This file is indexed.

/usr/include/boost/numeric/ublas/traits.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
//
//  Copyright (c) 2000-2002
//  Joerg Walter, Mathias Koch
//
//  Distributed under the Boost Software License, Version 1.0. (See
//  accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)
//
//  The authors gratefully acknowledge the support of
//  GeNeSys mbH & Co. KG in producing this work.
//

#ifndef _BOOST_UBLAS_TRAITS_
#define _BOOST_UBLAS_TRAITS_

#include <iterator>
#include <complex>
#include <boost/config/no_tr1/cmath.hpp>

#include <boost/numeric/ublas/detail/config.hpp>
#include <boost/numeric/ublas/detail/iterator.hpp>
#include <boost/numeric/ublas/detail/returntype_deduction.hpp>

#include <boost/type_traits.hpp>
#include <complex>
#include <boost/typeof/typeof.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_float.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/mpl/and.hpp>

// anonymous namespace to avoid ADL issues
namespace {
  template<class T> T boost_numeric_ublas_sqrt (const T& t) {
    using namespace std;
    // we'll find either std::sqrt or else another version via ADL:
    return sqrt (t);
  }
  template<class T> T boost_numeric_ublas_abs (const T& t) {
    using namespace std;
    // we'll find either std::abs or else another version via ADL:
    return abs (t);
  }
  // unsigned types are always non-negative
  template<> unsigned int boost_numeric_ublas_abs (const unsigned int& t) {
    return t;
  }
  // unsigned types are always non-negative
  template<> unsigned long boost_numeric_ublas_abs (const unsigned long& t) {
    return t;
  }
}

namespace boost { namespace numeric { namespace ublas {

    // Use Joel de Guzman's return type deduction
    // uBLAS assumes a common return type for all binary arithmetic operators
    template<class X, class Y>
    struct promote_traits {
        typedef type_deduction_detail::base_result_of<X, Y> base_type;
        static typename base_type::x_type x;
        static typename base_type::y_type y;
        static const std::size_t size = sizeof (
                type_deduction_detail::test<
                    typename base_type::x_type
                  , typename base_type::y_type
                >(x + y)     // Use x+y to stand of all the arithmetic actions
            );

        static const std::size_t index = (size / sizeof (char)) - 1;
        typedef typename mpl::at_c<
            typename base_type::types, index>::type id;
        typedef typename id::type promote_type;
    };

      template<typename R, typename I> 
      typename boost::enable_if<
        mpl::and_<
          boost::is_float<R>,
          boost::is_integral<I>
          >,
        std::complex<R> >::type inline operator+ (I in1, std::complex<R> const& in2 ) {
        return R (in1) + in2;
      }

      template<typename R, typename I> 
      typename boost::enable_if<
        mpl::and_<
          boost::is_float<R>,
          boost::is_integral<I>
          >,
        std::complex<R> >::type inline operator+ (std::complex<R> const& in1, I in2) {
        return in1 + R (in2);
      }

      template<typename R, typename I> 
      typename boost::enable_if<
        mpl::and_<
          boost::is_float<R>,
          boost::is_integral<I>
          >,
        std::complex<R> >::type inline operator- (I in1, std::complex<R> const& in2) {
        return R (in1) - in2;
      }

      template<typename R, typename I> 
      typename boost::enable_if<
        mpl::and_<
          boost::is_float<R>,
          boost::is_integral<I>
          >,
        std::complex<R> >::type inline operator- (std::complex<R> const& in1, I in2) {
        return in1 - R (in2);
      }

      template<typename R, typename I> 
      typename boost::enable_if<
        mpl::and_<
          boost::is_float<R>,
          boost::is_integral<I>
          >,
        std::complex<R> >::type inline operator* (I in1, std::complex<R> const& in2) {
        return R (in1) * in2;
      }

      template<typename R, typename I> 
      typename boost::enable_if<
        mpl::and_<
          boost::is_float<R>,
          boost::is_integral<I>
          >,
        std::complex<R> >::type inline operator* (std::complex<R> const& in1, I in2) {
        return in1 * R(in2);
      }

      template<typename R, typename I> 
      typename boost::enable_if<
        mpl::and_<
          boost::is_float<R>,
          boost::is_integral<I>
          >,
        std::complex<R> >::type inline operator/ (I in1, std::complex<R> const& in2) {
        return R(in1) / in2;
      }

      template<typename R, typename I> 
      typename boost::enable_if<
        mpl::and_<
          boost::is_float<R>,
          boost::is_integral<I>
          >,
        std::complex<R> >::type inline operator/ (std::complex<R> const& in1, I in2) {
        return in1 / R (in2);
      }



    // Type traits - generic numeric properties and functions
    template<class T>
    struct type_traits;
        
    // Define properties for a generic scalar type
    template<class T>
    struct scalar_traits {
        typedef scalar_traits<T> self_type;
        typedef T value_type;
        typedef const T &const_reference;
        typedef T &reference;

        typedef T real_type;
        typedef real_type precision_type;       // we do not know what type has more precision then the real_type

        static const unsigned plus_complexity = 1;
        static const unsigned multiplies_complexity = 1;

        static
        BOOST_UBLAS_INLINE
        real_type real (const_reference t) {
                return t;
        }
        static
        BOOST_UBLAS_INLINE
        real_type imag (const_reference /*t*/) {
                return 0;
        }
        static
        BOOST_UBLAS_INLINE
        value_type conj (const_reference t) {
                return t;
        }

        static
        BOOST_UBLAS_INLINE
        real_type type_abs (const_reference t) {
            return boost_numeric_ublas_abs (t);
        }
        static
        BOOST_UBLAS_INLINE
        value_type type_sqrt (const_reference t) {
            // force a type conversion back to value_type for intgral types
            return value_type (boost_numeric_ublas_sqrt (t));
        }

        static
        BOOST_UBLAS_INLINE
        real_type norm_1 (const_reference t) {
            return self_type::type_abs (t);
        }
        static
        BOOST_UBLAS_INLINE
        real_type norm_2 (const_reference t) {
            return self_type::type_abs (t);
        }
        static
        BOOST_UBLAS_INLINE
        real_type norm_inf (const_reference t) {
            return self_type::type_abs (t);
        }

        static
        BOOST_UBLAS_INLINE
        bool equals (const_reference t1, const_reference t2) {
            return self_type::norm_inf (t1 - t2) < BOOST_UBLAS_TYPE_CHECK_EPSILON *
                   (std::max) ((std::max) (self_type::norm_inf (t1),
                                       self_type::norm_inf (t2)),
                             BOOST_UBLAS_TYPE_CHECK_MIN);
        }
    };

    // Define default type traits, assume T is a scalar type
    template<class T>
    struct type_traits : scalar_traits <T> {
        typedef type_traits<T> self_type;
        typedef T value_type;
        typedef const T &const_reference;
        typedef T &reference;

        typedef T real_type;
        typedef real_type precision_type;
        static const unsigned multiplies_complexity = 1;

    };

    // Define real type traits
    template<>
    struct type_traits<float> : scalar_traits<float> {
        typedef type_traits<float> self_type;
        typedef float value_type;
        typedef const value_type &const_reference;
        typedef value_type &reference;
        typedef value_type real_type;
        typedef double precision_type;
    };
    template<>
    struct type_traits<double> : scalar_traits<double> {
        typedef type_traits<double> self_type;
        typedef double value_type;
        typedef const value_type &const_reference;
        typedef value_type &reference;
        typedef value_type real_type;
        typedef long double precision_type;
    };
    template<>
    struct type_traits<long double>  : scalar_traits<long double> {
        typedef type_traits<long double> self_type;
        typedef long double value_type;
        typedef const value_type &const_reference;
        typedef value_type &reference;
        typedef value_type real_type;
        typedef value_type precision_type;
    };

    // Define properties for a generic complex type
    template<class T>
    struct complex_traits {
        typedef complex_traits<T> self_type;
        typedef T value_type;
        typedef const T &const_reference;
        typedef T &reference;

        typedef typename T::value_type real_type;
        typedef real_type precision_type;       // we do not know what type has more precision then the real_type

        static const unsigned plus_complexity = 2;
        static const unsigned multiplies_complexity = 6;

        static
        BOOST_UBLAS_INLINE
        real_type real (const_reference t) {
                return std::real (t);
        }
        static
        BOOST_UBLAS_INLINE
        real_type imag (const_reference t) {
                return std::imag (t);
        }
        static
        BOOST_UBLAS_INLINE
        value_type conj (const_reference t) {
                return std::conj (t);
        }

        static
        BOOST_UBLAS_INLINE
        real_type type_abs (const_reference t) {
                return abs (t);
        }
        static
        BOOST_UBLAS_INLINE
        value_type type_sqrt (const_reference t) {
                return sqrt (t);
        }

        static
        BOOST_UBLAS_INLINE
        real_type norm_1 (const_reference t) {
            return self_type::type_abs (t);
            // original computation has been replaced because a complex number should behave like a scalar type
            // return type_traits<real_type>::type_abs (self_type::real (t)) +
            //       type_traits<real_type>::type_abs (self_type::imag (t));
        }
        static
        BOOST_UBLAS_INLINE
        real_type norm_2 (const_reference t) {
            return self_type::type_abs (t);
        }
        static
        BOOST_UBLAS_INLINE
        real_type norm_inf (const_reference t) {
            return self_type::type_abs (t);
            // original computation has been replaced because a complex number should behave like a scalar type
            // return (std::max) (type_traits<real_type>::type_abs (self_type::real (t)),
            //                 type_traits<real_type>::type_abs (self_type::imag (t)));
        }

        static
        BOOST_UBLAS_INLINE
        bool equals (const_reference t1, const_reference t2) {
            return self_type::norm_inf (t1 - t2) < BOOST_UBLAS_TYPE_CHECK_EPSILON *
                   (std::max) ((std::max) (self_type::norm_inf (t1),
                                       self_type::norm_inf (t2)),
                             BOOST_UBLAS_TYPE_CHECK_MIN);
        }
    };
    
    // Define complex type traits
    template<>
    struct type_traits<std::complex<float> > : complex_traits<std::complex<float> >{
        typedef type_traits<std::complex<float> > self_type;
        typedef std::complex<float> value_type;
        typedef const value_type &const_reference;
        typedef value_type &reference;
        typedef float real_type;
        typedef std::complex<double> precision_type;

    };
    template<>
    struct type_traits<std::complex<double> > : complex_traits<std::complex<double> >{
        typedef type_traits<std::complex<double> > self_type;
        typedef std::complex<double> value_type;
        typedef const value_type &const_reference;
        typedef value_type &reference;
        typedef double real_type;
        typedef std::complex<long double> precision_type;
    };
    template<>
    struct type_traits<std::complex<long double> > : complex_traits<std::complex<long double> > {
        typedef type_traits<std::complex<long double> > self_type;
        typedef std::complex<long double> value_type;
        typedef const value_type &const_reference;
        typedef value_type &reference;
        typedef long double real_type;
        typedef value_type precision_type;
    };

#ifdef BOOST_UBLAS_USE_INTERVAL
    // Define scalar interval type traits
    template<>
    struct type_traits<boost::numeric::interval<float> > : scalar_traits<boost::numeric::interval<float> > {
        typedef type_traits<boost::numeric::interval<float> > self_type;
        typedef boost::numeric::interval<float> value_type;
        typedef const value_type &const_reference;
        typedef value_type &reference;
        typedef value_type real_type;
        typedef boost::numeric::interval<double> precision_type;

    };
    template<>
    struct type_traits<boost::numeric::interval<double> > : scalar_traits<boost::numeric::interval<double> > {
        typedef type_traits<boost::numeric::interval<double> > self_type;
        typedef boost::numeric::interval<double> value_type;
        typedef const value_type &const_reference;
        typedef value_type &reference;
        typedef value_type real_type;
        typedef boost::numeric::interval<long double> precision_type;
    };
    template<>
    struct type_traits<boost::numeric::interval<long double> > : scalar_traits<boost::numeric::interval<long double> > {
        typedef type_traits<boost::numeric::interval<long double> > self_type;
        typedef boost::numeric::interval<long double> value_type;
        typedef const value_type &const_reference;
        typedef value_type &reference;
        typedef value_type real_type;
        typedef value_type precision_type;
    };
#endif


    // Storage tags -- hierarchical definition of storage characteristics

    struct unknown_storage_tag {};
    struct sparse_proxy_tag: public unknown_storage_tag {};
    struct sparse_tag: public sparse_proxy_tag {};
    struct packed_proxy_tag: public sparse_proxy_tag {};
    struct packed_tag: public packed_proxy_tag {};
    struct dense_proxy_tag: public packed_proxy_tag {};
    struct dense_tag: public dense_proxy_tag {};

    template<class S1, class S2>
    struct storage_restrict_traits {
        typedef S1 storage_category;
    };

    template<>
    struct storage_restrict_traits<sparse_tag, dense_proxy_tag> {
        typedef sparse_proxy_tag storage_category;
    };
    template<>
    struct storage_restrict_traits<sparse_tag, packed_proxy_tag> {
        typedef sparse_proxy_tag storage_category;
    };
    template<>
    struct storage_restrict_traits<sparse_tag, sparse_proxy_tag> {
        typedef sparse_proxy_tag storage_category;
    };

    template<>
    struct storage_restrict_traits<packed_tag, dense_proxy_tag> {
        typedef packed_proxy_tag storage_category;
    };
    template<>
    struct storage_restrict_traits<packed_tag, packed_proxy_tag> {
        typedef packed_proxy_tag storage_category;
    };
    template<>
    struct storage_restrict_traits<packed_tag, sparse_proxy_tag> {
        typedef sparse_proxy_tag storage_category;
    };

    template<>
    struct storage_restrict_traits<packed_proxy_tag, sparse_proxy_tag> {
        typedef sparse_proxy_tag storage_category;
    };

    template<>
    struct storage_restrict_traits<dense_tag, dense_proxy_tag> {
        typedef dense_proxy_tag storage_category;
    };
    template<>
    struct storage_restrict_traits<dense_tag, packed_proxy_tag> {
        typedef packed_proxy_tag storage_category;
    };
    template<>
    struct storage_restrict_traits<dense_tag, sparse_proxy_tag> {
        typedef sparse_proxy_tag storage_category;
    };

    template<>
    struct storage_restrict_traits<dense_proxy_tag, packed_proxy_tag> {
        typedef packed_proxy_tag storage_category;
    };
    template<>
    struct storage_restrict_traits<dense_proxy_tag, sparse_proxy_tag> {
        typedef sparse_proxy_tag storage_category;
    };


    // Iterator tags -- hierarchical definition of storage characteristics

    struct sparse_bidirectional_iterator_tag : public std::bidirectional_iterator_tag {};
    struct packed_random_access_iterator_tag : public std::random_access_iterator_tag {};
    struct dense_random_access_iterator_tag : public packed_random_access_iterator_tag {};

    // Thanks to Kresimir Fresl for convincing Comeau with iterator_base_traits ;-)
    template<class IC>
    struct iterator_base_traits {};

    template<>
    struct iterator_base_traits<std::forward_iterator_tag> {
        template<class I, class T>
        struct iterator_base {
            typedef forward_iterator_base<std::forward_iterator_tag, I, T> type;
        };
    };

    template<>
    struct iterator_base_traits<std::bidirectional_iterator_tag> {
        template<class I, class T>
        struct iterator_base {
            typedef bidirectional_iterator_base<std::bidirectional_iterator_tag, I, T> type;
        };
    };
    template<>
    struct iterator_base_traits<sparse_bidirectional_iterator_tag> {
        template<class I, class T>
        struct iterator_base {
            typedef bidirectional_iterator_base<sparse_bidirectional_iterator_tag, I, T> type;
        };
    };

    template<>
    struct iterator_base_traits<std::random_access_iterator_tag> {
        template<class I, class T>
        struct iterator_base {
            typedef random_access_iterator_base<std::random_access_iterator_tag, I, T> type;
        };
    };
    template<>
    struct iterator_base_traits<packed_random_access_iterator_tag> {
        template<class I, class T>
        struct iterator_base {
            typedef random_access_iterator_base<packed_random_access_iterator_tag, I, T> type;
        };
    };
    template<>
    struct iterator_base_traits<dense_random_access_iterator_tag> {
        template<class I, class T>
        struct iterator_base {
            typedef random_access_iterator_base<dense_random_access_iterator_tag, I, T> type;
        };
    };

    template<class I1, class I2>
    struct iterator_restrict_traits {
        typedef I1 iterator_category;
    };

    template<>
    struct iterator_restrict_traits<packed_random_access_iterator_tag, sparse_bidirectional_iterator_tag> {
        typedef sparse_bidirectional_iterator_tag iterator_category;
    };
    template<>
    struct iterator_restrict_traits<sparse_bidirectional_iterator_tag, packed_random_access_iterator_tag> {
        typedef sparse_bidirectional_iterator_tag iterator_category;
    };

    template<>
    struct iterator_restrict_traits<dense_random_access_iterator_tag, sparse_bidirectional_iterator_tag> {
        typedef sparse_bidirectional_iterator_tag iterator_category;
    };
    template<>
    struct iterator_restrict_traits<sparse_bidirectional_iterator_tag, dense_random_access_iterator_tag> {
        typedef sparse_bidirectional_iterator_tag iterator_category;
    };

    template<>
    struct iterator_restrict_traits<dense_random_access_iterator_tag, packed_random_access_iterator_tag> {
        typedef packed_random_access_iterator_tag iterator_category;
    };
    template<>
    struct iterator_restrict_traits<packed_random_access_iterator_tag, dense_random_access_iterator_tag> {
        typedef packed_random_access_iterator_tag iterator_category;
    };

    template<class I>
    BOOST_UBLAS_INLINE
    void increment (I &it, const I &it_end, typename I::difference_type compare, packed_random_access_iterator_tag) {
        it += (std::min) (compare, it_end - it);
    }
    template<class I>
    BOOST_UBLAS_INLINE
    void increment (I &it, const I &/* it_end */, typename I::difference_type /* compare */, sparse_bidirectional_iterator_tag) {
        ++ it;
    }
    template<class I>
    BOOST_UBLAS_INLINE
    void increment (I &it, const I &it_end, typename I::difference_type compare) {
        increment (it, it_end, compare, typename I::iterator_category ());
    }

    template<class I>
    BOOST_UBLAS_INLINE
    void increment (I &it, const I &it_end) {
#if BOOST_UBLAS_TYPE_CHECK
        I cit (it);
        while (cit != it_end) {
            BOOST_UBLAS_CHECK (*cit == typename I::value_type/*zero*/(), internal_logic ());
            ++ cit;
        }
#endif
        it = it_end;
    }

    namespace detail {

        // specialisation which define whether a type has a trivial constructor
        // or not. This is used by array types.
        template<typename T>
        struct has_trivial_constructor : public boost::has_trivial_constructor<T> {};

        template<typename T>
        struct has_trivial_destructor : public boost::has_trivial_destructor<T> {};

        template<typename FLT>
        struct has_trivial_constructor<std::complex<FLT> > : public has_trivial_constructor<FLT> {};
        
        template<typename FLT>
        struct has_trivial_destructor<std::complex<FLT> > : public has_trivial_destructor<FLT> {};

    }


    /**  \brief Traits class to extract type information from a constant matrix or vector CONTAINER.
     *
     */
    template < class E >
    struct container_view_traits {
        /// type of indices
        typedef typename E::size_type             size_type;
        /// type of differences of indices
        typedef typename E::difference_type       difference_type;

        /// storage category: \c unknown_storage_tag, \c dense_tag, \c packed_tag, ...
        typedef typename E::storage_category      storage_category;

        /// type of elements
        typedef typename E::value_type            value_type;
        /// const reference to an element
        typedef typename E::const_reference       const_reference;
  
        /// type used in expressions to mark a reference to this class (usually a const container_reference<const E> or the class itself)
        typedef typename E::const_closure_type    const_closure_type;
    };

    /**  \brief Traits class to extract additional type information from a mutable matrix or vector CONTAINER.
     *
     */
    template < class E >
    struct mutable_container_traits {
        /// reference to an element
        typedef typename E::reference             reference;
  
        /// type used in expressions to mark a reference to this class (usually a container_reference<E> or the class itself)
        typedef typename E::closure_type          closure_type;
    };

    /**  \brief Traits class to extract type information from a matrix or vector CONTAINER.
     *
     */
    template < class E >
    struct container_traits 
        : container_view_traits<E>, mutable_container_traits<E> {

    };


    /**  \brief Traits class to extract type information from a constant MATRIX.
     *
     */
    template < class MATRIX >
    struct matrix_view_traits : container_view_traits <MATRIX> {

        /// orientation of the matrix, either \c row_major_tag, \c column_major_tag or \c unknown_orientation_tag
        typedef typename MATRIX::orientation_category  orientation_category;
  
        /// row iterator for the matrix
        typedef typename MATRIX::const_iterator1  const_iterator1;

        /// column iterator for the matrix
        typedef typename MATRIX::const_iterator2  const_iterator2;
    };

    /**  \brief Traits class to extract additional type information from a mutable MATRIX.
     *
     */
    template < class MATRIX >
    struct mutable_matrix_traits 
        : mutable_container_traits <MATRIX> {

        /// row iterator for the matrix
        typedef typename MATRIX::iterator1  iterator1;

        /// column iterator for the matrix
        typedef typename MATRIX::iterator2  iterator2;
    };


    /**  \brief Traits class to extract type information from a MATRIX.
     *
     */
    template < class MATRIX >
    struct matrix_traits 
        : matrix_view_traits <MATRIX>, mutable_matrix_traits <MATRIX> {
    };

    /**  \brief Traits class to extract type information from a VECTOR.
     *
     */
    template < class VECTOR >
    struct vector_view_traits : container_view_traits <VECTOR> {

        /// iterator for the VECTOR
        typedef typename VECTOR::const_iterator  const_iterator;

        /// iterator pointing to the first element
        static
        const_iterator begin(const VECTOR & v) {
            return v.begin();
        }
        /// iterator pointing behind the last element
        static
        const_iterator end(const VECTOR & v) {
            return v.end();
        }

    };

    /**  \brief Traits class to extract type information from a VECTOR.
     *
     */
    template < class VECTOR >
    struct mutable_vector_traits : mutable_container_traits <VECTOR> {
        /// iterator for the VECTOR
        typedef typename VECTOR::iterator  iterator;

        /// iterator pointing to the first element
        static
        iterator begin(VECTOR & v) {
            return v.begin();
        }

        /// iterator pointing behind the last element
        static
        iterator end(VECTOR & v) {
            return v.end();
        }
    };

    /**  \brief Traits class to extract type information from a VECTOR.
     *
     */
    template < class VECTOR >
    struct vector_traits 
        : vector_view_traits <VECTOR>, mutable_vector_traits <VECTOR> {
    };


    // Note: specializations for T[N] and T[M][N] have been moved to traits/c_array.hpp

}}}

#endif