This file is indexed.

/usr/include/cairomm-1.0/cairomm/refptr.h is in libcairomm-1.0-dev 1.10.0-1ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
// -*- c++ -*-
#ifndef _cairo_REFPTR_H
#define _cairo_REFPTR_H

/* $Id: refptr.h,v 1.6 2006-09-27 18:38:57 murrayc Exp $ */

/* Copyright 2005 The cairomm Development Team
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 */


namespace Cairo
{

/** RefPtr<> is a reference-counting shared smartpointer.
 *
 * Reference counting means that a shared reference count is incremented each
 * time a RefPtr is copied, and decremented each time a RefPtr is destroyed,
 * for instance when it leaves its scope. When the reference count reaches
 * zero, the contained object is deleted
 *
 * cairomm uses RefPtr so that you don't need to remember
 * to delete the object explicitly, or know when a method expects you to delete 
 * the object that it returns, and to prevent any need to manually  reference 
 * and unreference() cairo objects.
 */
template <class T_CppObject>
class RefPtr
{
public:
  /** Default constructor
   *
   * Afterwards it will be null and use of -> will cause a segmentation fault.
   */
  inline RefPtr();
  
  /// Destructor - decrements reference count.
  inline ~RefPtr();

  /** For use only in the internal implementation of cairomm, gtkmm, etc.
   *
   * This takes ownership of @a pCppObject, so it will be deleted when the 
   * last RefPtr is deleted, for instance when it goes out of scope.
   *
   * This assumes that @a pCppObject already has a starting reference for its underlying cairo object,
   * so that destruction of @a @pCppObject will cause a corresponding unreference of its underlying 
   * cairo object. For instance, a cairo_*_create() function usually provides a starting reference, 
   * but a cairo_*_get_*() function requires the caller to manually reference the returned object.
   * In this case, you should call reference() on @a pCppObject before passing it to this constructor.
   */
  explicit inline RefPtr(T_CppObject* pCppObject);

  ///  For use only in the internal implementation of sharedptr.
  explicit inline RefPtr(T_CppObject* pCppObject, int* refcount);

  /** Copy constructor
   *
   * This increments the shared reference count.
   */
  inline RefPtr(const RefPtr<T_CppObject>& src);

  /** Copy constructor (from different, but castable type).
   *
   * Increments the reference count.
   */
  template <class T_CastFrom>
  inline RefPtr(const RefPtr<T_CastFrom>& src);

  /** Swap the contents of two RefPtr<>.
   * This method swaps the internal pointers to T_CppObject.  This can be
   * done safely without involving a reference/unreference cycle and is
   * therefore highly efficient.
   */
  inline void swap(RefPtr<T_CppObject>& other);

  /// Copy from another RefPtr:
  inline RefPtr<T_CppObject>& operator=(const RefPtr<T_CppObject>& src);

  /** Copy from different, but castable type).
   *
   * Increments the reference count.
   */
  template <class T_CastFrom>
  inline RefPtr<T_CppObject>& operator=(const RefPtr<T_CastFrom>& src);

  /// Tests whether the RefPtr<> point to the same underlying instance.
  inline bool operator==(const RefPtr<T_CppObject>& src) const;
  
  /// See operator==().
  inline bool operator!=(const RefPtr<T_CppObject>& src) const;

  /** Dereferencing.
   *
   * Use the methods of the underlying instance like so:
   * <code>refptr->memberfun()</code>.
   */
  inline T_CppObject* operator->() const;

  /** Test whether the RefPtr<> points to any underlying instance.
   *
   * Mimics usage of ordinary pointers:
   * @code
   *   if (ptr)
   *     do_something();
   * @endcode
   */
  inline operator bool() const;

  /// Set underlying instance to 0, decrementing reference count of existing instance appropriately.
  inline void clear();


  /** Dynamic cast to derived class.
   *
   * The RefPtr can't be cast with the usual notation so instead you can use
   * @code
   *   ptr_derived = RefPtr<Derived>::cast_dynamic(ptr_base);
   * @endcode
   */
  template <class T_CastFrom>
  static inline RefPtr<T_CppObject> cast_dynamic(const RefPtr<T_CastFrom>& src);

  /** Static cast to derived class.
   *
   * Like the dynamic cast; the notation is 
   * @code
   *   ptr_derived = RefPtr<Derived>::cast_static(ptr_base);
   * @endcode
   */
  template <class T_CastFrom>
  static inline RefPtr<T_CppObject> cast_static(const RefPtr<T_CastFrom>& src);

  /** Cast to non-const.
   *
   * The RefPtr can't be cast with the usual notation so instead you can use
   * @code
   *   ptr_unconst = RefPtr<UnConstType>::cast_const(ptr_const);
   * @endcode
   */
  template <class T_CastFrom>
  static inline RefPtr<T_CppObject> cast_const(const RefPtr<T_CastFrom>& src);


#ifndef DOXYGEN_IGNORE_THIS

  // Warning: This is for internal use only.  Do not manually modify the
  // reference count with this pointer.
  inline int* refcount_() const { return pCppRefcount_; }

#endif // DOXYGEN_IGNORE_THIS

private:
  void unref();

  T_CppObject* pCppObject_;
  mutable int* pCppRefcount_;
};


#ifndef DOXYGEN_IGNORE_THIS

// RefPtr<>::operator->() comes first here since it's used by other methods.
// If it would come after them it wouldn't be inlined.

template <class T_CppObject> inline
T_CppObject* RefPtr<T_CppObject>::operator->() const
{
  return pCppObject_;
}

template <class T_CppObject> inline
RefPtr<T_CppObject>::RefPtr()
:
  pCppObject_(0),
  pCppRefcount_(0)
{}

template <class T_CppObject> inline
RefPtr<T_CppObject>::~RefPtr()
{
  unref();
}

template <class T_CppObject> inline
void RefPtr<T_CppObject>::unref()
{
  if(pCppRefcount_)
  {
    --(*pCppRefcount_);

    if(*pCppRefcount_ == 0)
    {
      if(pCppObject_)
      {
        delete pCppObject_;
        pCppObject_ = 0;
      }

      delete pCppRefcount_;
      pCppRefcount_ = 0;
    }
  }
}


template <class T_CppObject> inline
RefPtr<T_CppObject>::RefPtr(T_CppObject* pCppObject)
:
  pCppObject_(pCppObject),
  pCppRefcount_(0)
{
  if(pCppObject)
  {
    pCppRefcount_ = new int;
    *pCppRefcount_ = 1; //This will be decremented in the destructor.
  }
}

//Used by cast_*() implementations:
template <class T_CppObject> inline
RefPtr<T_CppObject>::RefPtr(T_CppObject* pCppObject, int* refcount)
:
  pCppObject_(pCppObject),
  pCppRefcount_(refcount)
{
  if(pCppObject_ && pCppRefcount_)
    ++(*pCppRefcount_);
}

template <class T_CppObject> inline
RefPtr<T_CppObject>::RefPtr(const RefPtr<T_CppObject>& src)
:
  pCppObject_ (src.pCppObject_),
  pCppRefcount_(src.pCppRefcount_)
{
  if(pCppObject_ && pCppRefcount_)
    ++(*pCppRefcount_);
}

// The templated ctor allows copy construction from any object that's
// castable.  Thus, it does downcasts:
//   base_ref = derived_ref
template <class T_CppObject>
  template <class T_CastFrom>
inline
RefPtr<T_CppObject>::RefPtr(const RefPtr<T_CastFrom>& src)
:
  // A different RefPtr<> will not allow us access to pCppObject_.  We need
  // to add a get_underlying() for this, but that would encourage incorrect
  // use, so we use the less well-known operator->() accessor:
  pCppObject_ (src.operator->()),
  pCppRefcount_(src.refcount_())
{
  if(pCppObject_ && pCppRefcount_)
    ++(*pCppRefcount_);
}

template <class T_CppObject> inline
void RefPtr<T_CppObject>::swap(RefPtr<T_CppObject>& other)
{
  T_CppObject *const temp = pCppObject_;
  int* temp_count = pCppRefcount_; 

  pCppObject_ = other.pCppObject_;
  pCppRefcount_ = other.pCppRefcount_;

  other.pCppObject_ = temp;
  other.pCppRefcount_ = temp_count;
}

template <class T_CppObject> inline
RefPtr<T_CppObject>& RefPtr<T_CppObject>::operator=(const RefPtr<T_CppObject>& src)
{
  // In case you haven't seen the swap() technique to implement copy
  // assignment before, here's what it does:
  //
  // 1) Create a temporary RefPtr<> instance via the copy ctor, thereby
  //    increasing the reference count of the source object.
  //
  // 2) Swap the internal object pointers of *this and the temporary
  //    RefPtr<>.  After this step, *this already contains the new pointer,
  //    and the old pointer is now managed by temp.
  //
  // 3) The destructor of temp is executed, thereby unreferencing the
  //    old object pointer.
  //
  // This technique is described in Herb Sutter's "Exceptional C++", and
  // has a number of advantages over conventional approaches:
  //
  // - Code reuse by calling the copy ctor.
  // - Strong exception safety for free.
  // - Self assignment is handled implicitely.
  // - Simplicity.
  // - It just works and is hard to get wrong; i.e. you can use it without
  //   even thinking about it to implement copy assignment whereever the
  //   object data is managed indirectly via a pointer, which is very common.

  RefPtr<T_CppObject> temp (src);
  this->swap(temp);
  return *this;
}

template <class T_CppObject>
  template <class T_CastFrom>
inline
RefPtr<T_CppObject>& RefPtr<T_CppObject>::operator=(const RefPtr<T_CastFrom>& src)
{
  RefPtr<T_CppObject> temp (src);
  this->swap(temp);
  return *this;
}

template <class T_CppObject> inline
bool RefPtr<T_CppObject>::operator==(const RefPtr<T_CppObject>& src) const
{
  return (pCppObject_ == src.pCppObject_);
}

template <class T_CppObject> inline
bool RefPtr<T_CppObject>::operator!=(const RefPtr<T_CppObject>& src) const
{
  return (pCppObject_ != src.pCppObject_);
}

template <class T_CppObject> inline
RefPtr<T_CppObject>::operator bool() const
{
  return (pCppObject_ != 0);
}

template <class T_CppObject> inline
void RefPtr<T_CppObject>::clear()
{
  RefPtr<T_CppObject> temp; // swap with an empty RefPtr<> to clear *this
  this->swap(temp);
}

template <class T_CppObject>
  template <class T_CastFrom>
inline
RefPtr<T_CppObject> RefPtr<T_CppObject>::cast_dynamic(const RefPtr<T_CastFrom>& src)
{
  T_CppObject *const pCppObject = dynamic_cast<T_CppObject*>(src.operator->());

  if(pCppObject) //Check whether dynamic_cast<> succeeded so we don't pass a null object with a used refcount:
    return RefPtr<T_CppObject>(pCppObject, src.refcount_());
  else
    return RefPtr<T_CppObject>();
}

template <class T_CppObject>
  template <class T_CastFrom>
inline
RefPtr<T_CppObject> RefPtr<T_CppObject>::cast_static(const RefPtr<T_CastFrom>& src)
{
  T_CppObject *const pCppObject = static_cast<T_CppObject*>(src.operator->());

  return RefPtr<T_CppObject>(pCppObject, src.refcount_());
}

template <class T_CppObject>
  template <class T_CastFrom>
inline
RefPtr<T_CppObject> RefPtr<T_CppObject>::cast_const(const RefPtr<T_CastFrom>& src)
{
  T_CppObject *const pCppObject = const_cast<T_CppObject*>(src.operator->());

  return RefPtr<T_CppObject>(pCppObject, src.refcount_());
}

#endif /* DOXYGEN_IGNORE_THIS */

/** @relates Glib::RefPtr */
template <class T_CppObject> inline
void swap(RefPtr<T_CppObject>& lhs, RefPtr<T_CppObject>& rhs)
{
  lhs.swap(rhs);
}

} // namespace Cairo


#endif /* _cairo_REFPTR_H */

// vim: ts=2 sw=2 et