/usr/include/boost/random/poisson_distribution.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 | /* boost random/poisson_distribution.hpp header file
*
* Copyright Jens Maurer 2002
* Copyright Steven Watanabe 2010
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: poisson_distribution.hpp 71018 2011-04-05 21:27:52Z steven_watanabe $
*
*/
#ifndef BOOST_RANDOM_POISSON_DISTRIBUTION_HPP
#define BOOST_RANDOM_POISSON_DISTRIBUTION_HPP
#include <boost/config/no_tr1/cmath.hpp>
#include <cstdlib>
#include <iosfwd>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/random/uniform_01.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/disable_warnings.hpp>
namespace boost {
namespace random {
namespace detail {
template<class RealType>
struct poisson_table {
static RealType value[10];
};
template<class RealType>
RealType poisson_table<RealType>::value[10] = {
0.0,
0.0,
0.69314718055994529,
1.7917594692280550,
3.1780538303479458,
4.7874917427820458,
6.5792512120101012,
8.5251613610654147,
10.604602902745251,
12.801827480081469
};
}
/**
* An instantiation of the class template @c poisson_distribution is a
* model of \random_distribution. The poisson distribution has
* \f$p(i) = \frac{e^{-\lambda}\lambda^i}{i!}\f$
*
* This implementation is based on the PTRD algorithm described
*
* @blockquote
* "The transformed rejection method for generating Poisson random variables",
* Wolfgang Hormann, Insurance: Mathematics and Economics
* Volume 12, Issue 1, February 1993, Pages 39-45
* @endblockquote
*/
template<class IntType = int, class RealType = double>
class poisson_distribution {
public:
typedef IntType result_type;
typedef RealType input_type;
class param_type {
public:
typedef poisson_distribution distribution_type;
/**
* Construct a param_type object with the parameter "mean"
*
* Requires: mean > 0
*/
explicit param_type(RealType mean_arg = RealType(1))
: _mean(mean_arg)
{
BOOST_ASSERT(_mean > 0);
}
/* Returns the "mean" parameter of the distribution. */
RealType mean() const { return _mean; }
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
/** Writes the parameters of the distribution to a @c std::ostream. */
template<class CharT, class Traits>
friend std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os,
const param_type& parm)
{
os << parm._mean;
return os;
}
/** Reads the parameters of the distribution from a @c std::istream. */
template<class CharT, class Traits>
friend std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is, param_type& parm)
{
is >> parm._mean;
return is;
}
#endif
/** Returns true if the parameters have the same values. */
friend bool operator==(const param_type& lhs, const param_type& rhs)
{
return lhs._mean == rhs._mean;
}
/** Returns true if the parameters have different values. */
friend bool operator!=(const param_type& lhs, const param_type& rhs)
{
return !(lhs == rhs);
}
private:
RealType _mean;
};
/**
* Constructs a @c poisson_distribution with the parameter @c mean.
*
* Requires: mean > 0
*/
explicit poisson_distribution(RealType mean_arg = RealType(1))
: _mean(mean_arg)
{
BOOST_ASSERT(_mean > 0);
init();
}
/**
* Construct an @c poisson_distribution object from the
* parameters.
*/
explicit poisson_distribution(const param_type& parm)
: _mean(parm.mean())
{
init();
}
/**
* Returns a random variate distributed according to the
* poisson distribution.
*/
template<class URNG>
IntType operator()(URNG& urng) const
{
if(use_inversion()) {
return invert(urng);
} else {
return generate(urng);
}
}
/**
* Returns a random variate distributed according to the
* poisson distribution with parameters specified by param.
*/
template<class URNG>
IntType operator()(URNG& urng, const param_type& parm) const
{
return poisson_distribution(parm)(urng);
}
/** Returns the "mean" parameter of the distribution. */
RealType mean() const { return _mean; }
/** Returns the smallest value that the distribution can produce. */
IntType min BOOST_PREVENT_MACRO_SUBSTITUTION() const { return 0; }
/** Returns the largest value that the distribution can produce. */
IntType max BOOST_PREVENT_MACRO_SUBSTITUTION() const
{ return (std::numeric_limits<IntType>::max)(); }
/** Returns the parameters of the distribution. */
param_type param() const { return param_type(_mean); }
/** Sets parameters of the distribution. */
void param(const param_type& parm)
{
_mean = parm.mean();
init();
}
/**
* Effects: Subsequent uses of the distribution do not depend
* on values produced by any engine prior to invoking reset.
*/
void reset() { }
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
/** Writes the parameters of the distribution to a @c std::ostream. */
template<class CharT, class Traits>
friend std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& os,
const poisson_distribution& pd)
{
os << pd.param();
return os;
}
/** Reads the parameters of the distribution from a @c std::istream. */
template<class CharT, class Traits>
friend std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& is, poisson_distribution& pd)
{
pd.read(is);
return is;
}
#endif
/** Returns true if the two distributions will produce the same
sequence of values, given equal generators. */
friend bool operator==(const poisson_distribution& lhs,
const poisson_distribution& rhs)
{
return lhs._mean == rhs._mean;
}
/** Returns true if the two distributions could produce different
sequences of values, given equal generators. */
friend bool operator!=(const poisson_distribution& lhs,
const poisson_distribution& rhs)
{
return !(lhs == rhs);
}
private:
/// @cond show_private
template<class CharT, class Traits>
void read(std::basic_istream<CharT, Traits>& is) {
param_type parm;
if(is >> parm) {
param(parm);
}
}
bool use_inversion() const
{
return _mean < 10;
}
static RealType log_factorial(IntType k)
{
BOOST_ASSERT(k >= 0);
BOOST_ASSERT(k < 10);
return detail::poisson_table<RealType>::value[k];
}
void init()
{
using std::sqrt;
using std::exp;
if(use_inversion()) {
_exp_mean = exp(-_mean);
} else {
_ptrd.smu = sqrt(_mean);
_ptrd.b = 0.931 + 2.53 * _ptrd.smu;
_ptrd.a = -0.059 + 0.02483 * _ptrd.b;
_ptrd.inv_alpha = 1.1239 + 1.1328 / (_ptrd.b - 3.4);
_ptrd.v_r = 0.9277 - 3.6224 / (_ptrd.b - 2);
}
}
template<class URNG>
IntType generate(URNG& urng) const
{
using std::floor;
using std::abs;
using std::log;
while(true) {
RealType u;
RealType v = uniform_01<RealType>()(urng);
if(v <= 0.86 * _ptrd.v_r) {
u = v / _ptrd.v_r - 0.43;
return static_cast<IntType>(floor(
(2*_ptrd.a/(0.5-abs(u)) + _ptrd.b)*u + _mean + 0.445));
}
if(v >= _ptrd.v_r) {
u = uniform_01<RealType>()(urng) - 0.5;
} else {
u = v/_ptrd.v_r - 0.93;
u = ((u < 0)? -0.5 : 0.5) - u;
v = uniform_01<RealType>()(urng) * _ptrd.v_r;
}
RealType us = 0.5 - abs(u);
if(us < 0.013 && v > us) {
continue;
}
RealType k = floor((2*_ptrd.a/us + _ptrd.b)*u+_mean+0.445);
v = v*_ptrd.inv_alpha/(_ptrd.a/(us*us) + _ptrd.b);
RealType log_sqrt_2pi = 0.91893853320467267;
if(k >= 10) {
if(log(v*_ptrd.smu) <= (k + 0.5)*log(_mean/k)
- _mean
- log_sqrt_2pi
+ k
- (1/12. - (1/360. - 1/(1260.*k*k))/(k*k))/k) {
return static_cast<IntType>(k);
}
} else if(k >= 0) {
if(log(v) <= k*log(_mean)
- _mean
- log_factorial(static_cast<IntType>(k))) {
return static_cast<IntType>(k);
}
}
}
}
template<class URNG>
IntType invert(URNG& urng) const
{
RealType p = _exp_mean;
IntType x = 0;
RealType u = uniform_01<RealType>()(urng);
while(u > p) {
u = u - p;
++x;
p = _mean * p / x;
}
return x;
}
RealType _mean;
union {
// for ptrd
struct {
RealType v_r;
RealType a;
RealType b;
RealType smu;
RealType inv_alpha;
} _ptrd;
// for inversion
RealType _exp_mean;
};
/// @endcond
};
} // namespace random
using random::poisson_distribution;
} // namespace boost
#include <boost/random/detail/enable_warnings.hpp>
#endif // BOOST_RANDOM_POISSON_DISTRIBUTION_HPP
|