This file is indexed.

/usr/include/boost/heap/fibonacci_heap.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
// boost heap: fibonacci heap
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_HEAP_FIBONACCI_HEAP_HPP
#define BOOST_HEAP_FIBONACCI_HEAP_HPP

#include <algorithm>
#include <utility>
#include <vector>

#include <boost/array.hpp>
#include <boost/assert.hpp>

#include <boost/heap/detail/heap_comparison.hpp>
#include <boost/heap/detail/heap_node.hpp>
#include <boost/heap/detail/stable_heap.hpp>
#include <boost/heap/detail/tree_iterator.hpp>

#ifndef BOOST_DOXYGEN_INVOKED
#ifdef BOOST_HEAP_SANITYCHECKS
#define BOOST_HEAP_ASSERT BOOST_ASSERT
#else
#define BOOST_HEAP_ASSERT(expression)
#endif
#endif

namespace boost  {
namespace heap   {
namespace detail {

typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
                              boost::parameter::optional<tag::compare>,
                              boost::parameter::optional<tag::stable>,
                              boost::parameter::optional<tag::constant_time_size>,
                              boost::parameter::optional<tag::stability_counter_type>
                             > fibonacci_heap_signature;

template <typename T, typename Parspec>
struct make_fibonacci_heap_base
{
    static const bool constant_time_size = parameter::binding<Parspec,
                                                              tag::constant_time_size,
                                                              boost::mpl::true_
                                                             >::type::value;

    typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::type base_type;
    typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::allocator_argument allocator_argument;
    typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::compare_argument compare_argument;
    typedef marked_heap_node<typename base_type::internal_type> node_type;

    typedef typename allocator_argument::template rebind<node_type>::other allocator_type;

    struct type:
        base_type,
        allocator_type
    {
        type(compare_argument const & arg):
            base_type(arg)
        {}

#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
        type(type && rhs):
            base_type(std::move(static_cast<base_type&>(rhs))),
            allocator_type(std::move(static_cast<allocator_type&>(rhs)))
        {}

        type(type & rhs):
            base_type(static_cast<base_type&>(rhs)),
            allocator_type(static_cast<allocator_type&>(rhs))
        {}

        type & operator=(type && rhs)
        {
            base_type::operator=(std::move(static_cast<base_type&>(rhs)));
            allocator_type::operator=(std::move(static_cast<allocator_type&>(rhs)));
            return *this;
        }

        type & operator=(type const & rhs)
        {
            base_type::operator=(static_cast<base_type const &>(rhs));
            allocator_type::operator=(static_cast<allocator_type const &>(rhs));
            return *this;
        }
#endif
    };
};

}



/**
 * \class fibonacci_heap
 * \brief fibonacci heap
 *
 * The template parameter T is the type to be managed by the container.
 * The user can specify additional options and if no options are provided default options are used.
 *
 * The container supports the following options:
 * - \c boost::heap::stable<>, defaults to \c stable<false>
 * - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
 * - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
 * - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true>
 * - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
 *
 */
#ifdef BOOST_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template <typename T,
          class A0 = boost::parameter::void_,
          class A1 = boost::parameter::void_,
          class A2 = boost::parameter::void_,
          class A3 = boost::parameter::void_,
          class A4 = boost::parameter::void_
         >
#endif
class fibonacci_heap:
    private detail::make_fibonacci_heap_base<T,
                                             typename detail::fibonacci_heap_signature::bind<A0, A1, A2, A3, A4>::type
                                            >::type
{
    typedef typename detail::fibonacci_heap_signature::bind<A0, A1, A2, A3, A4>::type bound_args;
    typedef detail::make_fibonacci_heap_base<T, bound_args> base_maker;
    typedef typename base_maker::type super_t;

    typedef typename super_t::size_holder_type size_holder;
    typedef typename super_t::internal_type internal_type;
    typedef typename base_maker::allocator_argument allocator_argument;

    template <typename Heap1, typename Heap2>
    friend struct heap_merge_emulate;

private:
#ifndef BOOST_DOXYGEN_INVOKED
    struct implementation_defined:
        detail::extract_allocator_types<typename base_maker::allocator_argument>
    {
        typedef T value_type;
        typedef typename detail::extract_allocator_types<typename base_maker::allocator_argument>::size_type size_type;
        typedef typename detail::extract_allocator_types<typename base_maker::allocator_argument>::reference reference;

        typedef typename base_maker::compare_argument value_compare;
        typedef typename base_maker::allocator_type allocator_type;

        typedef typename allocator_type::pointer node_pointer;
        typedef typename allocator_type::const_pointer const_node_pointer;

        typedef detail::heap_node_list node_list_type;
        typedef typename node_list_type::iterator node_list_iterator;
        typedef typename node_list_type::const_iterator node_list_const_iterator;

        typedef typename base_maker::node_type node;

        typedef detail::value_extractor<value_type, internal_type, super_t> value_extractor;
        typedef typename super_t::internal_compare internal_compare;
        typedef detail::node_handle<node_pointer, super_t, reference> handle_type;

        typedef detail::recursive_tree_iterator<node,
                                                node_list_const_iterator,
                                                const value_type,
                                                value_extractor,
                                                detail::list_iterator_converter<node, node_list_type>
                                               > iterator;
        typedef iterator const_iterator;

        typedef detail::tree_iterator<node,
                                      const value_type,
                                      allocator_type,
                                      value_extractor,
                                      detail::list_iterator_converter<node, node_list_type>,
                                      true,
                                      true,
                                      value_compare
                                    > ordered_iterator;
    };

    typedef typename implementation_defined::node node;
    typedef typename implementation_defined::node_pointer node_pointer;
    typedef typename implementation_defined::node_list_type node_list_type;
    typedef typename implementation_defined::node_list_iterator node_list_iterator;
    typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator;
    typedef typename implementation_defined::internal_compare internal_compare;
#endif

public:
    typedef T value_type;

    typedef typename implementation_defined::size_type size_type;
    typedef typename implementation_defined::difference_type difference_type;
    typedef typename implementation_defined::value_compare value_compare;
    typedef typename implementation_defined::allocator_type allocator_type;
    typedef typename implementation_defined::reference reference;
    typedef typename implementation_defined::const_reference const_reference;
    typedef typename implementation_defined::pointer pointer;
    typedef typename implementation_defined::const_pointer const_pointer;
    /// \copydoc boost::heap::priority_queue::iterator
    typedef typename implementation_defined::iterator iterator;
    typedef typename implementation_defined::const_iterator const_iterator;
    typedef typename implementation_defined::ordered_iterator ordered_iterator;

    typedef typename implementation_defined::handle_type handle_type;

    static const bool constant_time_size = base_maker::constant_time_size;
    static const bool has_ordered_iterators = true;
    static const bool is_mergable = true;
    static const bool is_stable = detail::extract_stable<bound_args>::value;
    static const bool has_reserve = false;

    /// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &)
    explicit fibonacci_heap(value_compare const & cmp = value_compare()):
        super_t(cmp), top_element(0)
    {}

    /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &)
    fibonacci_heap(fibonacci_heap const & rhs):
        super_t(rhs), top_element(0)
    {
        if (rhs.empty())
            return;

        clone_forest(rhs);
        size_holder::set_size(rhs.size());
    }

#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
    /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&)
    fibonacci_heap(fibonacci_heap && rhs):
        super_t(std::move(rhs)), top_element(rhs.top_element)
    {
        roots.splice(roots.begin(), rhs.roots);
        rhs.top_element = NULL;
    }

    fibonacci_heap(fibonacci_heap & rhs):
        super_t(rhs), top_element(rhs.top_element)
    {
        roots.splice(roots.begin(), rhs.roots);
        rhs.top_element = NULL;
    }

    /// \copydoc boost::heap::priority_queue::operator=(priority_queue &&)
    fibonacci_heap & operator=(fibonacci_heap && rhs)
    {
        clear();

        super_t::operator=(std::move(rhs));
        roots.splice(roots.begin(), rhs.roots);
        top_element = rhs.top_element;
        rhs.top_element = NULL;
        return *this;
    }
#endif

    /// \copydoc boost::heap::priority_queue::operator=(priority_queue const &)
    fibonacci_heap & operator=(fibonacci_heap const & rhs)
    {
        clear();
        size_holder::set_size(rhs.size());
        static_cast<super_t&>(*this) = rhs;

        if (rhs.empty())
            top_element = NULL;
        else
            clone_forest(rhs);
        return *this;
    }

    ~fibonacci_heap(void)
    {
        clear();
    }

    /// \copydoc boost::heap::priority_queue::empty
    bool empty(void) const
    {
        if (constant_time_size)
            return size() == 0;
        else
            return roots.empty();
    }

    /// \copydoc boost::heap::priority_queue::size
    size_type size(void) const
    {
        if (constant_time_size)
            return size_holder::get_size();

        if (empty())
            return 0;
        else
            return detail::count_list_nodes<node, node_list_type>(roots);
    }

    /// \copydoc boost::heap::priority_queue::max_size
    size_type max_size(void) const
    {
        return allocator_type::max_size();
    }

    /// \copydoc boost::heap::priority_queue::clear
    void clear(void)
    {
        typedef detail::node_disposer<node, typename node_list_type::value_type, allocator_type> disposer;
        roots.clear_and_dispose(disposer(*this));

        size_holder::set_size(0);
        top_element = NULL;
    }

    /// \copydoc boost::heap::priority_queue::get_allocator
    allocator_type get_allocator(void) const
    {
        return *this;
    }

    /// \copydoc boost::heap::priority_queue::swap
    void swap(fibonacci_heap & rhs)
    {
        super_t::swap(rhs);
        std::swap(top_element, rhs.top_element);
        roots.swap(rhs.roots);
    }


    /// \copydoc boost::heap::priority_queue::top
    value_type const & top(void) const
    {
        BOOST_ASSERT(!empty());

        return super_t::get_value(top_element->value);
    }

    /**
     * \b Effects: Adds a new element to the priority queue. Returns handle to element
     *
     * \b Complexity: Constant.
     *
     * \b Note: Does not invalidate iterators.
     *
     * */
    handle_type push(value_type const & v)
    {
        size_holder::increment();

        node_pointer n = allocator_type::allocate(1);

        new(n) node(super_t::make_node(v));
        roots.push_front(*n);

        if (!top_element || super_t::operator()(top_element->value, n->value))
            top_element = n;
        return handle_type(n);
    }

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
    /**
     * \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns handle to element.
     *
     * \b Complexity: Constant.
     *
     * \b Note: Does not invalidate iterators.
     *
     * */
    template <class... Args>
    handle_type emplace(Args&&... args)
    {
        size_holder::increment();

        node_pointer n = allocator_type::allocate(1);

        new(n) node(super_t::make_node(std::forward<Args>(args)...));
        roots.push_front(*n);

        if (!top_element || super_t::operator()(top_element->value, n->value))
            top_element = n;
        return handle_type(n);
    }
#endif

    /**
     * \b Effects: Removes the top element from the priority queue.
     *
     * \b Complexity: Logarithmic (amortized). Linear (worst case).
     *
     * */
    void pop(void)
    {
        BOOST_ASSERT(!empty());

        node_pointer element = top_element;
        roots.erase(node_list_type::s_iterator_to(*element));

        finish_erase_or_pop(element);
    }

    /**
     * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
     *
     * \b Complexity: Logarithmic if current value < v, Constant otherwise.
     *
     * */
    void update (handle_type handle, const_reference v)
    {
        if (super_t::operator()(super_t::get_value(handle.node_->value), v))
            increase(handle, v);
        else
            decrease(handle, v);
    }

    /** \copydoc boost::heap::fibonacci_heap::update(handle_type, const_reference)
     *
     * \b Rationale: The lazy update function is a modification of the traditional update, that just invalidates
     *               the iterator to the object referred to by the handle.
     * */
    void update_lazy(handle_type handle, const_reference v)
    {
        handle.node_->value = super_t::make_node(v);
        update_lazy(handle);
    }

    /**
     * \b Effects: Updates the heap after the element handled by \c handle has been changed.
     *
     * \b Complexity: Logarithmic.
     *
     * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
     * */
    void update (handle_type handle)
    {
        node_pointer n = handle.node_;
        node_pointer parent = n->get_parent();

        if (parent) {
            n->parent = NULL;
            roots.splice(roots.begin(), parent->children, node_list_type::s_iterator_to(*n));
        }
        add_children_to_root(n);
        consolidate();
    }

    /** \copydoc boost::heap::fibonacci_heap::update (handle_type handle)
     *
     * \b Rationale: The lazy update function is a modification of the traditional update, that just invalidates
     *               the iterator to the object referred to by the handle.
     * */
    void update_lazy (handle_type handle)
    {
        node_pointer n = handle.node_;
        node_pointer parent = n->get_parent();

        if (parent) {
            n->parent = NULL;
            roots.splice(roots.begin(), parent->children, node_list_type::s_iterator_to(*n));
        }
        add_children_to_root(n);
    }


     /**
     * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
     *
     * \b Complexity: Constant.
     *
     * \b Note: The new value is expected to be greater than the current one
     * */
    void increase (handle_type handle, const_reference v)
    {
        handle.node_->value = super_t::make_node(v);
        increase(handle);
    }

    /**
     * \b Effects: Updates the heap after the element handled by \c handle has been changed.
     *
     * \b Complexity: Constant.
     *
     * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
     * */
    void increase (handle_type handle)
    {
        node_pointer n = handle.node_;

        if (n->parent) {
            if (super_t::operator()(n->get_parent()->value, n->value)) {
                node_pointer parent = n->get_parent();
                cut(n);
                cascading_cut(parent);
            }
        }

        if (super_t::operator()(top_element->value, n->value)) {
            top_element = n;
            return;
        }
    }

    /**
     * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
     *
     * \b Complexity: Logarithmic.
     *
     * \b Note: The new value is expected to be less than the current one
     * */
    void decrease (handle_type handle, const_reference v)
    {
        handle.node_->value = super_t::make_node(v);
        decrease(handle);
    }

    /**
     * \b Effects: Updates the heap after the element handled by \c handle has been changed.
     *
     * \b Complexity: Logarithmic.
     *
     * \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
     * */
    void decrease (handle_type handle)
    {
        update(handle);
    }

    /**
     * \b Effects: Removes the element handled by \c handle from the priority_queue.
     *
     * \b Complexity: Logarithmic.
     * */
    void erase(handle_type const & handle)
    {
        node_pointer element = handle.node_;
        node_pointer parent = element->get_parent();

        if (parent)
            parent->children.erase(node_list_type::s_iterator_to(*element));
        else
            roots.erase(node_list_type::s_iterator_to(*element));

        finish_erase_or_pop(element);
    }

    /// \copydoc boost::heap::priority_queue::begin
    iterator begin(void) const
    {
        return iterator(roots.begin());
    }

    /// \copydoc boost::heap::priority_queue::end
    iterator end(void) const
    {
        return iterator(roots.end());
    }


    /**
     * \b Effects: Returns an ordered iterator to the first element contained in the priority queue.
     *
     * \b Note: Ordered iterators traverse the priority queue in heap order.
     * */
    ordered_iterator ordered_begin(void) const
    {
        return ordered_iterator(roots.begin(), roots.end(), top_element, super_t::value_comp());
    }

    /**
     * \b Effects: Returns an ordered iterator to the first element contained in the priority queue.
     *
     * \b Note: Ordered iterators traverse the priority queue in heap order.
     * */
    ordered_iterator ordered_end(void) const
    {
        return ordered_iterator(NULL, super_t::value_comp());
    }

    /**
     * \b Effects: Merge with priority queue rhs.
     *
     * \b Complexity: Constant.
     *
     * */
    void merge(fibonacci_heap & rhs)
    {
        size_holder::add(rhs.get_size());

        if (!top_element ||
            (rhs.top_element && super_t::operator()(top_element->value, rhs.top_element->value)))
            top_element = rhs.top_element;

        roots.splice(roots.end(), rhs.roots);

        rhs.set_size(0);

        super_t::set_stability_count((std::max)(super_t::get_stability_count(),
                                     rhs.get_stability_count()));
        rhs.set_stability_count(0);
    }

    /// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator
    static handle_type s_handle_from_iterator(iterator const & it)
    {
        node * ptr = const_cast<node *>(it.get_node());
        return handle_type(ptr);
    }

    /// \copydoc boost::heap::priority_queue::value_comp
    value_compare const & value_comp(void) const
    {
        return super_t::value_comp();
    }

    /// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const
    template <typename HeapType>
    bool operator<(HeapType const & rhs) const
    {
        return detail::heap_compare(*this, rhs);
    }

    /// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const
    template <typename HeapType>
    bool operator>(HeapType const & rhs) const
    {
        return detail::heap_compare(rhs, *this);
    }

    /// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const
    template <typename HeapType>
    bool operator>=(HeapType const & rhs) const
    {
        return !operator<(rhs);
    }

    /// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const
    template <typename HeapType>
    bool operator<=(HeapType const & rhs) const
    {
        return !operator>(rhs);
    }

    /// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const
    template <typename HeapType>
    bool operator==(HeapType const & rhs) const
    {
        return detail::heap_equality(*this, rhs);
    }

    /// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const
    template <typename HeapType>
    bool operator!=(HeapType const & rhs) const
    {
        return !(*this == rhs);
    }

private:
#if !defined(BOOST_DOXYGEN_INVOKED)
    void clone_forest(fibonacci_heap const & rhs)
    {
        BOOST_HEAP_ASSERT(roots.empty());
        typedef typename node::template node_cloner<allocator_type> node_cloner;
        roots.clone_from(rhs.roots, node_cloner(*this, NULL), detail::nop_disposer());

        top_element = detail::find_max_child<node_list_type, node, internal_compare>(roots, super_t::get_internal_cmp());
    }

    void cut(node_pointer n)
    {
        node_pointer parent = n->get_parent();
        roots.splice(roots.begin(), parent->children, node_list_type::s_iterator_to(*n));
        n->parent = 0;
        n->mark = false;
    }

    void cascading_cut(node_pointer n)
    {
        node_pointer parent = n->get_parent();

        if (parent) {
            if (!parent->mark)
                parent->mark = true;
            else {
                cut(n);
                cascading_cut(parent);
            }
        }
    }

    void add_children_to_root(node_pointer n)
    {
        for (node_list_iterator it = n->children.begin(); it != n->children.end(); ++it) {
            node_pointer child = static_cast<node_pointer>(&*it);
            child->parent = 0;
        }

        roots.splice(roots.end(), n->children);
    }

    void consolidate(void)
    {
        if (roots.empty())
            return;

        static const size_type max_log2 = sizeof(size_type) * 8;
        boost::array<node_pointer, max_log2> aux;
        aux.assign(NULL);

        node_list_iterator it = roots.begin();
        top_element = static_cast<node_pointer>(&*it);

        do {
            node_pointer n = static_cast<node_pointer>(&*it);
            ++it;
            size_type node_rank = n->child_count();

            if (aux[node_rank] == NULL)
                aux[node_rank] = n;
            else {
                do {
                    node_pointer other = aux[node_rank];
                    if (super_t::operator()(n->value, other->value))
                        std::swap(n, other);

                    if (other->parent)
                        n->children.splice(n->children.end(), other->parent->children, node_list_type::s_iterator_to(*other));
                    else
                        n->children.splice(n->children.end(), roots, node_list_type::s_iterator_to(*other));

                    other->parent = n;

                    aux[node_rank] = NULL;
                    node_rank = n->child_count();
                } while (aux[node_rank] != NULL);
                aux[node_rank] = n;
            }

            if (super_t::operator()(top_element->value, n->value))
                top_element = n;
        }
        while (it != roots.end());
    }

    void finish_erase_or_pop(node_pointer erased_node)
    {
        add_children_to_root(erased_node);

        erased_node->~node();
        allocator_type::deallocate(erased_node, 1);

        size_holder::decrement();
        if (!empty())
            consolidate();
        else
            top_element = NULL;
    }

    mutable node_pointer top_element;
    node_list_type roots;
#endif
};

} /* namespace heap */
} /* namespace boost */

#undef BOOST_HEAP_ASSERT

#endif /* BOOST_HEAP_FIBONACCI_HEAP_HPP */