This file is indexed.

/usr/include/boost/multiprecision/tommath.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
///////////////////////////////////////////////////////////////////////////////
//  Copyright 2011 John Maddock. Distributed under the Boost
//  Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_MP_TOMMATH_BACKEND_HPP
#define BOOST_MATH_MP_TOMMATH_BACKEND_HPP

#include <boost/multiprecision/number.hpp>
#include <boost/multiprecision/rational_adaptor.hpp>
#include <boost/multiprecision/detail/integer_ops.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/cstdint.hpp>
#include <boost/scoped_array.hpp>
#include <tommath.h>
#include <cmath>
#include <limits>
#include <climits>

namespace boost{ namespace multiprecision{ namespace backends{

namespace detail{

inline void check_tommath_result(unsigned v)
{
   if(v != MP_OKAY)
   {
      BOOST_THROW_EXCEPTION(std::runtime_error(mp_error_to_string(v)));
   }
}

}

struct tommath_int;

void eval_multiply(tommath_int& t, const tommath_int& o);
void eval_add(tommath_int& t, const tommath_int& o);

struct tommath_int
{
   typedef mpl::list<boost::int32_t, long long>             signed_types;
   typedef mpl::list<boost::uint32_t, unsigned long long>   unsigned_types;
   typedef mpl::list<long double>                           float_types;

   tommath_int()
   {
      detail::check_tommath_result(mp_init(&m_data));
   }
   tommath_int(const tommath_int& o)
   {
      detail::check_tommath_result(mp_init_copy(&m_data, const_cast< ::mp_int*>(&o.m_data)));
   }
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
   tommath_int(tommath_int&& o) BOOST_NOEXCEPT
   {
      m_data = o.m_data;
      o.m_data.dp = 0;
   }
   tommath_int& operator = (tommath_int&& o)
   {
      mp_exch(&m_data, &o.data());
      return *this;
   }
#endif
   tommath_int& operator = (const tommath_int& o)
   {
      if(m_data.dp == 0)
         detail::check_tommath_result(mp_init(&m_data));
      if(o.m_data.dp)
         detail::check_tommath_result(mp_copy(const_cast< ::mp_int*>(&o.m_data), &m_data));
      return *this;
   }
   tommath_int& operator = (unsigned long long i)
   {
      if(m_data.dp == 0)
         detail::check_tommath_result(mp_init(&m_data));
      unsigned long long mask = ((1uLL << std::numeric_limits<unsigned>::digits) - 1);
      unsigned shift = 0;
      ::mp_int t;
      detail::check_tommath_result(mp_init(&t));
      mp_zero(&m_data);
      while(i)
      {
         detail::check_tommath_result(mp_set_int(&t, static_cast<unsigned>(i & mask)));
         if(shift)
            detail::check_tommath_result(mp_mul_2d(&t, shift, &t));
         detail::check_tommath_result((mp_add(&m_data, &t, &m_data)));
         shift += std::numeric_limits<unsigned>::digits;
         i >>= std::numeric_limits<unsigned>::digits;
      }
      mp_clear(&t);
      return *this;
   }
   tommath_int& operator = (long long i)
   {
      BOOST_MP_USING_ABS
      if(m_data.dp == 0)
         detail::check_tommath_result(mp_init(&m_data));
      bool neg = i < 0;
      *this = static_cast<unsigned long long>(abs(i));
      if(neg)
         detail::check_tommath_result(mp_neg(&m_data, &m_data));
      return *this;
   }
   //
   // Note that although mp_set_int takes an unsigned long as an argument
   // it only sets the first 32-bits to the result, and ignores the rest.
   // So use uint32_t as the largest type to pass to this function.
   //
   tommath_int& operator = (boost::uint32_t i)
   {
      if(m_data.dp == 0)
         detail::check_tommath_result(mp_init(&m_data));
      detail::check_tommath_result((mp_set_int(&m_data, i)));
      return *this;
   }
   tommath_int& operator = (boost::int32_t i)
   {
      if(m_data.dp == 0)
         detail::check_tommath_result(mp_init(&m_data));
      bool neg = i < 0;
      *this = static_cast<boost::uint32_t>(std::abs(i));
      if(neg)
         detail::check_tommath_result(mp_neg(&m_data, &m_data));
      return *this;
   }
   tommath_int& operator = (long double a)
   {
      using std::frexp;
      using std::ldexp;
      using std::floor;

      if(m_data.dp == 0)
         detail::check_tommath_result(mp_init(&m_data));

      if (a == 0) {
         detail::check_tommath_result(mp_set_int(&m_data, 0));
         return *this;
      }

      if (a == 1) {
         detail::check_tommath_result(mp_set_int(&m_data, 1));
         return *this;
      }

      BOOST_ASSERT(!(boost::math::isinf)(a));
      BOOST_ASSERT(!(boost::math::isnan)(a));

      int e;
      long double f, term;
      detail::check_tommath_result(mp_set_int(&m_data, 0u));
      ::mp_int t;
      detail::check_tommath_result(mp_init(&t));

      f = frexp(a, &e);

      static const int shift = std::numeric_limits<int>::digits - 1;

      while(f)
      {
         // extract int sized bits from f:
         f = ldexp(f, shift);
         term = floor(f);
         e -= shift;
         detail::check_tommath_result(mp_mul_2d(&m_data, shift, &m_data));
         if(term > 0)
         {
            detail::check_tommath_result(mp_set_int(&t, static_cast<int>(term)));
            detail::check_tommath_result(mp_add(&m_data, &t, &m_data));
         }
         else
         {
            detail::check_tommath_result(mp_set_int(&t, static_cast<int>(-term)));
            detail::check_tommath_result(mp_sub(&m_data, &t, &m_data));
         }
         f -= term;
      }
      if(e > 0)
         detail::check_tommath_result(mp_mul_2d(&m_data, e, &m_data));
      else if(e < 0)
      {
         tommath_int t2;
         detail::check_tommath_result(mp_div_2d(&m_data, -e, &m_data, &t2.data()));
      }
      mp_clear(&t);
      return *this;
   }
   tommath_int& operator = (const char* s)
   {
      //
      // We don't use libtommath's own routine because it doesn't error check the input :-(
      //
      if(m_data.dp == 0)
         detail::check_tommath_result(mp_init(&m_data));
      std::size_t n = s ? std::strlen(s) : 0;
      *this = static_cast<boost::uint32_t>(0u);
      unsigned radix = 10;
      bool isneg = false;
      if(n && (*s == '-'))
      {
         --n;
         ++s;
         isneg = true;
      }
      if(n && (*s == '0'))
      {
         if((n > 1) && ((s[1] == 'x') || (s[1] == 'X')))
         {
            radix = 16;
            s +=2;
            n -= 2;
         }
         else
         {
            radix = 8;
            n -= 1;
         }
      }
      if(n)
      {
         if(radix == 8 || radix == 16)
         {
            unsigned shift = radix == 8 ? 3 : 4;
            unsigned block_count = DIGIT_BIT / shift;
            unsigned block_shift = shift * block_count;
            unsigned long long val, block;
            while(*s)
            {
               block = 0;
               for(unsigned i = 0; (i < block_count); ++i)
               {
                  if(*s >= '0' && *s <= '9')
                     val = *s - '0';
                  else if(*s >= 'a' && *s <= 'f')
                     val = 10 + *s - 'a';
                  else if(*s >= 'A' && *s <= 'F')
                     val = 10 + *s - 'A';
                  else
                     val = 400;
                  if(val > radix)
                  {
                     BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected content found while parsing character string."));
                  }
                  block <<= shift;
                  block |= val;
                  if(!*++s)
                  {
                     // final shift is different:
                     block_shift = (i + 1) * shift;
                     break;
                  }
               }
               detail::check_tommath_result(mp_mul_2d(&data(), block_shift, &data()));
               if(data().used)
                  data().dp[0] |= block;
               else
                  *this = block;
            }
         }
         else
         {
            // Base 10, we extract blocks of size 10^9 at a time, that way
            // the number of multiplications is kept to a minimum:
            boost::uint32_t block_mult = 1000000000;
            while(*s)
            {
               boost::uint32_t block = 0;
               for(unsigned i = 0; i < 9; ++i)
               {
                  boost::uint32_t val;
                  if(*s >= '0' && *s <= '9')
                     val = *s - '0';
                  else
                     BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected character encountered in input."));
                  block *= 10;
                  block += val;
                  if(!*++s)
                  {
                     static const boost::uint32_t block_multiplier[9]  = { 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
                     block_mult = block_multiplier[i];
                     break;
                  }
               }
               tommath_int t;
               t = block_mult;
               eval_multiply(*this, t);
               t = block;
               eval_add(*this, t);
            }
         }
      }
      if(isneg)
         this->negate();
      return *this;
   }
   std::string str(std::streamsize /*digits*/, std::ios_base::fmtflags f)const
   {
      BOOST_ASSERT(m_data.dp);
      int base = 10;
      if((f & std::ios_base::oct) == std::ios_base::oct)
         base = 8;
      else if((f & std::ios_base::hex) == std::ios_base::hex)
         base = 16;
      //
      // sanity check, bases 8 and 16 are only available for positive numbers:
      //
      if((base != 10) && m_data.sign)
         BOOST_THROW_EXCEPTION(std::runtime_error("Formatted output in bases 8 or 16 is only available for positive numbers"));
      int s;
      detail::check_tommath_result(mp_radix_size(const_cast< ::mp_int*>(&m_data), base, &s));
      boost::scoped_array<char> a(new char[s+1]);
      detail::check_tommath_result(mp_toradix_n(const_cast< ::mp_int*>(&m_data), a.get(), base, s+1));
      std::string result = a.get();
      if((base != 10) && (f & std::ios_base::showbase))
      {
         int pos = result[0] == '-' ? 1 : 0;
         const char* pp = base == 8 ? "0" : "0x";
         result.insert(pos, pp);
      }
      if((f & std::ios_base::showpos) && (result[0] != '-'))
         result.insert(0, 1, '+');
      return result;
   }
   ~tommath_int()
   {
      if(m_data.dp)
         mp_clear(&m_data);
   }
   void negate()
   {
      BOOST_ASSERT(m_data.dp);
      mp_neg(&m_data, &m_data);
   }
   int compare(const tommath_int& o)const
   {
      BOOST_ASSERT(m_data.dp && o.m_data.dp);
      return mp_cmp(const_cast< ::mp_int*>(&m_data), const_cast< ::mp_int*>(&o.m_data));
   }
   template <class V>
   int compare(V v)const
   {
      tommath_int d;
      tommath_int t(*this);
      detail::check_tommath_result(mp_shrink(&t.data()));
      d = v;
      return t.compare(d);
   }
   ::mp_int& data() 
   { 
      BOOST_ASSERT(m_data.dp);
      return m_data; 
   }
   const ::mp_int& data()const 
   { 
      BOOST_ASSERT(m_data.dp);
      return m_data; 
   }
   void swap(tommath_int& o)BOOST_NOEXCEPT
   {
      mp_exch(&m_data, &o.data());
   }
protected:
   ::mp_int m_data;
};

#define BOOST_MP_TOMMATH_BIT_OP_CHECK(x)\
   if(SIGN(&x.data()))\
      BOOST_THROW_EXCEPTION(std::runtime_error("Bitwise operations on libtommath negative valued integers are disabled as they produce unpredictable results"))

int eval_get_sign(const tommath_int& val);

inline void eval_add(tommath_int& t, const tommath_int& o)
{
   detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_subtract(tommath_int& t, const tommath_int& o)
{
   detail::check_tommath_result(mp_sub(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_multiply(tommath_int& t, const tommath_int& o)
{
   detail::check_tommath_result(mp_mul(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_divide(tommath_int& t, const tommath_int& o)
{
   using default_ops::eval_is_zero;
   tommath_int temp;
   if(eval_is_zero(o))
      BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
   detail::check_tommath_result(mp_div(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data(), &temp.data()));
}
inline void eval_modulus(tommath_int& t, const tommath_int& o)
{
   using default_ops::eval_is_zero;
   if(eval_is_zero(o))
      BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
   bool neg = eval_get_sign(t) < 0;
   bool neg2 = eval_get_sign(o) < 0;
   detail::check_tommath_result(mp_mod(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
   if((neg != neg2) && (eval_get_sign(t) != 0))
   {
      t.negate();
      detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
      t.negate();
   }
   else if(neg && (t.compare(o) == 0))
   {
      mp_zero(&t.data());
   }
}
template <class UI>
inline void eval_left_shift(tommath_int& t, UI i)
{
   detail::check_tommath_result(mp_mul_2d(&t.data(), static_cast<unsigned>(i), &t.data()));
}
template <class UI>
inline void eval_right_shift(tommath_int& t, UI i)
{
   tommath_int d;
   detail::check_tommath_result(mp_div_2d(&t.data(), static_cast<unsigned>(i), &t.data(), &d.data()));
}
template <class UI>
inline void eval_left_shift(tommath_int& t, const tommath_int& v, UI i)
{
   detail::check_tommath_result(mp_mul_2d(const_cast< ::mp_int*>(&v.data()), static_cast<unsigned>(i), &t.data()));
}
template <class UI>
inline void eval_right_shift(tommath_int& t, const tommath_int& v, UI i)
{
   tommath_int d;
   detail::check_tommath_result(mp_div_2d(const_cast< ::mp_int*>(&v.data()), static_cast<unsigned long>(i), &t.data(), &d.data()));
}

inline void eval_bitwise_and(tommath_int& result, const tommath_int& v)
{
   BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
   BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
   detail::check_tommath_result(mp_and(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
}

inline void eval_bitwise_or(tommath_int& result, const tommath_int& v)
{
   BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
   BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
   detail::check_tommath_result(mp_or(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
}

inline void eval_bitwise_xor(tommath_int& result, const tommath_int& v)
{
   BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
   BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
   detail::check_tommath_result(mp_xor(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
}

inline void eval_add(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
   detail::check_tommath_result(mp_add(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_subtract(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
   detail::check_tommath_result(mp_sub(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_multiply(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
   detail::check_tommath_result(mp_mul(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_divide(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
   using default_ops::eval_is_zero;
   tommath_int d;
   if(eval_is_zero(o))
      BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
   detail::check_tommath_result(mp_div(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data(), &d.data()));
}
inline void eval_modulus(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
   using default_ops::eval_is_zero;
   if(eval_is_zero(o))
      BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
   bool neg = eval_get_sign(p) < 0;
   bool neg2 = eval_get_sign(o) < 0;
   detail::check_tommath_result(mp_mod(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
   if((neg != neg2) && (eval_get_sign(t) != 0))
   {
      t.negate();
      detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
      t.negate();
   }
   else if(neg  && (t.compare(o) == 0))
   {
      mp_zero(&t.data());
   }
}

inline void eval_bitwise_and(tommath_int& result, const tommath_int& u, const tommath_int& v)
{
   BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
   BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
   detail::check_tommath_result(mp_and(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
}

inline void eval_bitwise_or(tommath_int& result, const tommath_int& u, const tommath_int& v)
{
   BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
   BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
   detail::check_tommath_result(mp_or(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
}

inline void eval_bitwise_xor(tommath_int& result, const tommath_int& u, const tommath_int& v)
{
   BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
   BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
   detail::check_tommath_result(mp_xor(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
/*
inline void eval_complement(tommath_int& result, const tommath_int& u)
{
   //
   // Although this code works, it doesn't really do what the user might expect....
   // and it's hard to see how it ever could.  Disabled for now:
   //
   result = u;
   for(int i = 0; i < result.data().used; ++i)
   {
      result.data().dp[i] = MP_MASK & ~(result.data().dp[i]);
   }
   //
   // We now need to pad out the left of the value with 1's to round up to a whole number of
   // CHAR_BIT * sizeof(mp_digit) units.  Otherwise we'll end up with a very strange number of
   // bits set!
   //
   unsigned shift = result.data().used * DIGIT_BIT;    // How many bits we're actually using
   // How many bits we actually need, reduced by one to account for a mythical sign bit:
   int padding = result.data().used * std::numeric_limits<mp_digit>::digits - shift - 1; 
   while(padding >= std::numeric_limits<mp_digit>::digits) 
      padding -= std::numeric_limits<mp_digit>::digits;

   // Create a mask providing the extra bits we need and add to result:
   tommath_int mask;
   mask = static_cast<long long>((1u << padding) - 1);
   eval_left_shift(mask, shift);
   add(result, mask);
}
*/
inline bool eval_is_zero(const tommath_int& val)
{
   return mp_iszero(&val.data());
}
inline int eval_get_sign(const tommath_int& val)
{
   return mp_iszero(&val.data()) ? 0 : SIGN(&val.data()) ? -1 : 1;
}
template <class A>
inline void eval_convert_to(A* result, const tommath_int& val)
{
   *result = boost::lexical_cast<A>(val.str(0, std::ios_base::fmtflags(0)));
}
inline void eval_convert_to(char* result, const tommath_int& val)
{
   *result = static_cast<char>(boost::lexical_cast<int>(val.str(0, std::ios_base::fmtflags(0))));
}
inline void eval_convert_to(unsigned char* result, const tommath_int& val)
{
   *result = static_cast<unsigned char>(boost::lexical_cast<unsigned>(val.str(0, std::ios_base::fmtflags(0))));
}
inline void eval_convert_to(signed char* result, const tommath_int& val)
{
   *result = static_cast<signed char>(boost::lexical_cast<int>(val.str(0, std::ios_base::fmtflags(0))));
}
inline void eval_abs(tommath_int& result, const tommath_int& val)
{
   detail::check_tommath_result(mp_abs(const_cast< ::mp_int*>(&val.data()), &result.data()));
}
inline void eval_gcd(tommath_int& result, const tommath_int& a, const tommath_int& b)
{
   detail::check_tommath_result(mp_gcd(const_cast< ::mp_int*>(&a.data()), const_cast< ::mp_int*>(&b.data()), const_cast< ::mp_int*>(&result.data())));
}
inline void eval_lcm(tommath_int& result, const tommath_int& a, const tommath_int& b)
{
   detail::check_tommath_result(mp_lcm(const_cast< ::mp_int*>(&a.data()), const_cast< ::mp_int*>(&b.data()), const_cast< ::mp_int*>(&result.data())));
}
inline void eval_powm(tommath_int& result, const tommath_int& base, const tommath_int& p, const tommath_int& m)
{
   if(eval_get_sign(p) < 0)
   {
      BOOST_THROW_EXCEPTION(std::runtime_error("powm requires a positive exponent."));
   }
   detail::check_tommath_result(mp_exptmod(const_cast< ::mp_int*>(&base.data()), const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&m.data()), &result.data()));
}


inline void eval_qr(const tommath_int& x, const tommath_int& y, 
   tommath_int& q, tommath_int& r)
{
   detail::check_tommath_result(mp_div(const_cast< ::mp_int*>(&x.data()), const_cast< ::mp_int*>(&y.data()), &q.data(), &r.data()));
}

inline unsigned eval_lsb(const tommath_int& val)
{
   int c = eval_get_sign(val);
   if(c == 0)
   {
      BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
   }
   if(c < 0)
   {
      BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
   }
   return mp_cnt_lsb(const_cast< ::mp_int*>(&val.data()));
}

template <class Integer>
inline typename enable_if<is_unsigned<Integer>, Integer>::type eval_integer_modulus(const tommath_int& x, Integer val)
{
   static const mp_digit m = (static_cast<mp_digit>(1) << DIGIT_BIT) - 1;
   if(val <= m)
   {
      mp_digit d;
      detail::check_tommath_result(mp_mod_d(const_cast< ::mp_int*>(&x.data()), static_cast<mp_digit>(val), &d));
      return d;
   }
   else
   {
      return default_ops::eval_integer_modulus(x, val);
   }
}
template <class Integer>
inline typename enable_if<is_signed<Integer>, Integer>::type eval_integer_modulus(const tommath_int& x, Integer val)
{
   typedef typename make_unsigned<Integer>::type unsigned_type;
   return eval_integer_modulus(x, static_cast<unsigned_type>(std::abs(val)));
}

} // namespace backends

using boost::multiprecision::backends::tommath_int;

template<>
struct number_category<tommath_int> : public mpl::int_<number_kind_integer>{};

typedef number<tommath_int >                     tom_int;
typedef rational_adaptor<tommath_int>               tommath_rational;
typedef number<tommath_rational>                 tom_rational;

}}  // namespaces

namespace std{

template<boost::multiprecision::expression_template_option ExpressionTemplates> 
class numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >
{
   typedef boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> number_type;
public:
   BOOST_STATIC_CONSTEXPR bool is_specialized = true;
   //
   // Largest and smallest numbers are bounded only by available memory, set
   // to zero:
   //
   static number_type (min)()
   { 
      return number_type();
   }
   static number_type (max)() 
   { 
      return number_type();
   }
   static number_type lowest() { return (min)(); }
   BOOST_STATIC_CONSTEXPR int digits = INT_MAX;
   BOOST_STATIC_CONSTEXPR int digits10 = (INT_MAX / 1000) * 301L;
   BOOST_STATIC_CONSTEXPR int max_digits10 = digits10 + 2;
   BOOST_STATIC_CONSTEXPR bool is_signed = true;
   BOOST_STATIC_CONSTEXPR bool is_integer = true;
   BOOST_STATIC_CONSTEXPR bool is_exact = true;
   BOOST_STATIC_CONSTEXPR int radix = 2;
   static number_type epsilon() { return number_type(); }
   static number_type round_error() { return number_type(); }
   BOOST_STATIC_CONSTEXPR int min_exponent = 0;
   BOOST_STATIC_CONSTEXPR int min_exponent10 = 0;
   BOOST_STATIC_CONSTEXPR int max_exponent = 0;
   BOOST_STATIC_CONSTEXPR int max_exponent10 = 0;
   BOOST_STATIC_CONSTEXPR bool has_infinity = false;
   BOOST_STATIC_CONSTEXPR bool has_quiet_NaN = false;
   BOOST_STATIC_CONSTEXPR bool has_signaling_NaN = false;
   BOOST_STATIC_CONSTEXPR float_denorm_style has_denorm = denorm_absent;
   BOOST_STATIC_CONSTEXPR bool has_denorm_loss = false;
   static number_type infinity() { return number_type(); }
   static number_type quiet_NaN() { return number_type(); }
   static number_type signaling_NaN() { return number_type(); }
   static number_type denorm_min() { return number_type(); }
   BOOST_STATIC_CONSTEXPR bool is_iec559 = false;
   BOOST_STATIC_CONSTEXPR bool is_bounded = false;
   BOOST_STATIC_CONSTEXPR bool is_modulo = false;
   BOOST_STATIC_CONSTEXPR bool traps = false;
   BOOST_STATIC_CONSTEXPR bool tinyness_before = false;
   BOOST_STATIC_CONSTEXPR float_round_style round_style = round_toward_zero;
};

#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION

template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::digits;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::digits10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_digits10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_signed;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_integer;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_exact;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::radix;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::min_exponent;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::min_exponent10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_exponent;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_exponent10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_infinity;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_quiet_NaN;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_signaling_NaN;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST float_denorm_style numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_denorm;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_denorm_loss;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_iec559;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_bounded;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_modulo;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::traps;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::tinyness_before;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST float_round_style numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::round_style;

#endif
}

#endif