/usr/include/boost/random/mersenne_twister.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 | /* boost random/mersenne_twister.hpp header file
*
* Copyright Jens Maurer 2000-2001
* Copyright Steven Watanabe 2010
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: mersenne_twister.hpp 74867 2011-10-09 23:13:31Z steven_watanabe $
*
* Revision history
* 2001-02-18 moved to individual header files
*/
#ifndef BOOST_RANDOM_MERSENNE_TWISTER_HPP
#define BOOST_RANDOM_MERSENNE_TWISTER_HPP
#include <iosfwd>
#include <istream>
#include <stdexcept>
#include <boost/config.hpp>
#include <boost/cstdint.hpp>
#include <boost/integer/integer_mask.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/ptr_helper.hpp>
#include <boost/random/detail/seed.hpp>
#include <boost/random/detail/seed_impl.hpp>
#include <boost/random/detail/generator_seed_seq.hpp>
namespace boost {
namespace random {
/**
* Instantiations of class template mersenne_twister_engine model a
* \pseudo_random_number_generator. It uses the algorithm described in
*
* @blockquote
* "Mersenne Twister: A 623-dimensionally equidistributed uniform
* pseudo-random number generator", Makoto Matsumoto and Takuji Nishimura,
* ACM Transactions on Modeling and Computer Simulation: Special Issue on
* Uniform Random Number Generation, Vol. 8, No. 1, January 1998, pp. 3-30.
* @endblockquote
*
* @xmlnote
* The boost variant has been implemented from scratch and does not
* derive from or use mt19937.c provided on the above WWW site. However, it
* was verified that both produce identical output.
* @endxmlnote
*
* The seeding from an integer was changed in April 2005 to address a
* <a href="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html">weakness</a>.
*
* The quality of the generator crucially depends on the choice of the
* parameters. User code should employ one of the sensibly parameterized
* generators such as \mt19937 instead.
*
* The generator requires considerable amounts of memory for the storage of
* its state array. For example, \mt11213b requires about 1408 bytes and
* \mt19937 requires about 2496 bytes.
*/
template<class UIntType,
std::size_t w, std::size_t n, std::size_t m, std::size_t r,
UIntType a, std::size_t u, UIntType d, std::size_t s,
UIntType b, std::size_t t,
UIntType c, std::size_t l, UIntType f>
class mersenne_twister_engine
{
public:
typedef UIntType result_type;
BOOST_STATIC_CONSTANT(std::size_t, word_size = w);
BOOST_STATIC_CONSTANT(std::size_t, state_size = n);
BOOST_STATIC_CONSTANT(std::size_t, shift_size = m);
BOOST_STATIC_CONSTANT(std::size_t, mask_bits = r);
BOOST_STATIC_CONSTANT(UIntType, xor_mask = a);
BOOST_STATIC_CONSTANT(std::size_t, tempering_u = u);
BOOST_STATIC_CONSTANT(UIntType, tempering_d = d);
BOOST_STATIC_CONSTANT(std::size_t, tempering_s = s);
BOOST_STATIC_CONSTANT(UIntType, tempering_b = b);
BOOST_STATIC_CONSTANT(std::size_t, tempering_t = t);
BOOST_STATIC_CONSTANT(UIntType, tempering_c = c);
BOOST_STATIC_CONSTANT(std::size_t, tempering_l = l);
BOOST_STATIC_CONSTANT(UIntType, initialization_multiplier = f);
BOOST_STATIC_CONSTANT(UIntType, default_seed = 5489u);
// backwards compatibility
BOOST_STATIC_CONSTANT(UIntType, parameter_a = a);
BOOST_STATIC_CONSTANT(std::size_t, output_u = u);
BOOST_STATIC_CONSTANT(std::size_t, output_s = s);
BOOST_STATIC_CONSTANT(UIntType, output_b = b);
BOOST_STATIC_CONSTANT(std::size_t, output_t = t);
BOOST_STATIC_CONSTANT(UIntType, output_c = c);
BOOST_STATIC_CONSTANT(std::size_t, output_l = l);
// old Boost.Random concept requirements
BOOST_STATIC_CONSTANT(bool, has_fixed_range = false);
/**
* Constructs a @c mersenne_twister_engine and calls @c seed().
*/
mersenne_twister_engine() { seed(); }
/**
* Constructs a @c mersenne_twister_engine and calls @c seed(value).
*/
BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(mersenne_twister_engine,
UIntType, value)
{ seed(value); }
template<class It> mersenne_twister_engine(It& first, It last)
{ seed(first,last); }
/**
* Constructs a mersenne_twister_engine and calls @c seed(gen).
*
* @xmlnote
* The copy constructor will always be preferred over
* the templated constructor.
* @endxmlnote
*/
BOOST_RANDOM_DETAIL_SEED_SEQ_CONSTRUCTOR(mersenne_twister_engine,
SeedSeq, seq)
{ seed(seq); }
// compiler-generated copy ctor and assignment operator are fine
/** Calls @c seed(default_seed). */
void seed() { seed(default_seed); }
/**
* Sets the state x(0) to v mod 2w. Then, iteratively,
* sets x(i) to
* (i + f * (x(i-1) xor (x(i-1) rshift w-2))) mod 2<sup>w</sup>
* for i = 1 .. n-1. x(n) is the first value to be returned by operator().
*/
BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(mersenne_twister_engine, UIntType, value)
{
// New seeding algorithm from
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
// In the previous versions, MSBs of the seed affected only MSBs of the
// state x[].
const UIntType mask = (max)();
x[0] = value & mask;
for (i = 1; i < n; i++) {
// See Knuth "The Art of Computer Programming"
// Vol. 2, 3rd ed., page 106
x[i] = (f * (x[i-1] ^ (x[i-1] >> (w-2))) + i) & mask;
}
}
/**
* Seeds a mersenne_twister_engine using values produced by seq.generate().
*/
BOOST_RANDOM_DETAIL_SEED_SEQ_SEED(mersenne_twister_engine, SeeqSeq, seq)
{
detail::seed_array_int<w>(seq, x);
i = n;
// fix up the state if it's all zeroes.
if((x[0] & (~static_cast<UIntType>(0) << r)) == 0) {
for(std::size_t j = 1; j < n; ++j) {
if(x[j] != 0) return;
}
x[0] = static_cast<UIntType>(1) << (w-1);
}
}
/** Sets the state of the generator using values from an iterator range. */
template<class It>
void seed(It& first, It last)
{
detail::fill_array_int<w>(first, last, x);
i = n;
// fix up the state if it's all zeroes.
if((x[0] & (~static_cast<UIntType>(0) << r)) == 0) {
for(std::size_t j = 1; j < n; ++j) {
if(x[j] != 0) return;
}
x[0] = static_cast<UIntType>(1) << (w-1);
}
}
/** Returns the smallest value that the generator can produce. */
static result_type min BOOST_PREVENT_MACRO_SUBSTITUTION ()
{ return 0; }
/** Returns the largest value that the generator can produce. */
static result_type max BOOST_PREVENT_MACRO_SUBSTITUTION ()
{ return boost::low_bits_mask_t<w>::sig_bits; }
/** Produces the next value of the generator. */
result_type operator()();
/** Fills a range with random values */
template<class Iter>
void generate(Iter first, Iter last)
{ detail::generate_from_int(*this, first, last); }
/**
* Advances the state of the generator by @c z steps. Equivalent to
*
* @code
* for(unsigned long long i = 0; i < z; ++i) {
* gen();
* }
* @endcode
*/
void discard(boost::uintmax_t z)
{
for(boost::uintmax_t j = 0; j < z; ++j) {
(*this)();
}
}
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
/** Writes a mersenne_twister_engine to a @c std::ostream */
template<class CharT, class Traits>
friend std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& os,
const mersenne_twister_engine& mt)
{
mt.print(os);
return os;
}
/** Reads a mersenne_twister_engine from a @c std::istream */
template<class CharT, class Traits>
friend std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& is,
mersenne_twister_engine& mt)
{
for(std::size_t j = 0; j < mt.state_size; ++j)
is >> mt.x[j] >> std::ws;
// MSVC (up to 7.1) and Borland (up to 5.64) don't handle the template
// value parameter "n" available from the class template scope, so use
// the static constant with the same value
mt.i = mt.state_size;
return is;
}
#endif
/**
* Returns true if the two generators are in the same state,
* and will thus produce identical sequences.
*/
friend bool operator==(const mersenne_twister_engine& x,
const mersenne_twister_engine& y)
{
if(x.i < y.i) return x.equal_imp(y);
else return y.equal_imp(x);
}
/**
* Returns true if the two generators are in different states.
*/
friend bool operator!=(const mersenne_twister_engine& x,
const mersenne_twister_engine& y)
{ return !(x == y); }
private:
/// \cond show_private
void twist();
/**
* Does the work of operator==. This is in a member function
* for portability. Some compilers, such as msvc 7.1 and
* Sun CC 5.10 can't access template parameters or static
* members of the class from inline friend functions.
*
* requires i <= other.i
*/
bool equal_imp(const mersenne_twister_engine& other) const
{
UIntType back[n];
std::size_t offset = other.i - i;
for(std::size_t j = 0; j + offset < n; ++j)
if(x[j] != other.x[j+offset])
return false;
rewind(&back[n-1], offset);
for(std::size_t j = 0; j < offset; ++j)
if(back[j + n - offset] != other.x[j])
return false;
return true;
}
/**
* Does the work of operator<<. This is in a member function
* for portability.
*/
template<class CharT, class Traits>
void print(std::basic_ostream<CharT, Traits>& os) const
{
UIntType data[n];
for(std::size_t j = 0; j < i; ++j) {
data[j + n - i] = x[j];
}
if(i != n) {
rewind(&data[n - i - 1], n - i);
}
os << data[0];
for(std::size_t j = 1; j < n; ++j) {
os << ' ' << data[j];
}
}
/**
* Copies z elements of the state preceding x[0] into
* the array whose last element is last.
*/
void rewind(UIntType* last, std::size_t z) const
{
const UIntType upper_mask = (~static_cast<UIntType>(0)) << r;
const UIntType lower_mask = ~upper_mask;
UIntType y0 = x[m-1] ^ x[n-1];
if(y0 & (static_cast<UIntType>(1) << (w-1))) {
y0 = ((y0 ^ a) << 1) | 1;
} else {
y0 = y0 << 1;
}
for(std::size_t sz = 0; sz < z; ++sz) {
UIntType y1 =
rewind_find(last, sz, m-1) ^ rewind_find(last, sz, n-1);
if(y1 & (static_cast<UIntType>(1) << (w-1))) {
y1 = ((y1 ^ a) << 1) | 1;
} else {
y1 = y1 << 1;
}
*(last - sz) = (y0 & upper_mask) | (y1 & lower_mask);
y0 = y1;
}
}
/**
* Given a pointer to the last element of the rewind array,
* and the current size of the rewind array, finds an element
* relative to the next available slot in the rewind array.
*/
UIntType
rewind_find(UIntType* last, std::size_t size, std::size_t j) const
{
std::size_t index = (j + n - size + n - 1) % n;
if(index < n - size) {
return x[index];
} else {
return *(last - (n - 1 - index));
}
}
/// \endcond
// state representation: next output is o(x(i))
// x[0] ... x[k] x[k+1] ... x[n-1] represents
// x(i-k) ... x(i) x(i+1) ... x(i-k+n-1)
UIntType x[n];
std::size_t i;
};
/// \cond show_private
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
// A definition is required even for integral static constants
#define BOOST_RANDOM_MT_DEFINE_CONSTANT(type, name) \
template<class UIntType, std::size_t w, std::size_t n, std::size_t m, \
std::size_t r, UIntType a, std::size_t u, UIntType d, std::size_t s, \
UIntType b, std::size_t t, UIntType c, std::size_t l, UIntType f> \
const type mersenne_twister_engine<UIntType,w,n,m,r,a,u,d,s,b,t,c,l,f>::name
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, word_size);
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, state_size);
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, shift_size);
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, mask_bits);
BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, xor_mask);
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, tempering_u);
BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, tempering_d);
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, tempering_s);
BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, tempering_b);
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, tempering_t);
BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, tempering_c);
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, tempering_l);
BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, initialization_multiplier);
BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, default_seed);
BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, parameter_a);
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, output_u );
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, output_s);
BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, output_b);
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, output_t);
BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, output_c);
BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, output_l);
BOOST_RANDOM_MT_DEFINE_CONSTANT(bool, has_fixed_range);
#undef BOOST_RANDOM_MT_DEFINE_CONSTANT
#endif
template<class UIntType,
std::size_t w, std::size_t n, std::size_t m, std::size_t r,
UIntType a, std::size_t u, UIntType d, std::size_t s,
UIntType b, std::size_t t,
UIntType c, std::size_t l, UIntType f>
void
mersenne_twister_engine<UIntType,w,n,m,r,a,u,d,s,b,t,c,l,f>::twist()
{
const UIntType upper_mask = (~static_cast<UIntType>(0)) << r;
const UIntType lower_mask = ~upper_mask;
const std::size_t unroll_factor = 6;
const std::size_t unroll_extra1 = (n-m) % unroll_factor;
const std::size_t unroll_extra2 = (m-1) % unroll_factor;
// split loop to avoid costly modulo operations
{ // extra scope for MSVC brokenness w.r.t. for scope
for(std::size_t j = 0; j < n-m-unroll_extra1; j++) {
UIntType y = (x[j] & upper_mask) | (x[j+1] & lower_mask);
x[j] = x[j+m] ^ (y >> 1) ^ ((x[j+1]&1) * a);
}
}
{
for(std::size_t j = n-m-unroll_extra1; j < n-m; j++) {
UIntType y = (x[j] & upper_mask) | (x[j+1] & lower_mask);
x[j] = x[j+m] ^ (y >> 1) ^ ((x[j+1]&1) * a);
}
}
{
for(std::size_t j = n-m; j < n-1-unroll_extra2; j++) {
UIntType y = (x[j] & upper_mask) | (x[j+1] & lower_mask);
x[j] = x[j-(n-m)] ^ (y >> 1) ^ ((x[j+1]&1) * a);
}
}
{
for(std::size_t j = n-1-unroll_extra2; j < n-1; j++) {
UIntType y = (x[j] & upper_mask) | (x[j+1] & lower_mask);
x[j] = x[j-(n-m)] ^ (y >> 1) ^ ((x[j+1]&1) * a);
}
}
// last iteration
UIntType y = (x[n-1] & upper_mask) | (x[0] & lower_mask);
x[n-1] = x[m-1] ^ (y >> 1) ^ ((x[0]&1) * a);
i = 0;
}
/// \endcond
template<class UIntType,
std::size_t w, std::size_t n, std::size_t m, std::size_t r,
UIntType a, std::size_t u, UIntType d, std::size_t s,
UIntType b, std::size_t t,
UIntType c, std::size_t l, UIntType f>
inline typename
mersenne_twister_engine<UIntType,w,n,m,r,a,u,d,s,b,t,c,l,f>::result_type
mersenne_twister_engine<UIntType,w,n,m,r,a,u,d,s,b,t,c,l,f>::operator()()
{
if(i == n)
twist();
// Step 4
UIntType z = x[i];
++i;
z ^= ((z >> u) & d);
z ^= ((z << s) & b);
z ^= ((z << t) & c);
z ^= (z >> l);
return z;
}
/**
* The specializations \mt11213b and \mt19937 are from
*
* @blockquote
* "Mersenne Twister: A 623-dimensionally equidistributed
* uniform pseudo-random number generator", Makoto Matsumoto
* and Takuji Nishimura, ACM Transactions on Modeling and
* Computer Simulation: Special Issue on Uniform Random Number
* Generation, Vol. 8, No. 1, January 1998, pp. 3-30.
* @endblockquote
*/
typedef mersenne_twister_engine<uint32_t,32,351,175,19,0xccab8ee7,
11,0xffffffff,7,0x31b6ab00,15,0xffe50000,17,1812433253> mt11213b;
/**
* The specializations \mt11213b and \mt19937 are from
*
* @blockquote
* "Mersenne Twister: A 623-dimensionally equidistributed
* uniform pseudo-random number generator", Makoto Matsumoto
* and Takuji Nishimura, ACM Transactions on Modeling and
* Computer Simulation: Special Issue on Uniform Random Number
* Generation, Vol. 8, No. 1, January 1998, pp. 3-30.
* @endblockquote
*/
typedef mersenne_twister_engine<uint32_t,32,624,397,31,0x9908b0df,
11,0xffffffff,7,0x9d2c5680,15,0xefc60000,18,1812433253> mt19937;
#if !defined(BOOST_NO_INT64_T) && !defined(BOOST_NO_INTEGRAL_INT64_T)
typedef mersenne_twister_engine<uint64_t,64,312,156,31,
UINT64_C(0xb5026f5aa96619e9),29,UINT64_C(0x5555555555555555),17,
UINT64_C(0x71d67fffeda60000),37,UINT64_C(0xfff7eee000000000),43,
UINT64_C(6364136223846793005)> mt19937_64;
#endif
/// \cond show_deprecated
template<class UIntType,
int w, int n, int m, int r,
UIntType a, int u, std::size_t s,
UIntType b, int t,
UIntType c, int l, UIntType v>
class mersenne_twister :
public mersenne_twister_engine<UIntType,
w, n, m, r, a, u, ~(UIntType)0, s, b, t, c, l, 1812433253>
{
typedef mersenne_twister_engine<UIntType,
w, n, m, r, a, u, ~(UIntType)0, s, b, t, c, l, 1812433253> base_type;
public:
mersenne_twister() {}
BOOST_RANDOM_DETAIL_GENERATOR_CONSTRUCTOR(mersenne_twister, Gen, gen)
{ seed(gen); }
BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(mersenne_twister, UIntType, val)
{ seed(val); }
template<class It>
mersenne_twister(It& first, It last) : base_type(first, last) {}
void seed() { base_type::seed(); }
BOOST_RANDOM_DETAIL_GENERATOR_SEED(mersenne_twister, Gen, gen)
{
detail::generator_seed_seq<Gen> seq(gen);
base_type::seed(seq);
}
BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(mersenne_twister, UIntType, val)
{ base_type::seed(val); }
template<class It>
void seed(It& first, It last) { base_type::seed(first, last); }
};
/// \endcond
} // namespace random
using random::mt11213b;
using random::mt19937;
using random::mt19937_64;
} // namespace boost
BOOST_RANDOM_PTR_HELPER_SPEC(boost::mt11213b)
BOOST_RANDOM_PTR_HELPER_SPEC(boost::mt19937)
BOOST_RANDOM_PTR_HELPER_SPEC(boost::mt19937_64)
#endif // BOOST_RANDOM_MERSENNE_TWISTER_HPP
|