This file is indexed.

/usr/include/boost/pool/pool.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
// Copyright (C) 2000, 2001 Stephen Cleary
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org for updates, documentation, and revision history.

#ifndef BOOST_POOL_HPP
#define BOOST_POOL_HPP

#include <boost/config.hpp>  // for workarounds

// std::less, std::less_equal, std::greater
#include <functional>
// new[], delete[], std::nothrow
#include <new>
// std::size_t, std::ptrdiff_t
#include <cstddef>
// std::malloc, std::free
#include <cstdlib>
// std::invalid_argument
#include <exception>
// std::max
#include <algorithm>

#include <boost/pool/poolfwd.hpp>

// boost::math::static_lcm
#include <boost/math/common_factor_ct.hpp>
// boost::simple_segregated_storage
#include <boost/pool/simple_segregated_storage.hpp>
// boost::alignment_of
#include <boost/type_traits/alignment_of.hpp>
// BOOST_ASSERT
#include <boost/assert.hpp>

#ifdef BOOST_POOL_INSTRUMENT
#include <iostream>
#include<iomanip>
#endif
#ifdef BOOST_POOL_VALGRIND
#include <set>
#include <valgrind/memcheck.h>
#endif

#ifdef BOOST_NO_STDC_NAMESPACE
 namespace std { using ::malloc; using ::free; }
#endif

// There are a few places in this file where the expression "this->m" is used.
// This expression is used to force instantiation-time name lookup, which I am
//   informed is required for strict Standard compliance.  It's only necessary
//   if "m" is a member of a base class that is dependent on a template
//   parameter.
// Thanks to Jens Maurer for pointing this out!

/*!
  \file
  \brief Provides class \ref pool: a fast memory allocator that guarantees proper alignment of all allocated chunks,
  and which extends and generalizes the framework provided by the simple segregated storage solution.
  Also provides two UserAllocator classes which can be used in conjuction with \ref pool.
*/

/*!
  \mainpage Boost.Pool Memory Allocation Scheme

  \section intro_sec Introduction

   Pool allocation is a memory allocation scheme that is very fast, but limited in its usage.

   This Doxygen-style documentation is complementary to the
   full Quickbook-generated html and pdf documentation at www.boost.org.

  This page generated from file pool.hpp.

*/

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4127)  // Conditional expression is constant
#endif

 namespace boost
{

//! \brief Allocator used as the default template parameter for 
//! a <a href="boost_pool/pool/pooling.html#boost_pool.pool.pooling.user_allocator">UserAllocator</a>
//! template parameter.  Uses new and delete.
struct default_user_allocator_new_delete
{
  typedef std::size_t size_type; //!< An unsigned integral type that can represent the size of the largest object to be allocated.
  typedef std::ptrdiff_t difference_type; //!< A signed integral type that can represent the difference of any two pointers.

  static char * malloc BOOST_PREVENT_MACRO_SUBSTITUTION(const size_type bytes)
  { //! Attempts to allocate n bytes from the system. Returns 0 if out-of-memory
    return new (std::nothrow) char[bytes];
  }
  static void free BOOST_PREVENT_MACRO_SUBSTITUTION(char * const block)
  { //! Attempts to de-allocate block.
    //! \pre Block must have been previously returned from a call to UserAllocator::malloc.
    delete [] block;
  }
};

//! \brief <a href="boost_pool/pool/pooling.html#boost_pool.pool.pooling.user_allocator">UserAllocator</a>
//! used as template parameter for \ref pool and \ref object_pool.
//! Uses malloc and free internally.
struct default_user_allocator_malloc_free
{
  typedef std::size_t size_type; //!< An unsigned integral type that can represent the size of the largest object to be allocated.
  typedef std::ptrdiff_t difference_type; //!< A signed integral type that can represent the difference of any two pointers.

  static char * malloc BOOST_PREVENT_MACRO_SUBSTITUTION(const size_type bytes)
  { return static_cast<char *>((std::malloc)(bytes)); }
  static void free BOOST_PREVENT_MACRO_SUBSTITUTION(char * const block)
  { (std::free)(block); }
};

namespace details
{  //! Implemention only.

template <typename SizeType>
class PODptr
{ //! PODptr is a class that pretends to be a "pointer" to different class types
  //!  that don't really exist.  It provides member functions to access the "data"
  //!  of the "object" it points to.  Since these "class" types are of variable
  //!  size, and contains some information at the *end* of its memory
  //!  (for alignment reasons),
  //! PODptr must contain the size of this "class" as well as the pointer to this "object".

  /*! \details A PODptr holds the location and size of a memory block allocated from the system. 
  Each memory block is split logically into three sections:

  <b>Chunk area</b>. This section may be different sizes. PODptr does not care what the size of the chunks is, 
  but it does care (and keep track of) the total size of the chunk area.

  <b>Next pointer</b>. This section is always the same size for a given SizeType. It holds a pointer 
  to the location of the next memory block in the memory block list, or 0 if there is no such block.

  <b>Next size</b>. This section is always the same size for a given SizeType. It holds the size of the 
  next memory block in the memory block list.

The PODptr class just provides cleaner ways of dealing with raw memory blocks.

A PODptr object is either valid or invalid. An invalid PODptr is analogous to a null pointer.
The default constructor for PODptr will result in an invalid object.
Calling the member function invalidate will result in that object becoming invalid.
The member function valid can be used to test for validity.
*/
  public:
    typedef SizeType size_type;

  private:
    char * ptr;
    size_type sz;

    char * ptr_next_size() const
    {
      return (ptr + sz - sizeof(size_type));
    }
    char * ptr_next_ptr() const
    {
      return (ptr_next_size() -
          math::static_lcm<sizeof(size_type), sizeof(void *)>::value);
    }

  public:
    PODptr(char * const nptr, const size_type nsize)
    :ptr(nptr), sz(nsize)
    {
      //! A PODptr may be created to point to a memory block by passing
      //! the address and size of that memory block into the constructor.
      //! A PODptr constructed in this way is valid.
    }
    PODptr()
    :  ptr(0), sz(0)
    { //! default constructor for PODptr will result in an invalid object.
    }

    bool valid() const
    { //! A PODptr object is either valid or invalid.
      //! An invalid PODptr is analogous to a null pointer.
      //! \returns true if PODptr is valid, false if invalid.
      return (begin() != 0);
    }
    void invalidate()
    { //! Make object invalid.
      begin() = 0;
    }
    char * & begin()
    { //! Each PODptr keeps the address and size of its memory block.
      //! \returns The address of its memory block.
      return ptr;
  }
    char * begin() const
    { //! Each PODptr keeps the address and size of its memory block.
      //! \return The address of its memory block.
      return ptr;
    }
    char * end() const
    { //! \returns begin() plus element_size (a 'past the end' value).
      return ptr_next_ptr();
    }
    size_type total_size() const
    { //! Each PODptr keeps the address and size of its memory block.
      //! The address may be read or written by the member functions begin.
      //! The size of the memory block may only be read,
      //! \returns size of the memory block.
      return sz;
    }
    size_type element_size() const
    { //! \returns size of element pointer area.
      return static_cast<size_type>(sz - sizeof(size_type) -
          math::static_lcm<sizeof(size_type), sizeof(void *)>::value);
    }

    size_type & next_size() const
    { //!
      //! \returns next_size.
      return *(static_cast<size_type *>(static_cast<void*>((ptr_next_size()))));
    }
    char * & next_ptr() const
    {  //! \returns pointer to next pointer area.
      return *(static_cast<char **>(static_cast<void*>(ptr_next_ptr())));
    }

    PODptr next() const
    { //! \returns next PODptr.
      return PODptr<size_type>(next_ptr(), next_size());
    }
    void next(const PODptr & arg) const
    { //! Sets next PODptr.
      next_ptr() = arg.begin();
      next_size() = arg.total_size();
    }
}; // class PODptr
} // namespace details

#ifndef BOOST_POOL_VALGRIND
/*!
  \brief A fast memory allocator that guarantees proper alignment of all allocated chunks.

  \details Whenever an object of type pool needs memory from the system,
  it will request it from its UserAllocator template parameter.
  The amount requested is determined using a doubling algorithm;
  that is, each time more system memory is allocated,
  the amount of system memory requested is doubled.

  Users may control the doubling algorithm by using the following extensions:

  Users may pass an additional constructor parameter to pool.
  This parameter is of type size_type,
  and is the number of chunks to request from the system
  the first time that object needs to allocate system memory.
  The default is 32. This parameter may not be 0.

  Users may also pass an optional third parameter to pool's
  constructor.  This parameter is of type size_type,
  and sets a maximum size for allocated chunks.  When this
  parameter takes the default value of 0, then there is no upper
  limit on chunk size.

  Finally, if the doubling algorithm results in no memory
  being allocated, the pool will backtrack just once, halving
  the chunk size and trying again.

  <b>UserAllocator type</b> - the method that the Pool will use to allocate memory from the system.

  There are essentially two ways to use class pool: the client can call \ref malloc() and \ref free() to allocate
  and free single chunks of memory, this is the most efficient way to use a pool, but does not allow for
  the efficient allocation of arrays of chunks.  Alternatively, the client may call \ref ordered_malloc() and \ref
  ordered_free(), in which case the free list is maintained in an ordered state, and efficient allocation of arrays
  of chunks are possible.  However, this latter option can suffer from poor performance when large numbers of
  allocations are performed.

*/
template <typename UserAllocator>
class pool: protected simple_segregated_storage < typename UserAllocator::size_type >
{
  public:
    typedef UserAllocator user_allocator; //!< User allocator.
    typedef typename UserAllocator::size_type size_type;  //!< An unsigned integral type that can represent the size of the largest object to be allocated.
    typedef typename UserAllocator::difference_type difference_type;  //!< A signed integral type that can represent the difference of any two pointers.

  private:
    BOOST_STATIC_CONSTANT(size_type, min_alloc_size =
        (::boost::math::static_lcm<sizeof(void *), sizeof(size_type)>::value) );
    BOOST_STATIC_CONSTANT(size_type, min_align =
        (::boost::math::static_lcm< ::boost::alignment_of<void *>::value, ::boost::alignment_of<size_type>::value>::value) );

    //! \returns 0 if out-of-memory.
    //! Called if malloc/ordered_malloc needs to resize the free list.
    void * malloc_need_resize(); //! Called if malloc needs to resize the free list.
    void * ordered_malloc_need_resize();  //! Called if ordered_malloc needs to resize the free list.

  protected:
    details::PODptr<size_type> list; //!< List structure holding ordered blocks.

    simple_segregated_storage<size_type> & store()
    { //! \returns pointer to store.
      return *this;
    }
    const simple_segregated_storage<size_type> & store() const
    { //! \returns pointer to store.
      return *this;
    }
    const size_type requested_size;
    size_type next_size;
    size_type start_size;
    size_type max_size;

    //! finds which POD in the list 'chunk' was allocated from.
    details::PODptr<size_type> find_POD(void * const chunk) const;

    // is_from() tests a chunk to determine if it belongs in a block.
    static bool is_from(void * const chunk, char * const i,
        const size_type sizeof_i)
    { //! \param chunk chunk to check if is from this pool.
      //! \param i memory chunk at i with element sizeof_i.
      //! \param sizeof_i element size (size of the chunk area of that block, not the total size of that block).
      //! \returns true if chunk was allocated or may be returned.
      //! as the result of a future allocation.
      //!
      //! Returns false if chunk was allocated from some other pool,
      //! or may be returned as the result of a future allocation from some other pool.
      //! Otherwise, the return value is meaningless.
      //!
      //! Note that this function may not be used to reliably test random pointer values.

      // We use std::less_equal and std::less to test 'chunk'
      //  against the array bounds because standard operators
      //  may return unspecified results.
      // This is to ensure portability.  The operators < <= > >= are only
      //  defined for pointers to objects that are 1) in the same array, or
      //  2) subobjects of the same object [5.9/2].
      // The functor objects guarantee a total order for any pointer [20.3.3/8]
      std::less_equal<void *> lt_eq;
      std::less<void *> lt;
      return (lt_eq(i, chunk) && lt(chunk, i + sizeof_i));
    }

    size_type alloc_size() const
    { //!  Calculated size of the memory chunks that will be allocated by this Pool.
      //! \returns allocated size.
      // For alignment reasons, this used to be defined to be lcm(requested_size, sizeof(void *), sizeof(size_type)),
      // but is now more parsimonious: just rounding up to the minimum required alignment of our housekeeping data
      // when required.  This works provided all alignments are powers of two.
      size_type s = (std::max)(requested_size, min_alloc_size);
      size_type rem = s % min_align;
      if(rem)
         s += min_align - rem;
      BOOST_ASSERT(s >= min_alloc_size);
      BOOST_ASSERT(s % min_align == 0);
      return s;
    }

    static void * & nextof(void * const ptr)
    { //! \returns Pointer dereferenced.
      //! (Provided and used for the sake of code readability :)
      return *(static_cast<void **>(ptr));
    }

  public:
    // pre: npartition_size != 0 && nnext_size != 0
    explicit pool(const size_type nrequested_size,
        const size_type nnext_size = 32,
        const size_type nmax_size = 0)
    :
        list(0, 0), requested_size(nrequested_size), next_size(nnext_size), start_size(nnext_size),max_size(nmax_size)
    { //!   Constructs a new empty Pool that can be used to allocate chunks of size RequestedSize.
      //! \param nrequested_size  Requested chunk size
      //! \param  nnext_size parameter is of type size_type,
      //!   is the number of chunks to request from the system
      //!   the first time that object needs to allocate system memory.
      //!   The default is 32. This parameter may not be 0.
      //! \param nmax_size is the maximum number of chunks to allocate in one block.
    }

    ~pool()
    { //!   Destructs the Pool, freeing its list of memory blocks.
      purge_memory();
    }

    // Releases memory blocks that don't have chunks allocated
    // pre: lists are ordered
    //  Returns true if memory was actually deallocated
    bool release_memory();

    // Releases *all* memory blocks, even if chunks are still allocated
    //  Returns true if memory was actually deallocated
    bool purge_memory();

    size_type get_next_size() const
    { //! Number of chunks to request from the system the next time that object needs to allocate system memory. This value should never be 0.
      //! \returns next_size;
      return next_size;
    }
    void set_next_size(const size_type nnext_size)
    { //! Set number of chunks to request from the system the next time that object needs to allocate system memory. This value should never be set to 0.
      //! \returns nnext_size.
      next_size = start_size = nnext_size;
    }
    size_type get_max_size() const
    { //! \returns max_size.
      return max_size;
    }
    void set_max_size(const size_type nmax_size)
    { //! Set max_size.
      max_size = nmax_size;
    }
    size_type get_requested_size() const
    { //!   \returns the requested size passed into the constructor.
      //! (This value will not change during the lifetime of a Pool object).
      return requested_size;
    }

    // Both malloc and ordered_malloc do a quick inlined check first for any
    //  free chunks.  Only if we need to get another memory block do we call
    //  the non-inlined *_need_resize() functions.
    // Returns 0 if out-of-memory
    void * malloc BOOST_PREVENT_MACRO_SUBSTITUTION()
    { //! Allocates a chunk of memory. Searches in the list of memory blocks
      //! for a block that has a free chunk, and returns that free chunk if found.
      //! Otherwise, creates a new memory block, adds its free list to pool's free list,
      //! \returns a free chunk from that block.
      //! If a new memory block cannot be allocated, returns 0. Amortized O(1).
      // Look for a non-empty storage
      if (!store().empty())
        return (store().malloc)();
      return malloc_need_resize();
    }

    void * ordered_malloc()
    { //! Same as malloc, only merges the free lists, to preserve order. Amortized O(1).
      //! \returns a free chunk from that block.
      //! If a new memory block cannot be allocated, returns 0. Amortized O(1).
      // Look for a non-empty storage
      if (!store().empty())
        return (store().malloc)();
      return ordered_malloc_need_resize();
    }

    // Returns 0 if out-of-memory
    // Allocate a contiguous section of n chunks
    void * ordered_malloc(size_type n);
      //! Same as malloc, only allocates enough contiguous chunks to cover n * requested_size bytes. Amortized O(n).
      //! \returns a free chunk from that block.
      //! If a new memory block cannot be allocated, returns 0. Amortized O(1).

    // pre: 'chunk' must have been previously
    //        returned by *this.malloc().
    void free BOOST_PREVENT_MACRO_SUBSTITUTION(void * const chunk)
    { //!   Deallocates a chunk of memory. Note that chunk may not be 0. O(1).
      //!
      //! Chunk must have been previously returned by t.malloc() or t.ordered_malloc().
      //! Assumes that chunk actually refers to a block of chunks
      //! spanning n * partition_sz bytes.
      //! deallocates each chunk in that block.
      //! Note that chunk may not be 0. O(n).
      (store().free)(chunk);
    }

    // pre: 'chunk' must have been previously
    //        returned by *this.malloc().
    void ordered_free(void * const chunk)
    { //! Same as above, but is order-preserving.
      //!
      //! Note that chunk may not be 0. O(N) with respect to the size of the free list.
      //! chunk must have been previously returned by t.malloc() or t.ordered_malloc().
      store().ordered_free(chunk);
    }

    // pre: 'chunk' must have been previously
    //        returned by *this.malloc(n).
    void free BOOST_PREVENT_MACRO_SUBSTITUTION(void * const chunks, const size_type n)
    { //! Assumes that chunk actually refers to a block of chunks.
      //!
      //! chunk must have been previously returned by t.ordered_malloc(n)
      //! spanning n * partition_sz bytes.
      //! Deallocates each chunk in that block.
      //! Note that chunk may not be 0. O(n).
      const size_type partition_size = alloc_size();
      const size_type total_req_size = n * requested_size;
      const size_type num_chunks = total_req_size / partition_size +
          ((total_req_size % partition_size) ? true : false);

      store().free_n(chunks, num_chunks, partition_size);
    }

    // pre: 'chunk' must have been previously
    //        returned by *this.malloc(n).
    void ordered_free(void * const chunks, const size_type n)
    { //! Assumes that chunk actually refers to a block of chunks spanning n * partition_sz bytes;
      //! deallocates each chunk in that block.
      //!
      //! Note that chunk may not be 0. Order-preserving. O(N + n) where N is the size of the free list.
      //! chunk must have been previously returned by t.malloc() or t.ordered_malloc().

      const size_type partition_size = alloc_size();
      const size_type total_req_size = n * requested_size;
      const size_type num_chunks = total_req_size / partition_size +
          ((total_req_size % partition_size) ? true : false);

      store().ordered_free_n(chunks, num_chunks, partition_size);
    }

    // is_from() tests a chunk to determine if it was allocated from *this
    bool is_from(void * const chunk) const
    { //! \returns Returns true if chunk was allocated from u or
      //! may be returned as the result of a future allocation from u.
      //! Returns false if chunk was allocated from some other pool or
      //! may be returned as the result of a future allocation from some other pool.
      //! Otherwise, the return value is meaningless.
      //! Note that this function may not be used to reliably test random pointer values.
      return (find_POD(chunk).valid());
    }
};

#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
template <typename UserAllocator>
typename pool<UserAllocator>::size_type const pool<UserAllocator>::min_alloc_size;
template <typename UserAllocator>
typename pool<UserAllocator>::size_type const pool<UserAllocator>::min_align;
#endif

template <typename UserAllocator>
bool pool<UserAllocator>::release_memory()
{ //! pool must be ordered. Frees every memory block that doesn't have any allocated chunks.
  //! \returns true if at least one memory block was freed.

  // ret is the return value: it will be set to true when we actually call
  //  UserAllocator::free(..)
  bool ret = false;

  // This is a current & previous iterator pair over the memory block list
  details::PODptr<size_type> ptr = list;
  details::PODptr<size_type> prev;

  // This is a current & previous iterator pair over the free memory chunk list
  //  Note that "prev_free" in this case does NOT point to the previous memory
  //  chunk in the free list, but rather the last free memory chunk before the
  //  current block.
  void * free_p = this->first;
  void * prev_free_p = 0;

  const size_type partition_size = alloc_size();

  // Search through all the all the allocated memory blocks
  while (ptr.valid())
  {
    // At this point:
    //  ptr points to a valid memory block
    //  free_p points to either:
    //    0 if there are no more free chunks
    //    the first free chunk in this or some next memory block
    //  prev_free_p points to either:
    //    the last free chunk in some previous memory block
    //    0 if there is no such free chunk
    //  prev is either:
    //    the PODptr whose next() is ptr
    //    !valid() if there is no such PODptr

    // If there are no more free memory chunks, then every remaining
    //  block is allocated out to its fullest capacity, and we can't
    //  release any more memory
    if (free_p == 0)
      break;

    // We have to check all the chunks.  If they are *all* free (i.e., present
    //  in the free list), then we can free the block.
    bool all_chunks_free = true;

    // Iterate 'i' through all chunks in the memory block
    // if free starts in the memory block, be careful to keep it there
    void * saved_free = free_p;
    for (char * i = ptr.begin(); i != ptr.end(); i += partition_size)
    {
      // If this chunk is not free
      if (i != free_p)
      {
        // We won't be able to free this block
        all_chunks_free = false;

        // free_p might have travelled outside ptr
        free_p = saved_free;
        // Abort searching the chunks; we won't be able to free this
        //  block because a chunk is not free.
        break;
      }

      // We do not increment prev_free_p because we are in the same block
      free_p = nextof(free_p);
    }

    // post: if the memory block has any chunks, free_p points to one of them
    // otherwise, our assertions above are still valid

    const details::PODptr<size_type> next = ptr.next();

    if (!all_chunks_free)
    {
      if (is_from(free_p, ptr.begin(), ptr.element_size()))
      {
        std::less<void *> lt;
        void * const end = ptr.end();
        do
        {
          prev_free_p = free_p;
          free_p = nextof(free_p);
        } while (free_p && lt(free_p, end));
      }
      // This invariant is now restored:
      //     free_p points to the first free chunk in some next memory block, or
      //       0 if there is no such chunk.
      //     prev_free_p points to the last free chunk in this memory block.

      // We are just about to advance ptr.  Maintain the invariant:
      // prev is the PODptr whose next() is ptr, or !valid()
      // if there is no such PODptr
      prev = ptr;
    }
    else
    {
      // All chunks from this block are free

      // Remove block from list
      if (prev.valid())
        prev.next(next);
      else
        list = next;

      // Remove all entries in the free list from this block
      if (prev_free_p != 0)
        nextof(prev_free_p) = free_p;
      else
        this->first = free_p;

      // And release memory
      (UserAllocator::free)(ptr.begin());
      ret = true;
    }

    // Increment ptr
    ptr = next;
  }

  next_size = start_size;
  return ret;
}

template <typename UserAllocator>
bool pool<UserAllocator>::purge_memory()
{ //! pool must be ordered.
  //! Frees every memory block.
  //!
  //! This function invalidates any pointers previously returned
  //! by allocation functions of t.
  //! \returns true if at least one memory block was freed.

  details::PODptr<size_type> iter = list;

  if (!iter.valid())
    return false;

  do
  {
    // hold "next" pointer
    const details::PODptr<size_type> next = iter.next();

    // delete the storage
    (UserAllocator::free)(iter.begin());

    // increment iter
    iter = next;
  } while (iter.valid());

  list.invalidate();
  this->first = 0;
  next_size = start_size;

  return true;
}

template <typename UserAllocator>
void * pool<UserAllocator>::malloc_need_resize()
{ //! No memory in any of our storages; make a new storage,
  //!  Allocates chunk in newly malloc aftert resize.
  //! \returns pointer to chunk.
  size_type partition_size = alloc_size();
  size_type POD_size = static_cast<size_type>(next_size * partition_size +
      math::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
  char * ptr = (UserAllocator::malloc)(POD_size);
  if (ptr == 0)
  {
     if(next_size > 4)
     {
        next_size >>= 1;
        partition_size = alloc_size();
        POD_size = static_cast<size_type>(next_size * partition_size +
            math::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
        ptr = (UserAllocator::malloc)(POD_size);
     }
     if(ptr == 0)
        return 0;
  }
  const details::PODptr<size_type> node(ptr, POD_size);

  BOOST_USING_STD_MIN();
  if(!max_size)
    next_size <<= 1;
  else if( next_size*partition_size/requested_size < max_size)
    next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);

  //  initialize it,
  store().add_block(node.begin(), node.element_size(), partition_size);

  //  insert it into the list,
  node.next(list);
  list = node;

  //  and return a chunk from it.
  return (store().malloc)();
}

template <typename UserAllocator>
void * pool<UserAllocator>::ordered_malloc_need_resize()
{ //! No memory in any of our storages; make a new storage,
  //! \returns pointer to new chunk.
  size_type partition_size = alloc_size();
  size_type POD_size = static_cast<size_type>(next_size * partition_size +
      math::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
  char * ptr = (UserAllocator::malloc)(POD_size);
  if (ptr == 0)
  {
     if(next_size > 4)
     {
       next_size >>= 1;
       partition_size = alloc_size();
       POD_size = static_cast<size_type>(next_size * partition_size +
                    math::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
       ptr = (UserAllocator::malloc)(POD_size);
     }
     if(ptr == 0)
       return 0;
  }
  const details::PODptr<size_type> node(ptr, POD_size);

  BOOST_USING_STD_MIN();
  if(!max_size)
    next_size <<= 1;
  else if( next_size*partition_size/requested_size < max_size)
    next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);

  //  initialize it,
  //  (we can use "add_block" here because we know that
  //  the free list is empty, so we don't have to use
  //  the slower ordered version)
  store().add_ordered_block(node.begin(), node.element_size(), partition_size);

  //  insert it into the list,
  //   handle border case
  if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
  {
    node.next(list);
    list = node;
  }
  else
  {
    details::PODptr<size_type> prev = list;

    while (true)
    {
      // if we're about to hit the end or
      //  if we've found where "node" goes
      if (prev.next_ptr() == 0
          || std::greater<void *>()(prev.next_ptr(), node.begin()))
        break;

      prev = prev.next();
    }

    node.next(prev.next());
    prev.next(node);
  }
  //  and return a chunk from it.
  return (store().malloc)();
}

template <typename UserAllocator>
void * pool<UserAllocator>::ordered_malloc(const size_type n)
{ //! Gets address of a chunk n, allocating new memory if not already available.
  //! \returns Address of chunk n if allocated ok.
  //! \returns 0 if not enough memory for n chunks.

  const size_type partition_size = alloc_size();
  const size_type total_req_size = n * requested_size;
  const size_type num_chunks = total_req_size / partition_size +
      ((total_req_size % partition_size) ? true : false);

  void * ret = store().malloc_n(num_chunks, partition_size);

#ifdef BOOST_POOL_INSTRUMENT
  std::cout << "Allocating " << n << " chunks from pool of size " << partition_size << std::endl;
#endif
  if ((ret != 0) || (n == 0))
    return ret;

#ifdef BOOST_POOL_INSTRUMENT
  std::cout << "Cache miss, allocating another chunk...\n";
#endif

  // Not enough memory in our storages; make a new storage,
  BOOST_USING_STD_MAX();
  next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks);
  size_type POD_size = static_cast<size_type>(next_size * partition_size +
      math::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
  char * ptr = (UserAllocator::malloc)(POD_size);
  if (ptr == 0)
  {
     if(num_chunks < next_size)
     {
        // Try again with just enough memory to do the job, or at least whatever we
        // allocated last time:
        next_size >>= 1;
        next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks);
        POD_size = static_cast<size_type>(next_size * partition_size +
            math::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
        ptr = (UserAllocator::malloc)(POD_size);
     }
     if(ptr == 0)
       return 0;
  }
  const details::PODptr<size_type> node(ptr, POD_size);

  // Split up block so we can use what wasn't requested.
  if (next_size > num_chunks)
    store().add_ordered_block(node.begin() + num_chunks * partition_size,
        node.element_size() - num_chunks * partition_size, partition_size);

  BOOST_USING_STD_MIN();
  if(!max_size)
    next_size <<= 1;
  else if( next_size*partition_size/requested_size < max_size)
    next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);

  //  insert it into the list,
  //   handle border case.
  if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
  {
    node.next(list);
    list = node;
  }
  else
  {
    details::PODptr<size_type> prev = list;

    while (true)
    {
      // if we're about to hit the end, or if we've found where "node" goes.
      if (prev.next_ptr() == 0
          || std::greater<void *>()(prev.next_ptr(), node.begin()))
        break;

      prev = prev.next();
    }

    node.next(prev.next());
    prev.next(node);
  }

  //  and return it.
  return node.begin();
}

template <typename UserAllocator>
details::PODptr<typename pool<UserAllocator>::size_type>
pool<UserAllocator>::find_POD(void * const chunk) const
{ //! find which PODptr storage memory that this chunk is from.
  //! \returns the PODptr that holds this chunk.
  // Iterate down list to find which storage this chunk is from.
  details::PODptr<size_type> iter = list;
  while (iter.valid())
  {
    if (is_from(chunk, iter.begin(), iter.element_size()))
      return iter;
    iter = iter.next();
  }

  return iter;
}

#else // BOOST_POOL_VALGRIND

template<typename UserAllocator> 
class pool 
{
public:
  // types
  typedef UserAllocator                  user_allocator;   // User allocator. 
  typedef typename UserAllocator::size_type       size_type;        // An unsigned integral type that can represent the size of the largest object to be allocated. 
  typedef typename UserAllocator::difference_type difference_type;  // A signed integral type that can represent the difference of any two pointers. 

  // construct/copy/destruct
  explicit pool(const size_type s, const size_type = 32, const size_type m = 0) : chunk_size(s), max_alloc_size(m) {}
  ~pool()
  {
     purge_memory();
  }

  bool release_memory()
  {
     bool ret = free_list.empty() ? false : true;
     for(std::set<void*>::iterator pos = free_list.begin(); pos != free_list.end(); ++pos)
     {
        (user_allocator::free)(static_cast<char*>(*pos));
     }
     free_list.clear();
     return ret;
  }
  bool purge_memory()
  {
     bool ret = free_list.empty() && used_list.empty() ? false : true;
     for(std::set<void*>::iterator pos = free_list.begin(); pos != free_list.end(); ++pos)
     {
        (user_allocator::free)(static_cast<char*>(*pos));
     }
     free_list.clear();
     for(std::set<void*>::iterator pos = used_list.begin(); pos != used_list.end(); ++pos)
     {
        (user_allocator::free)(static_cast<char*>(*pos));
     }
     used_list.clear();
     return ret;
  }
  size_type get_next_size() const
  {
     return 1;
  }
  void set_next_size(const size_type){}
  size_type get_max_size() const
  {
     return max_alloc_size;
  }
  void set_max_size(const size_type s)
  {
     max_alloc_size = s;
  }
  size_type get_requested_size() const
  {
     return chunk_size;
  }
  void * malloc BOOST_PREVENT_MACRO_SUBSTITUTION()
  {
     void* ret;
     if(free_list.empty())
     {
        ret = (user_allocator::malloc)(chunk_size);
        VALGRIND_MAKE_MEM_UNDEFINED(ret, chunk_size);
     }
     else
     {
        ret = *free_list.begin();
        free_list.erase(free_list.begin());
        VALGRIND_MAKE_MEM_UNDEFINED(ret, chunk_size);
     }
     used_list.insert(ret);
     return ret;
  }
  void * ordered_malloc()
  {
     return (this->malloc)();
  }
  void * ordered_malloc(size_type n)
  {
     if(max_alloc_size && (n > max_alloc_size))
        return 0;
     void* ret = (user_allocator::malloc)(chunk_size * n);
     used_list.insert(ret);
     return ret;
  }
  void free BOOST_PREVENT_MACRO_SUBSTITUTION(void *const chunk)
  {
     BOOST_ASSERT(used_list.count(chunk) == 1);
     BOOST_ASSERT(free_list.count(chunk) == 0);
     used_list.erase(chunk);
     free_list.insert(chunk);
     VALGRIND_MAKE_MEM_NOACCESS(chunk, chunk_size);
  }
  void ordered_free(void *const chunk)
  {
     return (this->free)(chunk);
  }
  void free BOOST_PREVENT_MACRO_SUBSTITUTION(void *const chunk, const size_type)
  {
     BOOST_ASSERT(used_list.count(chunk) == 1);
     BOOST_ASSERT(free_list.count(chunk) == 0);
     used_list.erase(chunk);
     (user_allocator::free)(static_cast<char*>(chunk));
  }
  void ordered_free(void *const chunk, const size_type n)
  {
     (this->free)(chunk, n);
  }
  bool is_from(void *const chunk) const
  {
     return used_list.count(chunk) || free_list.count(chunk);
  }

protected:
   size_type chunk_size, max_alloc_size;
   std::set<void*> free_list, used_list;
};

#endif

} // namespace boost

#ifdef BOOST_MSVC
#pragma warning(pop)
#endif

#endif // #ifdef BOOST_POOL_HPP