0.0.2/30
  NetAddr::IP->new('10/30')->nth(3) == 10.0.0.3/30

Note that in each case, the broadcast address is represented in the
output set and that the 'zero'th index is alway undef except for   
a point-to-point /31 or /127 network where there are exactly two   
addresses in the network.

  new behavior:
  NetAddr::IP->new('10/32')->nth(0)  == 10.0.0.0/32
  NetAddr::IP->new('10.1/32'->nth(0) == 10.0.0.1/32
  NetAddr::IP->new('10/31')->nth(0)  == 10.0.0.0/31
  NetAddr::IP->new('10/31')->nth(1)  == 10.0.0.1/31
  NetAddr::IP->new('10/30')->nth(0) == 10.0.0.1/30 
  NetAddr::IP->new('10/30')->nth(1) == 10.0.0.2/30 
  NetAddr::IP->new('10/30')->nth(2) == undef

Note that a /32 net always has 1 usable address while a /31 has exactly 
two usable addresses for point-to-point addressing. The first
index (0) returns the address immediately following the network address
except for a /31 or /127 when it return the network address.

=item C<-E<gt>num()>

As of version 4.42 of NetAddr::IP and version 1.27 of NetAddr::IP::Lite
a /31 and /127 with return a net B<num> value of 2 instead of 0 (zero) 
for point-to-point networks.

Version 4.00 of NetAddr::IP and version 1.00 of NetAddr::IP::Lite
return the number of usable IP addresses within the subnet, 
not counting the broadcast or network address.

Previous versions worked only for ipV4 addresses, returned a
maximum span of 2**32 and returned the number of IP addresses
not counting the broadcast address.
        (one greater than the new behavior)

To use the old behavior for C<-E<gt>nth($index)> and C<-E<gt>num()>:

  use NetAddr::IP::Lite qw(:old_nth);

WARNING:

NetAddr::IP will calculate and return a numeric string for network
ranges as large as 2**128. These values are TEXT strings and perl 
can treat them as integers for numeric calculations.

Perl on 32 bit platforms only handles integer numbers up to 2**32
and on 64 bit platforms to 2**64.

If you wish to manipulate numeric strings returned by NetAddr::IP
that are larger than 2**32 or 2**64, respectively,  you must load
additional modules such as Math::BigInt, bignum or some similar  
package to do the integer math.

=item C<-E<gt>re()>

Returns a Perl regular expression that will match an IP address within
the given subnet. Defaults to ipV4 notation. Will return an ipV6 regex
if the address in not in ipV4 space.

=cut

sub re ($)
{
    return &re6 unless isIPv4($_[0]->{addr});
    my $self = shift->network;	# Insure a "zero" host part
    my ($addr, $mlen) = ($self->addr, $self->masklen);
    my @o = split('\.', $addr, 4);

    my $octet= '(?:[0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])';
    my @r = @o;
    my $d;

#    for my $i (0 .. $#o)
#    {
#	warn "# $self: $r[$i] == $o[$i]\n";
#    }

    if ($mlen != 32)
    {
	if ($mlen > 24)
	{
	     $d	= 2 ** (32 - $mlen) - 1;
	     $r[3] = '(?:' . join('|', ($o[3]..$o[3] + $d)) . ')';
	}
	else
	{
	    $r[3] = $octet;
	    if ($mlen > 16)
	    {
		$d = 2 ** (24 - $mlen) - 1;
		$r[2] = '(?:' . join('|', ($o[2]..$o[2] + $d)) . ')';
	    }
	    else
	    {
		$r[2] = $octet;
		if ($mlen > 8)
		{
		    $d = 2 ** (16 - $mlen) - 1;
		    $r[1] = '(?:' . join('|', ($o[1]..$o[1] + $d)) . ')';
		}
		else
		{
		    $r[1] = $octet;
		    if ($mlen > 0)
		    {
			$d = 2 ** (8 - $mlen) - 1;
			$r[0] = '(?:' . join('|', ($o[0] .. $o[0] + $d)) . ')';
		    }
		    else { $r[0] = $octet; }
		}
	    }
	}
    }

    ### no digit before nor after (look-behind, look-ahead)
    return "(?:(?<![0-9])$r[0]\\.$r[1]\\.$r[2]\\.$r[3](?![0-9]))";
}

=item C<-E<gt>re6()>

Returns a Perl regular expression that will match an IP address within
the given subnet. Always returns an ipV6 regex.

=cut

sub re6($) {
  my @net = split('',sprintf("%04X%04X%04X%04X%04X%04X%04X%04X",unpack('n8',$_[0]->network->{addr})));
  my @brd = split('',sprintf("%04X%04X%04X%04X%04X%04X%04X%04X",unpack('n8',$_[0]->broadcast->{addr})));

  my @dig;

  foreach(0..$#net) {
    my $n = $net[$_];
    my $b = $brd[$_];
    my $m;
    if ($n.'' eq $b.'') {
      if ($n =~ /\d/) {
	push @dig, $n;
      } else {
	push @dig, '['.(lc $n).$n.']';
      }
    } else {
      my $n = $net[$_];
      my $b = $brd[$_];
      if ($n.'' eq 0 && $b =~ /F/) {
	push @dig, 'x';
      }
      elsif ($n =~ /\d/ && $b =~ /\d/) {
	push @dig, '['.$n.'-'.$b.']';
      }
      elsif ($n =~ /[A-F]/ && $b =~ /[A-F]/) {
	$n .= '-'.$b;
	push @dig, '['.(lc $n).$n.']';
      }
      elsif ($n =~ /\d/ && $b =~ /[A-F]/) {
	$m = ($n == 9) ? 9 : $n .'-9';
	if ($b =~ /A/) {
	  $m .= 'aA';
	} else {
	  $b = 'A-'. $b;
	  $m .= (lc $b). $b;
	}
	push @dig, '['.$m.']';
      }
      elsif ($n =~ /[A-F]/ && $b =~ /\d/) {
	if ($n =~ /A/) {
	  $m = 'aA';
	} else {
	  $n .= '-F';
	  $m = (lc $n).$n;
	}
	if ($b == 9) {
	  $m .= 9;
	} else {
	  $m .= $b .'-9';
	}
	push @dig, '['.$m.']';
      }
    }
  }
  my @grp;
  do {
    my $grp = join('',splice(@dig,0,4));
    if ($grp =~ /^(0+)/) {
      my $l = length($1);
      if ($l == 4) {
	$grp = '0{1,4}';
      } else {
	$grp =~ s/^${1}/0\{0,$l\}/;
      }
    }
    if ($grp =~ /(x+)$/) {
      my $l = length($1);
      if ($l == 4) {
	$grp = '[0-9a-fA-F]{1,4}';
      } else {
	$grp =~ s/x+/\[0\-9a\-fA\-F\]\{$l\}/;
      }
    }
    push @grp, $grp;
  } while @dig > 0;
  return '('. join(':',@grp) .')';
}

sub mod_version {
  return $VERSION;
  &Compact;			# suppress warnings about these symbols
  &Coalesce;
  &STORABLE_freeze;
  &STORABLE_thaw;
}

=pod

=back

=head1 EXPORT_OK

	Compact
	Coalesce
	Zeros
	Ones
	V4mask
	V4net
	netlimit

=head1 NOTES / BUGS ... FEATURES

NetAddr::IP only runs in Pure Perl mode on Windows boxes because I don't
have the resources or know how to get the "configure" stuff working in the
Windows environment. Volunteers WELCOME to port the "C" portion of this
module to Windows.

=head1 HISTORY

=over 4

See the Changes file

=back

=head1 AUTHORS

Luis E. Muñoz E<lt>luismunoz@cpan.orgE<gt>,
Michael Robinton E<lt>michael@bizsystems.comE<gt>

=head1 WARRANTY

This software comes with the same warranty as Perl itself (ie, none),
so by using it you accept any and all the liability.

=head1 COPYRIGHT

This software is (c) Luis E. Muñoz, 1999 - 2007, and (c) Michael
Robinton, 2006 - 2012.

All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of either:

  a) the GNU General Public License as published by the Free
  Software Foundation; either version 2, or (at your option) any
  later version, or

  b) the "Artistic License" which comes with this distribution.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See either
the GNU General Public License or the Artistic License for more details.

You should have received a copy of the Artistic License with this
distribution, in the file named "Artistic".  If not, I'll be glad to provide
one.

You should also have received a copy of the GNU General Public License
along with this program in the file named "Copying". If not, write to the

	Free Software Foundation, Inc.
	51 Franklin Street, Fifth Floor
	Boston, MA 02110-1301 USA.

or visit their web page on the internet at:

        http://www.gnu.org/copyleft/gpl.html.

=head1 SEE ALSO

  perl(1) L<NetAddr::IP::Lite>, L<NetAddr::IP::Util>,
L<NetAddr::IP::InetBase>

=cut

1;