This file is indexed.

/usr/include/boost/numeric/ublas/operation.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
//
//  Copyright (c) 2000-2002
//  Joerg Walter, Mathias Koch
//
//  Distributed under the Boost Software License, Version 1.0. (See
//  accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)
//
//  The authors gratefully acknowledge the support of
//  GeNeSys mbH & Co. KG in producing this work.
//

#ifndef _BOOST_UBLAS_OPERATION_
#define _BOOST_UBLAS_OPERATION_

#include <boost/numeric/ublas/matrix_proxy.hpp>

/** \file operation.hpp
 *  \brief This file contains some specialized products.
 */

// axpy-based products
// Alexei Novakov had a lot of ideas to improve these. Thanks.
// Hendrik Kueck proposed some new kernel. Thanks again.

namespace boost { namespace numeric { namespace ublas {

    template<class V, class T1, class L1, class IA1, class TA1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
               const vector_expression<E2> &e2,
               V &v, row_major_tag) {
        typedef typename V::size_type size_type;
        typedef typename V::value_type value_type;

        for (size_type i = 0; i < e1.filled1 () -1; ++ i) {
            size_type begin = e1.index1_data () [i];
            size_type end = e1.index1_data () [i + 1];
            value_type t (v (i));
            for (size_type j = begin; j < end; ++ j)
                t += e1.value_data () [j] * e2 () (e1.index2_data () [j]);
            v (i) = t;
        }
        return v;
    }

    template<class V, class T1, class L1, class IA1, class TA1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
               const vector_expression<E2> &e2,
               V &v, column_major_tag) {
        typedef typename V::size_type size_type;

        for (size_type j = 0; j < e1.filled1 () -1; ++ j) {
            size_type begin = e1.index1_data () [j];
            size_type end = e1.index1_data () [j + 1];
            for (size_type i = begin; i < end; ++ i)
                v (e1.index2_data () [i]) += e1.value_data () [i] * e2 () (j);
        }
        return v;
    }

    // Dispatcher
    template<class V, class T1, class L1, class IA1, class TA1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
               const vector_expression<E2> &e2,
               V &v, bool init = true) {
        typedef typename V::value_type value_type;
        typedef typename L1::orientation_category orientation_category;

        if (init)
            v.assign (zero_vector<value_type> (e1.size1 ()));
#if BOOST_UBLAS_TYPE_CHECK
        vector<value_type> cv (v);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
        indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
        axpy_prod (e1, e2, v, orientation_category ());
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
        return v;
    }
    template<class V, class T1, class L1, class IA1, class TA1, class E2>
    BOOST_UBLAS_INLINE
    V
    axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
               const vector_expression<E2> &e2) {
        typedef V vector_type;

        vector_type v (e1.size1 ());
        return axpy_prod (e1, e2, v, true);
    }

    template<class V, class T1, class L1, class IA1, class TA1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const coordinate_matrix<T1, L1, 0, IA1, TA1> &e1,
               const vector_expression<E2> &e2,
               V &v, bool init = true) {
        typedef typename V::size_type size_type;
        typedef typename V::value_type value_type;
        typedef L1 layout_type;

        size_type size1 = e1.size1();
        size_type size2 = e1.size2();

        if (init) {
            noalias(v) = zero_vector<value_type>(size1);
        }

        for (size_type i = 0; i < e1.nnz(); ++i) {
            size_type row_index = layout_type::index_M( e1.index1_data () [i], e1.index2_data () [i] );
            size_type col_index = layout_type::index_m( e1.index1_data () [i], e1.index2_data () [i] );
            v( row_index ) += e1.value_data () [i] * e2 () (col_index);
        }
        return v;
    }

    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const matrix_expression<E1> &e1,
               const vector_expression<E2> &e2,
               V &v, packed_random_access_iterator_tag, row_major_tag) {
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename V::size_type size_type;

        typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
        typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
        while (it1 != it1_end) {
            size_type index1 (it1.index1 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
            typename expression1_type::const_iterator2 it2 (it1.begin ());
            typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
            typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
            typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
            while (it2 != it2_end) {
                v (index1) += *it2 * e2 () (it2.index2 ());
                ++ it2;
            }
            ++ it1;
        }
        return v;
    }

    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const matrix_expression<E1> &e1,
               const vector_expression<E2> &e2,
               V &v, packed_random_access_iterator_tag, column_major_tag) {
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename V::size_type size_type;

        typename expression1_type::const_iterator2 it2 (e1 ().begin2 ());
        typename expression1_type::const_iterator2 it2_end (e1 ().end2 ());
        while (it2 != it2_end) {
            size_type index2 (it2.index2 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
            typename expression1_type::const_iterator1 it1 (it2.begin ());
            typename expression1_type::const_iterator1 it1_end (it2.end ());
#else
            typename expression1_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
            typename expression1_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
            while (it1 != it1_end) {
                v (it1.index1 ()) += *it1 * e2 () (index2);
                ++ it1;
            }
            ++ it2;
        }
        return v;
    }

    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const matrix_expression<E1> &e1,
               const vector_expression<E2> &e2,
               V &v, sparse_bidirectional_iterator_tag) {
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename V::size_type size_type;

        typename expression2_type::const_iterator it (e2 ().begin ());
        typename expression2_type::const_iterator it_end (e2 ().end ());
        while (it != it_end) {
            v.plus_assign (column (e1 (), it.index ()) * *it);
            ++ it;
        }
        return v;
    }

    // Dispatcher
    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const matrix_expression<E1> &e1,
               const vector_expression<E2> &e2,
               V &v, packed_random_access_iterator_tag) {
        typedef typename E1::orientation_category orientation_category;
        return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
    }


  /** \brief computes <tt>v += A x</tt> or <tt>v = A x</tt> in an
          optimized fashion.

          \param e1 the matrix expression \c A
          \param e2 the vector expression \c x
          \param v  the result vector \c v
          \param init a boolean parameter

          <tt>axpy_prod(A, x, v, init)</tt> implements the well known
          axpy-product.  Setting \a init to \c true is equivalent to call
          <tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
          defaults to \c true, but this may change in the future.

          Up to now there are some specialisation for compressed
          matrices that give a large speed up compared to prod.
          
          \ingroup blas2

          \internal
          
          template parameters:
          \param V type of the result vector \c v
          \param E1 type of a matrix expression \c A
          \param E2 type of a vector expression \c x
  */
    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const matrix_expression<E1> &e1,
               const vector_expression<E2> &e2,
               V &v, bool init = true) {
        typedef typename V::value_type value_type;
        typedef typename E2::const_iterator::iterator_category iterator_category;

        if (init)
            v.assign (zero_vector<value_type> (e1 ().size1 ()));
#if BOOST_UBLAS_TYPE_CHECK
        vector<value_type> cv (v);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
        indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
        axpy_prod (e1, e2, v, iterator_category ());
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
        return v;
    }
    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V
    axpy_prod (const matrix_expression<E1> &e1,
               const vector_expression<E2> &e2) {
        typedef V vector_type;

        vector_type v (e1 ().size1 ());
        return axpy_prod (e1, e2, v, true);
    }

    template<class V, class E1, class T2, class IA2, class TA2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const vector_expression<E1> &e1,
               const compressed_matrix<T2, column_major, 0, IA2, TA2> &e2,
               V &v, column_major_tag) {
        typedef typename V::size_type size_type;
        typedef typename V::value_type value_type;

        for (size_type j = 0; j < e2.filled1 () -1; ++ j) {
            size_type begin = e2.index1_data () [j];
            size_type end = e2.index1_data () [j + 1];
            value_type t (v (j));
            for (size_type i = begin; i < end; ++ i)
                t += e2.value_data () [i] * e1 () (e2.index2_data () [i]);
            v (j) = t;
        }
        return v;
    }

    template<class V, class E1, class T2, class IA2, class TA2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const vector_expression<E1> &e1,
               const compressed_matrix<T2, row_major, 0, IA2, TA2> &e2,
               V &v, row_major_tag) {
        typedef typename V::size_type size_type;

        for (size_type i = 0; i < e2.filled1 () -1; ++ i) {
            size_type begin = e2.index1_data () [i];
            size_type end = e2.index1_data () [i + 1];
            for (size_type j = begin; j < end; ++ j)
                v (e2.index2_data () [j]) += e2.value_data () [j] * e1 () (i);
        }
        return v;
    }

    // Dispatcher
    template<class V, class E1, class T2, class L2, class IA2, class TA2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const vector_expression<E1> &e1,
               const compressed_matrix<T2, L2, 0, IA2, TA2> &e2,
               V &v, bool init = true) {
        typedef typename V::value_type value_type;
        typedef typename L2::orientation_category orientation_category;

        if (init)
            v.assign (zero_vector<value_type> (e2.size2 ()));
#if BOOST_UBLAS_TYPE_CHECK
        vector<value_type> cv (v);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
        indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
        axpy_prod (e1, e2, v, orientation_category ());
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
        return v;
    }
    template<class V, class E1, class T2, class L2, class IA2, class TA2>
    BOOST_UBLAS_INLINE
    V
    axpy_prod (const vector_expression<E1> &e1,
               const compressed_matrix<T2, L2, 0, IA2, TA2> &e2) {
        typedef V vector_type;

        vector_type v (e2.size2 ());
        return axpy_prod (e1, e2, v, true);
    }

    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const vector_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               V &v, packed_random_access_iterator_tag, column_major_tag) {
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename V::size_type size_type;

        typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
        typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
        while (it2 != it2_end) {
            size_type index2 (it2.index2 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
            typename expression2_type::const_iterator1 it1 (it2.begin ());
            typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
            typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
            typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
            while (it1 != it1_end) {
                v (index2) += *it1 * e1 () (it1.index1 ());
                ++ it1;
            }
            ++ it2;
        }
        return v;
    }

    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const vector_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               V &v, packed_random_access_iterator_tag, row_major_tag) {
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename V::size_type size_type;

        typename expression2_type::const_iterator1 it1 (e2 ().begin1 ());
        typename expression2_type::const_iterator1 it1_end (e2 ().end1 ());
        while (it1 != it1_end) {
            size_type index1 (it1.index1 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
            typename expression2_type::const_iterator2 it2 (it1.begin ());
            typename expression2_type::const_iterator2 it2_end (it1.end ());
#else
            typename expression2_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
            typename expression2_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
            while (it2 != it2_end) {
                v (it2.index2 ()) += *it2 * e1 () (index1);
                ++ it2;
            }
            ++ it1;
        }
        return v;
    }

    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const vector_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               V &v, sparse_bidirectional_iterator_tag) {
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename V::size_type size_type;

        typename expression1_type::const_iterator it (e1 ().begin ());
        typename expression1_type::const_iterator it_end (e1 ().end ());
        while (it != it_end) {
            v.plus_assign (*it * row (e2 (), it.index ()));
            ++ it;
        }
        return v;
    }

    // Dispatcher
    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const vector_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               V &v, packed_random_access_iterator_tag) {
        typedef typename E2::orientation_category orientation_category;
        return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
    }


  /** \brief computes <tt>v += A<sup>T</sup> x</tt> or <tt>v = A<sup>T</sup> x</tt> in an
          optimized fashion.

          \param e1 the vector expression \c x
          \param e2 the matrix expression \c A
          \param v  the result vector \c v
          \param init a boolean parameter

          <tt>axpy_prod(x, A, v, init)</tt> implements the well known
          axpy-product.  Setting \a init to \c true is equivalent to call
          <tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
          defaults to \c true, but this may change in the future.

          Up to now there are some specialisation for compressed
          matrices that give a large speed up compared to prod.
          
          \ingroup blas2

          \internal
          
          template parameters:
          \param V type of the result vector \c v
          \param E1 type of a vector expression \c x
          \param E2 type of a matrix expression \c A
  */
    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const vector_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               V &v, bool init = true) {
        typedef typename V::value_type value_type;
        typedef typename E1::const_iterator::iterator_category iterator_category;

        if (init)
            v.assign (zero_vector<value_type> (e2 ().size2 ()));
#if BOOST_UBLAS_TYPE_CHECK
        vector<value_type> cv (v);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
        indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
        axpy_prod (e1, e2, v, iterator_category ());
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
        return v;
    }
    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V
    axpy_prod (const vector_expression<E1> &e1,
               const matrix_expression<E2> &e2) {
        typedef V vector_type;

        vector_type v (e2 ().size2 ());
        return axpy_prod (e1, e2, v, true);
    }

    template<class M, class E1, class E2, class TRI>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, TRI,
               dense_proxy_tag, row_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#if BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, row_major> cm (m);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
        indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
        size_type size1 (e1 ().size1 ());
        size_type size2 (e1 ().size2 ());
        for (size_type i = 0; i < size1; ++ i)
            for (size_type j = 0; j < size2; ++ j)
                row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j));
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }
    template<class M, class E1, class E2, class TRI>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, TRI,
               sparse_proxy_tag, row_major_tag) {
        typedef M matrix_type;
        typedef TRI triangular_restriction;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#if BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, row_major> cm (m);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
        indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
        typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
        typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
        while (it1 != it1_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
            typename expression1_type::const_iterator2 it2 (it1.begin ());
            typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
            typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
            typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
            while (it2 != it2_end) {
                // row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ()));
                matrix_row<expression2_type> mr (e2 (), it2.index2 ());
                typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
                typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
                while (itr != itr_end) {
                    if (triangular_restriction::other (it1.index1 (), itr.index ()))
                        m (it1.index1 (), itr.index ()) += *it2 * *itr;
                    ++ itr;
                }
                ++ it2;
            }
            ++ it1;
        }
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }

    template<class M, class E1, class E2, class TRI>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, TRI,
               dense_proxy_tag, column_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#if BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, column_major> cm (m);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
        indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
        size_type size1 (e2 ().size1 ());
        size_type size2 (e2 ().size2 ());
        for (size_type j = 0; j < size2; ++ j)
            for (size_type i = 0; i < size1; ++ i)
                column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i));
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }
    template<class M, class E1, class E2, class TRI>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, TRI,
               sparse_proxy_tag, column_major_tag) {
        typedef M matrix_type;
        typedef TRI triangular_restriction;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#if BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, column_major> cm (m);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
        indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
        typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
        typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
        while (it2 != it2_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
            typename expression2_type::const_iterator1 it1 (it2.begin ());
            typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
            typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
            typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
            while (it1 != it1_end) {
                // column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
                matrix_column<expression1_type> mc (e1 (), it1.index1 ());
                typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
                typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
                while (itc != itc_end) {
                    if(triangular_restriction::other (itc.index (), it2.index2 ()))
                       m (itc.index (), it2.index2 ()) += *it1 * *itc;
                    ++ itc;
                }
                ++ it1;
            }
            ++ it2;
        }
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }

    // Dispatcher
    template<class M, class E1, class E2, class TRI>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, TRI, bool init = true) {
        typedef typename M::value_type value_type;
        typedef typename M::storage_category storage_category;
        typedef typename M::orientation_category orientation_category;
        typedef TRI triangular_restriction;

        if (init)
            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
        return axpy_prod (e1, e2, m, triangular_restriction (), storage_category (), orientation_category ());
    }
    template<class M, class E1, class E2, class TRI>
    BOOST_UBLAS_INLINE
    M
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               TRI) {
        typedef M matrix_type;
        typedef TRI triangular_restriction;

        matrix_type m (e1 ().size1 (), e2 ().size2 ());
        return axpy_prod (e1, e2, m, triangular_restriction (), true);
    }

  /** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
          optimized fashion.

          \param e1 the matrix expression \c A
          \param e2 the matrix expression \c X
          \param m  the result matrix \c M
          \param init a boolean parameter

          <tt>axpy_prod(A, X, M, init)</tt> implements the well known
          axpy-product.  Setting \a init to \c true is equivalent to call
          <tt>M.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
          defaults to \c true, but this may change in the future.

          Up to now there are no specialisations.
          
          \ingroup blas3

          \internal
          
          template parameters:
          \param M type of the result matrix \c M
          \param E1 type of a matrix expression \c A
          \param E2 type of a matrix expression \c X
  */
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, bool init = true) {
        typedef typename M::value_type value_type;
        typedef typename M::storage_category storage_category;
        typedef typename M::orientation_category orientation_category;

        if (init)
            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
        return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ());
    }
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2) {
        typedef M matrix_type;

        matrix_type m (e1 ().size1 (), e2 ().size2 ());
        return axpy_prod (e1, e2, m, full (), true);
    }


    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M &
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              M &m,
              dense_proxy_tag, row_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#if BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, row_major> cm (m);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
        indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
        size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
        for (size_type k = 0; k < size; ++ k) {
            vector<value_type> ce1 (column (e1 (), k));
            vector<value_type> re2 (row (e2 (), k));
            m.plus_assign (outer_prod (ce1, re2));
        }
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }

    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M &
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              M &m,
              dense_proxy_tag, column_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#if BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, column_major> cm (m);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
        indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
        size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
        for (size_type k = 0; k < size; ++ k) {
            vector<value_type> ce1 (column (e1 (), k));
            vector<value_type> re2 (row (e2 (), k));
            m.plus_assign (outer_prod (ce1, re2));
        }
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }

    // Dispatcher

  /** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
          optimized fashion.

          \param e1 the matrix expression \c A
          \param e2 the matrix expression \c X
          \param m  the result matrix \c M
          \param init a boolean parameter

          <tt>opb_prod(A, X, M, init)</tt> implements the well known
          axpy-product. Setting \a init to \c true is equivalent to call
          <tt>M.clear()</tt> before <tt>opb_prod</tt>. Currently \a init
          defaults to \c true, but this may change in the future.

          This function may give a speedup if \c A has less columns than
          rows, because the product is computed as a sum of outer
          products.
          
          \ingroup blas3

          \internal
          
          template parameters:
          \param M type of the result matrix \c M
          \param E1 type of a matrix expression \c A
          \param E2 type of a matrix expression \c X
  */
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M &
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              M &m, bool init = true) {
        typedef typename M::value_type value_type;
        typedef typename M::storage_category storage_category;
        typedef typename M::orientation_category orientation_category;

        if (init)
            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
        return opb_prod (e1, e2, m, storage_category (), orientation_category ());
    }
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2) {
        typedef M matrix_type;

        matrix_type m (e1 ().size1 (), e2 ().size2 ());
        return opb_prod (e1, e2, m, true);
    }

}}}

#endif