This file is indexed.

/usr/include/boost/math/tools/roots.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
//  (C) Copyright John Maddock 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP
#define BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <utility>
#include <boost/config/no_tr1/cmath.hpp>
#include <stdexcept>

#include <boost/math/tools/config.hpp>
#include <boost/cstdint.hpp>
#include <boost/assert.hpp>
#include <boost/throw_exception.hpp>

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable: 4512)
#endif
#include <boost/math/tools/tuple.hpp>
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif

#include <boost/math/special_functions/sign.hpp>
#include <boost/math/tools/toms748_solve.hpp>
#include <boost/math/policies/error_handling.hpp>

namespace boost{ namespace math{ namespace tools{

namespace detail{

template <class Tuple, class T>
inline void unpack_0(const Tuple& t, T& val)
{ val = boost::math::get<0>(t); }

template <class F, class T>
void handle_zero_derivative(F f,
                            T& last_f0,
                            const T& f0,
                            T& delta,
                            T& result,
                            T& guess,
                            const T& min,
                            const T& max)
{
   if(last_f0 == 0)
   {
      // this must be the first iteration, pretend that we had a
      // previous one at either min or max:
      if(result == min)
      {
         guess = max;
      }
      else
      {
         guess = min;
      }
      unpack_0(f(guess), last_f0);
      delta = guess - result;
   }
   if(sign(last_f0) * sign(f0) < 0)
   {
      // we've crossed over so move in opposite direction to last step:
      if(delta < 0)
      {
         delta = (result - min) / 2;
      }
      else
      {
         delta = (result - max) / 2;
      }
   }
   else
   {
      // move in same direction as last step:
      if(delta < 0)
      {
         delta = (result - max) / 2;
      }
      else
      {
         delta = (result - min) / 2;
      }
   }
}

} // namespace

template <class F, class T, class Tol, class Policy>
std::pair<T, T> bisect(F f, T min, T max, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
{
   T fmin = f(min);
   T fmax = f(max);
   if(fmin == 0)
      return std::make_pair(min, min);
   if(fmax == 0)
      return std::make_pair(max, max);

   //
   // Error checking:
   //
   static const char* function = "boost::math::tools::bisect<%1%>";
   if(min >= max)
   {
      policies::raise_evaluation_error(function, 
         "Arguments in wrong order in boost::math::tools::bisect (first arg=%1%)", min, pol);
   }
   if(fmin * fmax >= 0)
   {
      policies::raise_evaluation_error(function, 
         "No change of sign in boost::math::tools::bisect, either there is no root to find, or there are multiple roots in the interval (f(min) = %1%).", fmin, pol);
   }

   //
   // Three function invocations so far:
   //
   boost::uintmax_t count = max_iter;
   if(count < 3)
      count = 0;
   else
      count -= 3;

   while(count && (0 == tol(min, max)))
   {
      T mid = (min + max) / 2;
      T fmid = f(mid);
      if((mid == max) || (mid == min))
         break;
      if(fmid == 0)
      {
         min = max = mid;
         break;
      }
      else if(sign(fmid) * sign(fmin) < 0)
      {
         max = mid;
         fmax = fmid;
      }
      else
      {
         min = mid;
         fmin = fmid;
      }
      --count;
   }

   max_iter -= count;

#ifdef BOOST_MATH_INSTRUMENT
   std::cout << "Bisection iteration, final count = " << max_iter << std::endl;

   static boost::uintmax_t max_count = 0;
   if(max_iter > max_count)
   {
      max_count = max_iter;
      std::cout << "Maximum iterations: " << max_iter << std::endl;
   }
#endif

   return std::make_pair(min, max);
}

template <class F, class T, class Tol>
inline std::pair<T, T> bisect(F f, T min, T max, Tol tol, boost::uintmax_t& max_iter)
{
   return bisect(f, min, max, tol, max_iter, policies::policy<>());
}

template <class F, class T, class Tol>
inline std::pair<T, T> bisect(F f, T min, T max, Tol tol)
{
   boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
   return bisect(f, min, max, tol, m, policies::policy<>());
}

template <class F, class T>
T newton_raphson_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter)
{
   BOOST_MATH_STD_USING

   T f0(0), f1, last_f0(0);
   T result = guess;

   T factor = static_cast<T>(ldexp(1.0, 1 - digits));
   T delta = 1;
   T delta1 = tools::max_value<T>();
   T delta2 = tools::max_value<T>();

   boost::uintmax_t count(max_iter);

   do{
      last_f0 = f0;
      delta2 = delta1;
      delta1 = delta;
      boost::math::tie(f0, f1) = f(result);
      if(0 == f0)
         break;
      if(f1 == 0)
      {
         // Oops zero derivative!!!
#ifdef BOOST_MATH_INSTRUMENT
         std::cout << "Newton iteration, zero derivative found" << std::endl;
#endif
         detail::handle_zero_derivative(f, last_f0, f0, delta, result, guess, min, max);
      }
      else
      {
         delta = f0 / f1;
      }
#ifdef BOOST_MATH_INSTRUMENT
      std::cout << "Newton iteration, delta = " << delta << std::endl;
#endif
      if(fabs(delta * 2) > fabs(delta2))
      {
         // last two steps haven't converged, try bisection:
         delta = (delta > 0) ? (result - min) / 2 : (result - max) / 2;
      }
      guess = result;
      result -= delta;
      if(result <= min)
      {
         delta = 0.5F * (guess - min);
         result = guess - delta;
         if((result == min) || (result == max))
            break;
      }
      else if(result >= max)
      {
         delta = 0.5F * (guess - max);
         result = guess - delta;
         if((result == min) || (result == max))
            break;
      }
      // update brackets:
      if(delta > 0)
         max = guess;
      else
         min = guess;
   }while(--count && (fabs(result * factor) < fabs(delta)));

   max_iter -= count;

#ifdef BOOST_MATH_INSTRUMENT
   std::cout << "Newton Raphson iteration, final count = " << max_iter << std::endl;

   static boost::uintmax_t max_count = 0;
   if(max_iter > max_count)
   {
      max_count = max_iter;
      std::cout << "Maximum iterations: " << max_iter << std::endl;
   }
#endif

   return result;
}

template <class F, class T>
inline T newton_raphson_iterate(F f, T guess, T min, T max, int digits)
{
   boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
   return newton_raphson_iterate(f, guess, min, max, digits, m);
}

template <class F, class T>
T halley_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter)
{
   BOOST_MATH_STD_USING

   T f0(0), f1, f2;
   T result = guess;

   T factor = static_cast<T>(ldexp(1.0, 1 - digits));
   T delta = (std::max)(T(10000000 * guess), T(10000000));  // arbitarily large delta
   T last_f0 = 0;
   T delta1 = delta;
   T delta2 = delta;

   bool out_of_bounds_sentry = false;

#ifdef BOOST_MATH_INSTRUMENT
   std::cout << "Halley iteration, limit = " << factor << std::endl;
#endif

   boost::uintmax_t count(max_iter);

   do{
      last_f0 = f0;
      delta2 = delta1;
      delta1 = delta;
      boost::math::tie(f0, f1, f2) = f(result);

      BOOST_MATH_INSTRUMENT_VARIABLE(f0);
      BOOST_MATH_INSTRUMENT_VARIABLE(f1);
      BOOST_MATH_INSTRUMENT_VARIABLE(f2);
      
      if(0 == f0)
         break;
      if((f1 == 0) && (f2 == 0))
      {
         // Oops zero derivative!!!
#ifdef BOOST_MATH_INSTRUMENT
         std::cout << "Halley iteration, zero derivative found" << std::endl;
#endif
         detail::handle_zero_derivative(f, last_f0, f0, delta, result, guess, min, max);
      }
      else
      {
         if(f2 != 0)
         {
            T denom = 2 * f0;
            T num = 2 * f1 - f0 * (f2 / f1);

            BOOST_MATH_INSTRUMENT_VARIABLE(denom);
            BOOST_MATH_INSTRUMENT_VARIABLE(num);

            if((fabs(num) < 1) && (fabs(denom) >= fabs(num) * tools::max_value<T>()))
            {
               // possible overflow, use Newton step:
               delta = f0 / f1;
            }
            else
               delta = denom / num;
            if(delta * f1 / f0 < 0)
            {
               // Oh dear, we have a problem as Newton and Halley steps
               // disagree about which way we should move.  Probably
               // there is cancelation error in the calculation of the
               // Halley step, or else the derivatives are so small
               // that their values are basically trash.  We will move
               // in the direction indicated by a Newton step, but
               // by no more than twice the current guess value, otherwise
               // we can jump way out of bounds if we're not careful.
               // See https://svn.boost.org/trac/boost/ticket/8314.
               delta = f0 / f1;
               if(fabs(delta) > 2 * fabs(guess))
                  delta = (delta < 0 ? -1 : 1) * 2 * fabs(guess);
            }
         }
         else
            delta = f0 / f1;
      }
#ifdef BOOST_MATH_INSTRUMENT
      std::cout << "Halley iteration, delta = " << delta << std::endl;
#endif
      T convergence = fabs(delta / delta2);
      if((convergence > 0.8) && (convergence < 2))
      {
         // last two steps haven't converged, try bisection:
         delta = (delta > 0) ? (result - min) / 2 : (result - max) / 2;
         if(fabs(delta) > result)
            delta = sign(delta) * result; // protect against huge jumps!
         // reset delta2 so that this branch will *not* be taken on the
         // next iteration:
         delta2 = delta * 3;
         BOOST_MATH_INSTRUMENT_VARIABLE(delta);
      }
      guess = result;
      result -= delta;
      BOOST_MATH_INSTRUMENT_VARIABLE(result);

      // check for out of bounds step:
      if(result < min)
      {
         T diff = ((fabs(min) < 1) && (fabs(result) > 1) && (tools::max_value<T>() / fabs(result) < fabs(min))) ? T(1000)  : T(result / min);
         if(fabs(diff) < 1)
            diff = 1 / diff;
         if(!out_of_bounds_sentry && (diff > 0) && (diff < 3))
         {
            // Only a small out of bounds step, lets assume that the result
            // is probably approximately at min:
            delta = 0.99f * (guess  - min);
            result = guess - delta;
            out_of_bounds_sentry = true; // only take this branch once!
         }
         else
         {
            delta = (guess - min) / 2;
            result = guess - delta;
            if((result == min) || (result == max))
               break;
         }
      }
      else if(result > max)
      {
         T diff = ((fabs(max) < 1) && (fabs(result) > 1) && (tools::max_value<T>() / fabs(result) < fabs(max))) ? T(1000) : T(result / max);
         if(fabs(diff) < 1)
            diff = 1 / diff;
         if(!out_of_bounds_sentry && (diff > 0) && (diff < 3))
         {
            // Only a small out of bounds step, lets assume that the result
            // is probably approximately at min:
            delta = 0.99f * (guess  - max);
            result = guess - delta;
            out_of_bounds_sentry = true; // only take this branch once!
         }
         else
         {
            delta = (guess - max) / 2;
            result = guess - delta;
            if((result == min) || (result == max))
               break;
         }
      }
      // update brackets:
      if(delta > 0)
         max = guess;
      else
         min = guess;
   }while(--count && (fabs(result * factor) < fabs(delta)));

   max_iter -= count;

#ifdef BOOST_MATH_INSTRUMENT
   std::cout << "Halley iteration, final count = " << max_iter << std::endl;
#endif

   return result;
}

template <class F, class T>
inline T halley_iterate(F f, T guess, T min, T max, int digits)
{
   boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
   return halley_iterate(f, guess, min, max, digits, m);
}

template <class F, class T>
T schroeder_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter)
{
   BOOST_MATH_STD_USING

   T f0(0), f1, f2, last_f0(0);
   T result = guess;

   T factor = static_cast<T>(ldexp(1.0, 1 - digits));
   T delta = 0;
   T delta1 = tools::max_value<T>();
   T delta2 = tools::max_value<T>();

#ifdef BOOST_MATH_INSTRUMENT
   std::cout << "Schroeder iteration, limit = " << factor << std::endl;
#endif

   boost::uintmax_t count(max_iter);

   do{
      last_f0 = f0;
      delta2 = delta1;
      delta1 = delta;
      boost::math::tie(f0, f1, f2) = f(result);
      if(0 == f0)
         break;
      if((f1 == 0) && (f2 == 0))
      {
         // Oops zero derivative!!!
#ifdef BOOST_MATH_INSTRUMENT
         std::cout << "Halley iteration, zero derivative found" << std::endl;
#endif
         detail::handle_zero_derivative(f, last_f0, f0, delta, result, guess, min, max);
      }
      else
      {
         T ratio = f0 / f1;
         if(ratio / result < 0.1)
         {
            delta = ratio + (f2 / (2 * f1)) * ratio * ratio;
            // check second derivative doesn't over compensate:
            if(delta * ratio < 0)
               delta = ratio;
         }
         else
            delta = ratio;  // fall back to Newton iteration.
      }
      if(fabs(delta * 2) > fabs(delta2))
      {
         // last two steps haven't converged, try bisection:
         delta = (delta > 0) ? (result - min) / 2 : (result - max) / 2;
      }
      guess = result;
      result -= delta;
#ifdef BOOST_MATH_INSTRUMENT
      std::cout << "Halley iteration, delta = " << delta << std::endl;
#endif
      if(result <= min)
      {
         delta = 0.5F * (guess - min);
         result = guess - delta;
         if((result == min) || (result == max))
            break;
      }
      else if(result >= max)
      {
         delta = 0.5F * (guess - max);
         result = guess - delta;
         if((result == min) || (result == max))
            break;
      }
      // update brackets:
      if(delta > 0)
         max = guess;
      else
         min = guess;
   }while(--count && (fabs(result * factor) < fabs(delta)));

   max_iter -= count;

#ifdef BOOST_MATH_INSTRUMENT
   std::cout << "Schroeder iteration, final count = " << max_iter << std::endl;

   static boost::uintmax_t max_count = 0;
   if(max_iter > max_count)
   {
      max_count = max_iter;
      std::cout << "Maximum iterations: " << max_iter << std::endl;
   }
#endif

   return result;
}

template <class F, class T>
inline T schroeder_iterate(F f, T guess, T min, T max, int digits)
{
   boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
   return schroeder_iterate(f, guess, min, max, digits, m);
}

} // namespace tools
} // namespace math
} // namespace boost

#endif // BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP