This file is indexed.

/usr/include/boost/random/binomial_distribution.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/* boost random/binomial_distribution.hpp header file
 *
 * Copyright Steven Watanabe 2010
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org for most recent version including documentation.
 *
 * $Id: binomial_distribution.hpp 71018 2011-04-05 21:27:52Z steven_watanabe $
 */

#ifndef BOOST_RANDOM_BINOMIAL_DISTRIBUTION_HPP_INCLUDED
#define BOOST_RANDOM_BINOMIAL_DISTRIBUTION_HPP_INCLUDED

#include <boost/config/no_tr1/cmath.hpp>
#include <cstdlib>
#include <iosfwd>

#include <boost/random/detail/config.hpp>
#include <boost/random/uniform_01.hpp>

#include <boost/random/detail/disable_warnings.hpp>

namespace boost {
namespace random {

namespace detail {

template<class RealType>
struct binomial_table {
    static const RealType table[10];
};

template<class RealType>
const RealType binomial_table<RealType>::table[10] = {
    0.08106146679532726,
    0.04134069595540929,
    0.02767792568499834,
    0.02079067210376509,
    0.01664469118982119,
    0.01387612882307075,
    0.01189670994589177,
    0.01041126526197209,
    0.009255462182712733,
    0.008330563433362871
};

}

/**
 * The binomial distribution is an integer valued distribution with
 * two parameters, @c t and @c p.  The values of the distribution
 * are within the range [0,t].
 *
 * The distribution function is
 * \f$\displaystyle P(k) = {t \choose k}p^k(1-p)^{t-k}\f$.
 *
 * The algorithm used is the BTRD algorithm described in
 *
 *  @blockquote
 *  "The generation of binomial random variates", Wolfgang Hormann,
 *  Journal of Statistical Computation and Simulation, Volume 46,
 *  Issue 1 & 2 April 1993 , pages 101 - 110
 *  @endblockquote
 */
template<class IntType = int, class RealType = double>
class binomial_distribution {
public:
    typedef IntType result_type;
    typedef RealType input_type;

    class param_type {
    public:
        typedef binomial_distribution distribution_type;
        /**
         * Construct a param_type object.  @c t and @c p
         * are the parameters of the distribution.
         *
         * Requires: t >=0 && 0 <= p <= 1
         */
        explicit param_type(IntType t_arg = 1, RealType p_arg = RealType (0.5))
          : _t(t_arg), _p(p_arg)
        {}
        /** Returns the @c t parameter of the distribution. */
        IntType t() const { return _t; }
        /** Returns the @c p parameter of the distribution. */
        RealType p() const { return _p; }
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
        /** Writes the parameters of the distribution to a @c std::ostream. */
        template<class CharT, class Traits>
        friend std::basic_ostream<CharT,Traits>&
        operator<<(std::basic_ostream<CharT,Traits>& os,
                   const param_type& parm)
        {
            os << parm._p << " " << parm._t;
            return os;
        }
    
        /** Reads the parameters of the distribution from a @c std::istream. */
        template<class CharT, class Traits>
        friend std::basic_istream<CharT,Traits>&
        operator>>(std::basic_istream<CharT,Traits>& is, param_type& parm)
        {
            is >> parm._p >> std::ws >> parm._t;
            return is;
        }
#endif
        /** Returns true if the parameters have the same values. */
        friend bool operator==(const param_type& lhs, const param_type& rhs)
        {
            return lhs._t == rhs._t && lhs._p == rhs._p;
        }
        /** Returns true if the parameters have different values. */
        friend bool operator!=(const param_type& lhs, const param_type& rhs)
        {
            return !(lhs == rhs);
        }
    private:
        IntType _t;
        RealType _p;
    };
    
    /**
     * Construct a @c binomial_distribution object. @c t and @c p
     * are the parameters of the distribution.
     *
     * Requires: t >=0 && 0 <= p <= 1
     */
    explicit binomial_distribution(IntType t_arg = 1,
                                   RealType p_arg = RealType(0.5))
      : _t(t_arg), _p(p_arg)
    {
        init();
    }
    
    /**
     * Construct an @c binomial_distribution object from the
     * parameters.
     */
    explicit binomial_distribution(const param_type& parm)
      : _t(parm.t()), _p(parm.p())
    {
        init();
    }
    
    /**
     * Returns a random variate distributed according to the
     * binomial distribution.
     */
    template<class URNG>
    IntType operator()(URNG& urng) const
    {
        if(use_inversion()) {
            if(0.5 < _p) {
                return _t - invert(_t, 1-_p, urng);
            } else {
                return invert(_t, _p, urng);
            }
        } else if(0.5 < _p) {
            return _t - generate(urng);
        } else {
            return generate(urng);
        }
    }
    
    /**
     * Returns a random variate distributed according to the
     * binomial distribution with parameters specified by @c param.
     */
    template<class URNG>
    IntType operator()(URNG& urng, const param_type& parm) const
    {
        return binomial_distribution(parm)(urng);
    }

    /** Returns the @c t parameter of the distribution. */
    IntType t() const { return _t; }
    /** Returns the @c p parameter of the distribution. */
    RealType p() const { return _p; }

    /** Returns the smallest value that the distribution can produce. */
    IntType min BOOST_PREVENT_MACRO_SUBSTITUTION() const { return 0; }
    /** Returns the largest value that the distribution can produce. */
    IntType max BOOST_PREVENT_MACRO_SUBSTITUTION() const { return _t; }

    /** Returns the parameters of the distribution. */
    param_type param() const { return param_type(_t, _p); }
    /** Sets parameters of the distribution. */
    void param(const param_type& parm)
    {
        _t = parm.t();
        _p = parm.p();
        init();
    }

    /**
     * Effects: Subsequent uses of the distribution do not depend
     * on values produced by any engine prior to invoking reset.
     */
    void reset() { }

#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
    /** Writes the parameters of the distribution to a @c std::ostream. */
    template<class CharT, class Traits>
    friend std::basic_ostream<CharT,Traits>&
    operator<<(std::basic_ostream<CharT,Traits>& os,
               const binomial_distribution& bd)
    {
        os << bd.param();
        return os;
    }
    
    /** Reads the parameters of the distribution from a @c std::istream. */
    template<class CharT, class Traits>
    friend std::basic_istream<CharT,Traits>&
    operator>>(std::basic_istream<CharT,Traits>& is, binomial_distribution& bd)
    {
        bd.read(is);
        return is;
    }
#endif

    /** Returns true if the two distributions will produce the same
        sequence of values, given equal generators. */
    friend bool operator==(const binomial_distribution& lhs,
                           const binomial_distribution& rhs)
    {
        return lhs._t == rhs._t && lhs._p == rhs._p;
    }
    /** Returns true if the two distributions could produce different
        sequences of values, given equal generators. */
    friend bool operator!=(const binomial_distribution& lhs,
                           const binomial_distribution& rhs)
    {
        return !(lhs == rhs);
    }

private:

    /// @cond show_private

    template<class CharT, class Traits>
    void read(std::basic_istream<CharT, Traits>& is) {
        param_type parm;
        if(is >> parm) {
            param(parm);
        }
    }

    bool use_inversion() const
    {
        // BTRD is safe when np >= 10
        return m < 11;
    }

    // computes the correction factor for the Stirling approximation
    // for log(k!)
    static RealType fc(IntType k)
    {
        if(k < 10) return detail::binomial_table<RealType>::table[k];
        else {
            RealType ikp1 = RealType(1) / (k + 1);
            return (RealType(1)/12
                 - (RealType(1)/360
                 - (RealType(1)/1260)*(ikp1*ikp1))*(ikp1*ikp1))*ikp1;
        }
    }

    void init()
    {
        using std::sqrt;
        using std::pow;

        RealType p = (0.5 < _p)? (1 - _p) : _p;
        IntType t = _t;
        
        m = static_cast<IntType>((t+1)*p);

        if(use_inversion()) {
            q_n = pow((1 - p), static_cast<RealType>(t));
        } else {
            btrd.r = p/(1-p);
            btrd.nr = (t+1)*btrd.r;
            btrd.npq = t*p*(1-p);
            RealType sqrt_npq = sqrt(btrd.npq);
            btrd.b = 1.15 + 2.53 * sqrt_npq;
            btrd.a = -0.0873 + 0.0248*btrd.b + 0.01*p;
            btrd.c = t*p + 0.5;
            btrd.alpha = (2.83 + 5.1/btrd.b) * sqrt_npq;
            btrd.v_r = 0.92 - 4.2/btrd.b;
            btrd.u_rv_r = 0.86*btrd.v_r;
        }
    }

    template<class URNG>
    result_type generate(URNG& urng) const
    {
        using std::floor;
        using std::abs;
        using std::log;

        while(true) {
            RealType u;
            RealType v = uniform_01<RealType>()(urng);
            if(v <= btrd.u_rv_r) {
                RealType u = v/btrd.v_r - 0.43;
                return static_cast<IntType>(floor(
                    (2*btrd.a/(0.5 - abs(u)) + btrd.b)*u + btrd.c));
            }

            if(v >= btrd.v_r) {
                u = uniform_01<RealType>()(urng) - 0.5;
            } else {
                u = v/btrd.v_r - 0.93;
                u = ((u < 0)? -0.5 : 0.5) - u;
                v = uniform_01<RealType>()(urng) * btrd.v_r;
            }

            RealType us = 0.5 - abs(u);
            IntType k = static_cast<IntType>(floor((2*btrd.a/us + btrd.b)*u + btrd.c));
            if(k < 0 || k > _t) continue;
            v = v*btrd.alpha/(btrd.a/(us*us) + btrd.b);
            RealType km = abs(k - m);
            if(km <= 15) {
                RealType f = 1;
                if(m < k) {
                    IntType i = m;
                    do {
                        ++i;
                        f = f*(btrd.nr/i - btrd.r);
                    } while(i != k);
                } else if(m > k) {
                    IntType i = k;
                    do {
                        ++i;
                        v = v*(btrd.nr/i - btrd.r);
                    } while(i != m);
                }
                if(v <= f) return k;
                else continue;
            } else {
                // final acceptance/rejection
                v = log(v);
                RealType rho =
                    (km/btrd.npq)*(((km/3. + 0.625)*km + 1./6)/btrd.npq + 0.5);
                RealType t = -km*km/(2*btrd.npq);
                if(v < t - rho) return k;
                if(v > t + rho) continue;

                IntType nm = _t - m + 1;
                RealType h = (m + 0.5)*log((m + 1)/(btrd.r*nm))
                           + fc(m) + fc(_t - m);

                IntType nk = _t - k + 1;
                if(v <= h + (_t+1)*log(static_cast<RealType>(nm)/nk)
                          + (k + 0.5)*log(nk*btrd.r/(k+1))
                          - fc(k)
                          - fc(_t - k))
                {
                    return k;
                } else {
                    continue;
                }
            }
        }
    }

    template<class URNG>
    IntType invert(IntType t, RealType p, URNG& urng) const
    {
        RealType q = 1 - p;
        RealType s = p / q;
        RealType a = (t + 1) * s;
        RealType r = q_n;
        RealType u = uniform_01<RealType>()(urng);
        IntType x = 0;
        while(u > r) {
            u = u - r;
            ++x;
            r = ((a/x) - s) * r;
        }
        return x;
    }

    // parameters
    IntType _t;
    RealType _p;

    // common data
    IntType m;

    union {
        // for btrd
        struct {
            RealType r;
            RealType nr;
            RealType npq;
            RealType b;
            RealType a;
            RealType c;
            RealType alpha;
            RealType v_r;
            RealType u_rv_r;
        } btrd;
        // for inversion
        RealType q_n;
    };

    /// @endcond
};

}

// backwards compatibility
using random::binomial_distribution;

}

#include <boost/random/detail/enable_warnings.hpp>

#endif