This file is indexed.

/usr/include/boost/random/cauchy_distribution.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/* boost random/cauchy_distribution.hpp header file
 *
 * Copyright Jens Maurer 2000-2001
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org for most recent version including documentation.
 *
 * $Id: cauchy_distribution.hpp 71018 2011-04-05 21:27:52Z steven_watanabe $
 *
 * Revision history
 *  2001-02-18  moved to individual header files
 */

#ifndef BOOST_RANDOM_CAUCHY_DISTRIBUTION_HPP
#define BOOST_RANDOM_CAUCHY_DISTRIBUTION_HPP

#include <boost/config/no_tr1/cmath.hpp>
#include <iosfwd>
#include <istream>
#include <boost/limits.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/operators.hpp>
#include <boost/random/uniform_01.hpp>

namespace boost {
namespace random {

// Cauchy distribution: 

/**
 * The cauchy distribution is a continuous distribution with two
 * parameters, median and sigma.
 *
 * It has \f$\displaystyle p(x) = \frac{\sigma}{\pi(\sigma^2 + (x-m)^2)}\f$
 */
template<class RealType = double>
class cauchy_distribution
{
public:
    typedef RealType input_type;
    typedef RealType result_type;

    class param_type
    {
    public:

        typedef cauchy_distribution distribution_type;

        /** Constructs the parameters of the cauchy distribution. */
        explicit param_type(RealType median_arg = RealType(0.0),
                            RealType sigma_arg = RealType(1.0))
          : _median(median_arg), _sigma(sigma_arg) {}

        // backwards compatibility for Boost.Random

        /** Returns the median of the distribution. */
        RealType median() const { return _median; }
        /** Returns the sigma parameter of the distribution. */
        RealType sigma() const { return _sigma; }

        // The new names in C++0x.

        /** Returns the median of the distribution. */
        RealType a() const { return _median; }
        /** Returns the sigma parameter of the distribution. */
        RealType b() const { return _sigma; }

        /** Writes the parameters to a std::ostream. */
        BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
        {
            os << parm._median << " " << parm._sigma;
            return os;
        }

        /** Reads the parameters from a std::istream. */
        BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
        {
            is >> parm._median >> std::ws >> parm._sigma;
            return is;
        }

        /** Returns true if the two sets of parameters are equal. */
        BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
        { return lhs._median == rhs._median && lhs._sigma == rhs._sigma; }

        /** Returns true if the two sets of parameters are different. */
        BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)

    private:
        RealType _median;
        RealType _sigma;
    };

    /**
     * Constructs a \cauchy_distribution with the paramters @c median
     * and @c sigma.
     */
    explicit cauchy_distribution(RealType median_arg = RealType(0.0), 
                                 RealType sigma_arg = RealType(1.0))
      : _median(median_arg), _sigma(sigma_arg) { }
    
    /**
     * Constructs a \cauchy_distribution from it's parameters.
     */
    explicit cauchy_distribution(const param_type& parm)
      : _median(parm.median()), _sigma(parm.sigma()) { }

    // compiler-generated copy ctor and assignment operator are fine

    // backwards compatibility for Boost.Random

    /** Returns: the "median" parameter of the distribution */
    RealType median() const { return _median; }
    /** Returns: the "sigma" parameter of the distribution */
    RealType sigma() const { return _sigma; }
    
    // The new names in C++0x

    /** Returns: the "median" parameter of the distribution */
    RealType a() const { return _median; }
    /** Returns: the "sigma" parameter of the distribution */
    RealType b() const { return _sigma; }

    /** Returns the smallest value that the distribution can produce. */
    RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const
    { return -(std::numeric_limits<RealType>::infinity)(); }

    /** Returns the largest value that the distribution can produce. */
    RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const
    { return (std::numeric_limits<RealType>::infinity)(); }

    param_type param() const { return param_type(_median, _sigma); }

    void param(const param_type& parm)
    {
        _median = parm.median();
        _sigma = parm.sigma();
    }

    /**
     * Effects: Subsequent uses of the distribution do not depend
     * on values produced by any engine prior to invoking reset.
     */
    void reset() { }

    /**
     * Returns: A random variate distributed according to the
     * cauchy distribution.
     */
    template<class Engine>
    result_type operator()(Engine& eng)
    {
        // Can we have a boost::mathconst please?
        const result_type pi = result_type(3.14159265358979323846);
        using std::tan;
        RealType val = uniform_01<RealType>()(eng)-result_type(0.5);
        return _median + _sigma * tan(pi*val);
    }

    /**
     * Returns: A random variate distributed according to the
     * cauchy distribution with parameters specified by param.
     */
    template<class Engine>
    result_type operator()(Engine& eng, const param_type& parm)
    {
        return cauchy_distribution(parm)(eng);
    }

    /**
     * Writes the distribution to a @c std::ostream.
     */
    BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, cauchy_distribution, cd)
    {
        os << cd._median << " " << cd._sigma;
        return os;
    }

    /**
     * Reads the distribution from a @c std::istream.
     */
    BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, cauchy_distribution, cd)
    {
        is >> cd._median >> std::ws >> cd._sigma;
        return is;
    }

    /**
     * Returns true if the two distributions will produce
     * identical sequences of values, given equal generators.
     */
    BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(cauchy_distribution, lhs, rhs)
    { return lhs._median == rhs._median && lhs._sigma == rhs._sigma; }

    /**
     * Returns true if the two distributions may produce
     * different sequences of values, given equal generators.
     */
    BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(cauchy_distribution)

private:
    RealType _median;
    RealType _sigma;
};

} // namespace random

using random::cauchy_distribution;

} // namespace boost

#endif // BOOST_RANDOM_CAUCHY_DISTRIBUTION_HPP