/usr/include/boost/gil/gil_concept.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 | /*
Copyright 2005-2007 Adobe Systems Incorporated
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
See http://opensource.adobe.com/gil for most recent version including documentation.
*/
/*************************************************************************************************/
#ifndef GIL_CONCEPT_H
#define GIL_CONCEPT_H
////////////////////////////////////////////////////////////////////////////////////////
/// \file
/// \brief Concept check classes for GIL concepts
/// \author Lubomir Bourdev and Hailin Jin \n
/// Adobe Systems Incorporated
/// \date 2005-2007 \n Last updated on February 12, 2007
///
////////////////////////////////////////////////////////////////////////////////////////
#include <functional>
#include "gil_config.hpp"
#include <boost/type_traits.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/concept_check.hpp>
#include <boost/iterator/iterator_concepts.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/size.hpp>
namespace boost { namespace gil {
template <typename T> struct channel_traits;
template <typename P> struct is_pixel;
template <typename dstT, typename srcT>
typename channel_traits<dstT>::value_type channel_convert(const srcT& val);
template <typename T> class point2;
template <std::size_t K, typename T> const T& axis_value(const point2<T>& p);
template <std::size_t K, typename T> T& axis_value( point2<T>& p);
template <typename ColorBase, int K> struct kth_element_type;
template <typename ColorBase, int K> struct kth_element_reference_type;
template <typename ColorBase, int K> struct kth_element_const_reference_type;
template <typename ColorBase, int K> struct kth_semantic_element_reference_type;
template <typename ColorBase, int K> struct kth_semantic_element_const_reference_type;
template <typename ColorBase> struct size;
template <typename ColorBase> struct element_type;
template <typename T> struct channel_type;
template <typename T> struct color_space_type;
template <typename T> struct channel_mapping_type;
template <typename T> struct is_planar;
template <typename T> struct num_channels;
template <typename It> struct const_iterator_type;
template <typename It> struct iterator_is_mutable;
template <typename It> struct is_iterator_adaptor;
template <typename It, typename NewBaseIt> struct iterator_adaptor_rebind;
template <typename It> struct iterator_adaptor_get_base;
// forward-declare at_c
namespace detail { template <typename Element, typename Layout, int K> struct homogeneous_color_base; }
template <int K, typename E, typename L, int N>
typename add_reference<E>::type at_c( detail::homogeneous_color_base<E,L,N>& p);
template <int K, typename E, typename L, int N>
typename add_reference<typename add_const<E>::type>::type at_c(const detail::homogeneous_color_base<E,L,N>& p);
#if !defined(_MSC_VER) || _MSC_VER > 1310
template <typename P, typename C, typename L> struct packed_pixel;
template <int K, typename P, typename C, typename L>
typename kth_element_reference_type<packed_pixel<P,C,L>, K>::type
at_c(packed_pixel<P,C,L>& p);
template <int K, typename P, typename C, typename L>
typename kth_element_const_reference_type<packed_pixel<P,C,L>,K>::type
at_c(const packed_pixel<P,C,L>& p);
template <typename B, typename C, typename L, bool M> struct bit_aligned_pixel_reference;
template <int K, typename B, typename C, typename L, bool M> inline
typename kth_element_reference_type<bit_aligned_pixel_reference<B,C,L,M>, K>::type
at_c(const bit_aligned_pixel_reference<B,C,L,M>& p);
#endif
// Forward-declare semantic_at_c
template <int K, typename ColorBase>
typename disable_if<is_const<ColorBase>,typename kth_semantic_element_reference_type<ColorBase,K>::type>::type semantic_at_c(ColorBase& p);
template <int K, typename ColorBase>
typename kth_semantic_element_const_reference_type<ColorBase,K>::type semantic_at_c(const ColorBase& p);
template <typename T> struct dynamic_x_step_type;
template <typename T> struct dynamic_y_step_type;
template <typename T> struct transposed_type;
namespace detail {
template <typename T>
void initialize_it(T& x) {}
} // namespace detail
template <typename T>
struct remove_const_and_reference : public remove_const<typename remove_reference<T>::type> {};
#ifdef BOOST_GIL_USE_CONCEPT_CHECK
#define GIL_CLASS_REQUIRE(type_var, ns, concept) BOOST_CLASS_REQUIRE(type_var, ns, concept);
template <typename C> void gil_function_requires() { function_requires<C>(); }
#else
#define GIL_CLASS_REQUIRE(T,NS,C)
template <typename C> void gil_function_requires() {}
#endif
/// \ingroup BasicConcepts
/**
\code
auto concept DefaultConstructible<typename T> {
T::T();
};
\endcode
*/
template <typename T>
struct DefaultConstructible {
void constraints() {
function_requires<boost::DefaultConstructibleConcept<T> >();
}
};
/// \ingroup BasicConcepts
/**
\codeauto concept CopyConstructible<typename T> {
T::T(T);
T::~T();
};
\endcode
*/
template <typename T>
struct CopyConstructible {
void constraints() {
function_requires<boost::CopyConstructibleConcept<T> >();
}
};
/// \ingroup BasicConcepts
/**
\code
auto concept Assignable<typename T, typename U = T> {
typename result_type;
result_type operator=(T&, U);
};
\endcode
*/
template <typename T>
struct Assignable {
void constraints() {
function_requires<boost::AssignableConcept<T> >();
}
};
/// \ingroup BasicConcepts
/**
\code
auto concept EqualityComparable<typename T, typename U = T> {
bool operator==(T x, T y);
bool operator!=(T x, T y) { return !(x==y); }
};
\endcode
*/
template <typename T>
struct EqualityComparable {
void constraints() {
function_requires<boost::EqualityComparableConcept<T> >();
}
};
/// \ingroup BasicConcepts
/**
\code
concept SameType<typename T, typename U>;// unspecified
\endcode
*/
template <typename T, typename U>
struct SameType {
void constraints() {
BOOST_STATIC_ASSERT((boost::is_same<T,U>::value_core));
}
};
/// \ingroup BasicConcepts
/**
\code
auto concept Swappable<typename T> {
void swap(T&,T&);
};
\endcode
*/
template <typename T>
struct Swappable {
void constraints() {
using std::swap;
swap(x,y);
}
T x,y;
};
/// \ingroup BasicConcepts
/**
\code
auto concept Regular<typename T> : DefaultConstructible<T>, CopyConstructible<T>, EqualityComparable<T>,
Assignable<T>, Swappable<T> {};
\endcode
*/
template <typename T>
struct Regular {
void constraints() {
gil_function_requires< boost::DefaultConstructibleConcept<T> >();
gil_function_requires< boost::CopyConstructibleConcept<T> >();
gil_function_requires< boost::EqualityComparableConcept<T> >(); // ==, !=
gil_function_requires< boost::AssignableConcept<T> >();
gil_function_requires< Swappable<T> >();
}
};
/// \ingroup BasicConcepts
/**
\code
auto concept Metafunction<typename T> {
typename type;
};
\endcode
*/
template <typename T>
struct Metafunction {
void constraints() {
typedef typename T::type type;
}
};
////////////////////////////////////////////////////////////////////////////////////////
//
// POINT CONCEPTS
//
////////////////////////////////////////////////////////////////////////////////////////
/// \brief N-dimensional point concept
/// \ingroup PointConcept
/**
\code
concept PointNDConcept<typename T> : Regular<T> {
// the type of a coordinate along each axis
template <size_t K> struct axis; where Metafunction<axis>;
const size_t num_dimensions;
// accessor/modifier of the value of each axis.
template <size_t K> const typename axis<K>::type& T::axis_value() const;
template <size_t K> typename axis<K>::type& T::axis_value();
};
\endcode
*/
template <typename P>
struct PointNDConcept {
void constraints() {
gil_function_requires< Regular<P> >();
typedef typename P::value_type value_type;
static const std::size_t N=P::num_dimensions; ignore_unused_variable_warning(N);
typedef typename P::template axis<0>::coord_t FT;
typedef typename P::template axis<N-1>::coord_t LT;
FT ft=gil::axis_value<0>(point);
axis_value<0>(point)=ft;
LT lt=axis_value<N-1>(point);
axis_value<N-1>(point)=lt;
value_type v=point[0]; ignore_unused_variable_warning(v);
point[0]=point[0];
}
P point;
};
/// \brief 2-dimensional point concept
/// \ingroup PointConcept
/**
\code
concept Point2DConcept<typename T> : PointNDConcept<T> {
where num_dimensions == 2;
where SameType<axis<0>::type, axis<1>::type>;
typename value_type = axis<0>::type;
const value_type& operator[](const T&, size_t i);
value_type& operator[]( T&, size_t i);
value_type x,y;
};
\endcode
*/
template <typename P>
struct Point2DConcept {
void constraints() {
gil_function_requires< PointNDConcept<P> >();
BOOST_STATIC_ASSERT(P::num_dimensions == 2);
point.x=point.y;
point[0]=point[1];
}
P point;
};
////////////////////////////////////////////////////////////////////////////////////////
//
// ITERATOR MUTABILITY CONCEPTS
//
// Taken from boost's concept_check.hpp. Isolating mutability to result in faster compile time
//
////////////////////////////////////////////////////////////////////////////////////////
namespace detail {
template <class TT> // Preconditions: TT Models boost_concepts::ForwardTraversalConcept
struct ForwardIteratorIsMutableConcept {
void constraints() {
*i++ = *i; // require postincrement and assignment
}
TT i;
};
template <class TT> // Preconditions: TT Models boost::BidirectionalIteratorConcept
struct BidirectionalIteratorIsMutableConcept {
void constraints() {
gil_function_requires< ForwardIteratorIsMutableConcept<TT> >();
*i-- = *i; // require postdecrement and assignment
}
TT i;
};
template <class TT> // Preconditions: TT Models boost_concepts::RandomAccessTraversalConcept
struct RandomAccessIteratorIsMutableConcept {
void constraints() {
gil_function_requires< BidirectionalIteratorIsMutableConcept<TT> >();
typename std::iterator_traits<TT>::difference_type n=0; ignore_unused_variable_warning(n);
i[n] = *i; // require element access and assignment
}
TT i;
};
} // namespace detail
////////////////////////////////////////////////////////////////////////////////////////
//
// COLOR SPACE CONCEPTS
//
////////////////////////////////////////////////////////////////////////////////////////
/// \brief Color space type concept
/// \ingroup ColorSpaceAndLayoutConcept
/**
\code
concept ColorSpaceConcept<MPLRandomAccessSequence Cs> {
// An MPL Random Access Sequence, whose elements are color tags
};
\endcode
*/
template <typename Cs>
struct ColorSpaceConcept {
void constraints() {
// An MPL Random Access Sequence, whose elements are color tags
}
};
template <typename ColorSpace1, typename ColorSpace2> // Models ColorSpaceConcept
struct color_spaces_are_compatible : public is_same<ColorSpace1,ColorSpace2> {};
/// \brief Two color spaces are compatible if they are the same
/// \ingroup ColorSpaceAndLayoutConcept
/**
\code
concept ColorSpacesCompatibleConcept<ColorSpaceConcept Cs1, ColorSpaceConcept Cs2> {
where SameType<Cs1,Cs2>;
};
\endcode
*/
template <typename Cs1, typename Cs2>
struct ColorSpacesCompatibleConcept {
void constraints() {
BOOST_STATIC_ASSERT((color_spaces_are_compatible<Cs1,Cs2>::value));
}
};
/// \brief Channel mapping concept
/// \ingroup ColorSpaceAndLayoutConcept
/**
\code
concept ChannelMappingConcept<MPLRandomAccessSequence CM> {
// An MPL Random Access Sequence, whose elements model MPLIntegralConstant representing a permutation
};
\endcode
*/
template <typename CM>
struct ChannelMappingConcept {
void constraints() {
// An MPL Random Access Sequence, whose elements model MPLIntegralConstant representing a permutation
}
};
////////////////////////////////////////////////////////////////////////////////////////
///
/// Channel CONCEPTS
///
////////////////////////////////////////////////////////////////////////////////////////
/// \ingroup ChannelConcept
/// \brief A channel is the building block of a color. Color is defined as a mixture of primary colors and a channel defines the degree to which each primary color is used in the mixture.
/**
For example, in the RGB color space, using 8-bit unsigned channels, the color red is defined as [255 0 0], which means maximum of Red, and no Green and Blue.
Built-in scalar types, such as \p int and \p float, are valid GIL channels. In more complex scenarios, channels may be represented as bit ranges or even individual bits.
In such cases special classes are needed to represent the value and reference to a channel.
Channels have a traits class, \p channel_traits, which defines their associated types as well as their operating ranges.
\code
concept ChannelConcept<typename T> : EqualityComparable<T> {
typename value_type = T; // use channel_traits<T>::value_type to access it
typename reference = T&; // use channel_traits<T>::reference to access it
typename pointer = T*; // use channel_traits<T>::pointer to access it
typename const_reference = const T&; // use channel_traits<T>::const_reference to access it
typename const_pointer = const T*; // use channel_traits<T>::const_pointer to access it
static const bool is_mutable; // use channel_traits<T>::is_mutable to access it
static T min_value(); // use channel_traits<T>::min_value to access it
static T max_value(); // use channel_traits<T>::min_value to access it
};
\endcode
*/
template <typename T>
struct ChannelConcept {
void constraints() {
gil_function_requires< boost::EqualityComparableConcept<T> >();
typedef typename channel_traits<T>::value_type v;
typedef typename channel_traits<T>::reference r;
typedef typename channel_traits<T>::pointer p;
typedef typename channel_traits<T>::const_reference cr;
typedef typename channel_traits<T>::const_pointer cp;
channel_traits<T>::min_value();
channel_traits<T>::max_value();
}
T c;
};
namespace detail {
// Preconditions: T models ChannelConcept
template <typename T>
struct ChannelIsMutableConcept {
void constraints() {
c=c;
using std::swap;
swap(c,c);
}
T c;
};
}
/// \brief A channel that allows for modifying its value
/// \ingroup ChannelConcept
/**
\code
concept MutableChannelConcept<ChannelConcept T> : Assignable<T>, Swappable<T> {};
\endcode
*/
template <typename T>
struct MutableChannelConcept {
void constraints() {
gil_function_requires<ChannelConcept<T> >();
gil_function_requires<detail::ChannelIsMutableConcept<T> >();
}
};
/// \brief A channel that supports default construction.
/// \ingroup ChannelConcept
/**
\code
concept ChannelValueConcept<ChannelConcept T> : Regular<T> {};
\endcode
*/
template <typename T>
struct ChannelValueConcept {
void constraints() {
gil_function_requires<ChannelConcept<T> >();
gil_function_requires<Regular<T> >();
}
};
/// \brief Predicate metafunction returning whether two channels are compatible
/// \ingroup ChannelAlgorithm
///
/// Channels are considered compatible if their value types (ignoring constness and references) are the same.
/**
Example:
\code
BOOST_STATIC_ASSERT((channels_are_compatible<bits8, const bits8&>::value));
\endcode
*/
template <typename T1, typename T2> // Models GIL Pixel
struct channels_are_compatible
: public is_same<typename channel_traits<T1>::value_type, typename channel_traits<T2>::value_type> {};
/// \brief Channels are compatible if their associated value types (ignoring constness and references) are the same
/// \ingroup ChannelConcept
/**
\code
concept ChannelsCompatibleConcept<ChannelConcept T1, ChannelConcept T2> {
where SameType<T1::value_type, T2::value_type>;
};
\endcode
*/
template <typename T1, typename T2>
struct ChannelsCompatibleConcept {
void constraints() {
BOOST_STATIC_ASSERT((channels_are_compatible<T1,T2>::value));
}
};
/// \brief A channel is convertible to another one if the \p channel_convert algorithm is defined for the two channels
///
/// Convertibility is non-symmetric and implies that one channel can be converted to another. Conversion is explicit and often lossy operation.
/// \ingroup ChannelConcept
/**
\code
concept ChannelConvertibleConcept<ChannelConcept SrcChannel, ChannelValueConcept DstChannel> {
DstChannel channel_convert(const SrcChannel&);
};
\endcode
*/
template <typename SrcChannel, typename DstChannel>
struct ChannelConvertibleConcept {
void constraints() {
gil_function_requires<ChannelConcept<SrcChannel> >();
gil_function_requires<MutableChannelConcept<DstChannel> >();
dst=channel_convert<DstChannel,SrcChannel>(src); ignore_unused_variable_warning(dst);
}
SrcChannel src;
DstChannel dst;
};
////////////////////////////////////////////////////////////////////////////////////////
///
/// COLOR BASE CONCEPTS
///
////////////////////////////////////////////////////////////////////////////////////////
/// \ingroup ColorBaseConcept
/// \brief A color base is a container of color elements (such as channels, channel references or channel pointers)
/**
The most common use of color base is in the implementation of a pixel, in which case the color
elements are channel values. The color base concept, however, can be used in other scenarios. For example, a planar pixel has channels that are not
contiguous in memory. Its reference is a proxy class that uses a color base whose elements are channel references. Its iterator uses a color base
whose elements are channel iterators.
A color base must have an associated layout (which consists of a color space, as well as an ordering of the channels).
There are two ways to index the elements of a color base: A physical index corresponds to the way they are ordered in memory, and
a semantic index corresponds to the way the elements are ordered in their color space.
For example, in the RGB color space the elements are ordered as {red_t, green_t, blue_t}. For a color base with a BGR layout, the first element
in physical ordering is the blue element, whereas the first semantic element is the red one.
Models of \p ColorBaseConcept are required to provide the \p at_c<K>(ColorBase) function, which allows for accessing the elements based on their
physical order. GIL provides a \p semantic_at_c<K>(ColorBase) function (described later) which can operate on any model of ColorBaseConcept and returns
the corresponding semantic element.
\code
concept ColorBaseConcept<typename T> : CopyConstructible<T>, EqualityComparable<T> {
// a GIL layout (the color space and element permutation)
typename layout_t;
// The type of K-th element
template <int K> struct kth_element_type; where Metafunction<kth_element_type>;
// The result of at_c
template <int K> struct kth_element_const_reference_type; where Metafunction<kth_element_const_reference_type>;
template <int K> kth_element_const_reference_type<T,K>::type at_c(T);
// Copy-constructible and equality comparable with other compatible color bases
template <ColorBaseConcept T2> where { ColorBasesCompatibleConcept<T,T2> }
T::T(T2);
template <ColorBaseConcept T2> where { ColorBasesCompatibleConcept<T,T2> }
bool operator==(const T&, const T2&);
template <ColorBaseConcept T2> where { ColorBasesCompatibleConcept<T,T2> }
bool operator!=(const T&, const T2&);
};
\endcode
*/
template <typename ColorBase>
struct ColorBaseConcept {
void constraints() {
gil_function_requires< CopyConstructible<ColorBase> >();
gil_function_requires< EqualityComparable<ColorBase> >();
typedef typename ColorBase::layout_t::color_space_t color_space_t;
gil_function_requires<ColorSpaceConcept<color_space_t> >();
typedef typename ColorBase::layout_t::channel_mapping_t channel_mapping_t;
// TODO: channel_mapping_t must be an MPL RandomAccessSequence
static const std::size_t num_elements = size<ColorBase>::value;
typedef typename kth_element_type<ColorBase,num_elements-1>::type TN;
typedef typename kth_element_const_reference_type<ColorBase,num_elements-1>::type CR;
#if !defined(_MSC_VER) || _MSC_VER > 1310
CR cr=at_c<num_elements-1>(cb); ignore_unused_variable_warning(cr);
#endif
// functions that work for every pixel (no need to require them)
semantic_at_c<0>(cb);
semantic_at_c<num_elements-1>(cb);
// also static_max(cb), static_min(cb), static_fill(cb,value), and all variations of static_for_each(), static_generate(), static_transform()
}
ColorBase cb;
};
/// \ingroup ColorBaseConcept
/// \brief Color base which allows for modifying its elements
/**
\code
concept MutableColorBaseConcept<ColorBaseConcept T> : Assignable<T>, Swappable<T> {
template <int K> struct kth_element_reference_type; where Metafunction<kth_element_reference_type>;
template <int K> kth_element_reference_type<kth_element_type<T,K>::type>::type at_c(T);
template <ColorBaseConcept T2> where { ColorBasesCompatibleConcept<T,T2> }
T& operator=(T&, const T2&);
};
\endcode
*/
template <typename ColorBase>
struct MutableColorBaseConcept {
void constraints() {
gil_function_requires< ColorBaseConcept<ColorBase> >();
gil_function_requires< Assignable<ColorBase> >();
gil_function_requires< Swappable<ColorBase> >();
typedef typename kth_element_reference_type<ColorBase, 0>::type CR;
#if !defined(_MSC_VER) || _MSC_VER > 1310
CR r=at_c<0>(cb);
at_c<0>(cb)=r;
#endif
}
ColorBase cb;
};
/// \ingroup ColorBaseConcept
/// \brief Color base that also has a default-constructor. Refines Regular
/**
\code
concept ColorBaseValueConcept<typename T> : MutableColorBaseConcept<T>, Regular<T> {
};
\endcode
*/
template <typename ColorBase>
struct ColorBaseValueConcept {
void constraints() {
gil_function_requires< MutableColorBaseConcept<ColorBase> >();
gil_function_requires< Regular<ColorBase> >();
}
};
/// \ingroup ColorBaseConcept
/// \brief Color base whose elements all have the same type
/**
\code
concept HomogeneousColorBaseConcept<ColorBaseConcept CB> {
// For all K in [0 ... size<C1>::value-1):
// where SameType<kth_element_type<CB,K>::type, kth_element_type<CB,K+1>::type>;
kth_element_const_reference_type<CB,0>::type dynamic_at_c(const CB&, std::size_t n) const;
};
\endcode
*/
template <typename ColorBase>
struct HomogeneousColorBaseConcept {
void constraints() {
gil_function_requires< ColorBaseConcept<ColorBase> >();
static const std::size_t num_elements = size<ColorBase>::value;
typedef typename kth_element_type<ColorBase,0>::type T0;
typedef typename kth_element_type<ColorBase,num_elements-1>::type TN;
BOOST_STATIC_ASSERT((is_same<T0,TN>::value)); // better than nothing
typedef typename kth_element_const_reference_type<ColorBase,0>::type CRef0;
CRef0 e0=dynamic_at_c(cb,0);
}
ColorBase cb;
};
/// \ingroup ColorBaseConcept
/// \brief Homogeneous color base that allows for modifying its elements
/**
\code
concept MutableHomogeneousColorBaseConcept<ColorBaseConcept CB> : HomogeneousColorBaseConcept<CB> {
kth_element_reference_type<CB,0>::type dynamic_at_c(CB&, std::size_t n);
};
\endcode
*/
template <typename ColorBase>
struct MutableHomogeneousColorBaseConcept {
void constraints() {
gil_function_requires< ColorBaseConcept<ColorBase> >();
gil_function_requires< HomogeneousColorBaseConcept<ColorBase> >();
typedef typename kth_element_reference_type<ColorBase, 0>::type R0;
R0 x=dynamic_at_c(cb,0);
dynamic_at_c(cb,0) = dynamic_at_c(cb,0);
}
ColorBase cb;
};
/// \ingroup ColorBaseConcept
/// \brief Homogeneous color base that also has a default constructor. Refines Regular.
/**
\code
concept HomogeneousColorBaseValueConcept<typename T> : MutableHomogeneousColorBaseConcept<T>, Regular<T> {
};
\endcode
*/
template <typename ColorBase>
struct HomogeneousColorBaseValueConcept {
void constraints() {
gil_function_requires< MutableHomogeneousColorBaseConcept<ColorBase> >();
gil_function_requires< Regular<ColorBase> >();
}
};
/// \ingroup ColorBaseConcept
/// \brief Two color bases are compatible if they have the same color space and their elements are compatible, semantic-pairwise.
/**
\code
concept ColorBasesCompatibleConcept<ColorBaseConcept C1, ColorBaseConcept C2> {
where SameType<C1::layout_t::color_space_t, C2::layout_t::color_space_t>;
// also, for all K in [0 ... size<C1>::value):
// where Convertible<kth_semantic_element_type<C1,K>::type, kth_semantic_element_type<C2,K>::type>;
// where Convertible<kth_semantic_element_type<C2,K>::type, kth_semantic_element_type<C1,K>::type>;
};
\endcode
*/
template <typename ColorBase1, typename ColorBase2>
struct ColorBasesCompatibleConcept {
void constraints() {
BOOST_STATIC_ASSERT((is_same<typename ColorBase1::layout_t::color_space_t,
typename ColorBase2::layout_t::color_space_t>::value));
// typedef typename kth_semantic_element_type<ColorBase1,0>::type e1;
// typedef typename kth_semantic_element_type<ColorBase2,0>::type e2;
// "e1 is convertible to e2"
}
};
////////////////////////////////////////////////////////////////////////////////////////
///
/// PIXEL CONCEPTS
///
////////////////////////////////////////////////////////////////////////////////////////
/// \brief Concept for all pixel-based GIL constructs, such as pixels, iterators, locators, views and images whose value type is a pixel
/// \ingroup PixelBasedConcept
/**
\code
concept PixelBasedConcept<typename T> {
typename color_space_type<T>;
where Metafunction<color_space_type<T> >;
where ColorSpaceConcept<color_space_type<T>::type>;
typename channel_mapping_type<T>;
where Metafunction<channel_mapping_type<T> >;
where ChannelMappingConcept<channel_mapping_type<T>::type>;
typename is_planar<T>;
where Metafunction<is_planar<T> >;
where SameType<is_planar<T>::type, bool>;
};
\endcode
*/
template <typename P>
struct PixelBasedConcept {
void constraints() {
typedef typename color_space_type<P>::type color_space_t;
gil_function_requires<ColorSpaceConcept<color_space_t> >();
typedef typename channel_mapping_type<P>::type channel_mapping_t;
gil_function_requires<ChannelMappingConcept<channel_mapping_t> >();
static const bool planar = is_planar<P>::type::value; ignore_unused_variable_warning(planar);
// This is not part of the concept, but should still work
static const std::size_t nc = num_channels<P>::value;
ignore_unused_variable_warning(nc);
}
};
/// \brief Concept for homogeneous pixel-based GIL constructs
/// \ingroup PixelBasedConcept
/**
\code
concept HomogeneousPixelBasedConcept<PixelBasedConcept T> {
typename channel_type<T>;
where Metafunction<channel_type<T> >;
where ChannelConcept<channel_type<T>::type>;
};
\endcode
*/
template <typename P>
struct HomogeneousPixelBasedConcept {
void constraints() {
gil_function_requires<PixelBasedConcept<P> >();
typedef typename channel_type<P>::type channel_t;
gil_function_requires<ChannelConcept<channel_t> >();
}
};
/// \brief Pixel concept - A color base whose elements are channels
/// \ingroup PixelConcept
/**
\code
concept PixelConcept<typename P> : ColorBaseConcept<P>, PixelBasedConcept<P> {
where is_pixel<P>::type::value==true;
// where for each K [0..size<P>::value-1]:
// ChannelConcept<kth_element_type<P,K> >;
typename P::value_type; where PixelValueConcept<value_type>;
typename P::reference; where PixelConcept<reference>;
typename P::const_reference; where PixelConcept<const_reference>;
static const bool P::is_mutable;
template <PixelConcept P2> where { PixelConcept<P,P2> }
P::P(P2);
template <PixelConcept P2> where { PixelConcept<P,P2> }
bool operator==(const P&, const P2&);
template <PixelConcept P2> where { PixelConcept<P,P2> }
bool operator!=(const P&, const P2&);
};
\endcode
*/
template <typename P>
struct PixelConcept {
void constraints() {
gil_function_requires<ColorBaseConcept<P> >();
gil_function_requires<PixelBasedConcept<P> >();
BOOST_STATIC_ASSERT((is_pixel<P>::value));
static const bool is_mutable = P::is_mutable; ignore_unused_variable_warning(is_mutable);
typedef typename P::value_type value_type;
// gil_function_requires<PixelValueConcept<value_type> >();
typedef typename P::reference reference;
gil_function_requires<PixelConcept<typename remove_const_and_reference<reference>::type> >();
typedef typename P::const_reference const_reference;
gil_function_requires<PixelConcept<typename remove_const_and_reference<const_reference>::type> >();
}
};
/// \brief Pixel concept that allows for changing its channels
/// \ingroup PixelConcept
/**
\code
concept MutablePixelConcept<PixelConcept P> : MutableColorBaseConcept<P> {
where is_mutable==true;
};
\endcode
*/
template <typename P>
struct MutablePixelConcept {
void constraints() {
gil_function_requires<PixelConcept<P> >();
BOOST_STATIC_ASSERT(P::is_mutable);
}
};
/// \brief Homogeneous pixel concept
/// \ingroup PixelConcept
/**
\code
concept HomogeneousPixelConcept<PixelConcept P> : HomogeneousColorBaseConcept<P>, HomogeneousPixelBasedConcept<P> {
P::template element_const_reference_type<P>::type operator[](P p, std::size_t i) const { return dynamic_at_c(p,i); }
};
\endcode
*/
template <typename P>
struct HomogeneousPixelConcept {
void constraints() {
gil_function_requires<PixelConcept<P> >();
gil_function_requires<HomogeneousColorBaseConcept<P> >();
gil_function_requires<HomogeneousPixelBasedConcept<P> >();
p[0];
}
P p;
};
/// \brief Homogeneous pixel concept that allows for changing its channels
/// \ingroup PixelConcept
/**
\code
concept MutableHomogeneousPixelConcept<HomogeneousPixelConcept P> : MutableHomogeneousColorBaseConcept<P> {
P::template element_reference_type<P>::type operator[](P p, std::size_t i) { return dynamic_at_c(p,i); }
};
\endcode
*/
template <typename P>
struct MutableHomogeneousPixelConcept {
void constraints() {
gil_function_requires<HomogeneousPixelConcept<P> >();
gil_function_requires<MutableHomogeneousColorBaseConcept<P> >();
p[0]=p[0];
}
P p;
};
/// \brief Pixel concept that is a Regular type
/// \ingroup PixelConcept
/**
\code
concept PixelValueConcept<PixelConcept P> : Regular<P> {
where SameType<value_type,P>;
};
\endcode
*/
template <typename P>
struct PixelValueConcept {
void constraints() {
gil_function_requires<PixelConcept<P> >();
gil_function_requires<Regular<P> >();
}
};
/// \brief Homogeneous pixel concept that is a Regular type
/// \ingroup PixelConcept
/**
\code
concept HomogeneousPixelValueConcept<HomogeneousPixelConcept P> : Regular<P> {
where SameType<value_type,P>;
};
\endcode
*/
template <typename P>
struct HomogeneousPixelValueConcept {
void constraints() {
gil_function_requires<HomogeneousPixelConcept<P> >();
gil_function_requires<Regular<P> >();
BOOST_STATIC_ASSERT((is_same<P, typename P::value_type>::value));
}
};
namespace detail {
template <typename P1, typename P2, int K>
struct channels_are_pairwise_compatible : public
mpl::and_<channels_are_pairwise_compatible<P1,P2,K-1>,
channels_are_compatible<typename kth_semantic_element_reference_type<P1,K>::type,
typename kth_semantic_element_reference_type<P2,K>::type> > {};
template <typename P1, typename P2>
struct channels_are_pairwise_compatible<P1,P2,-1> : public mpl::true_ {};
}
/// \brief Returns whether two pixels are compatible
///
/// Pixels are compatible if their channels and color space types are compatible. Compatible pixels can be assigned and copy constructed from one another.
/// \ingroup PixelAlgorithm
template <typename P1, typename P2> // Models GIL Pixel
struct pixels_are_compatible
: public mpl::and_<typename color_spaces_are_compatible<typename color_space_type<P1>::type,
typename color_space_type<P2>::type>::type,
detail::channels_are_pairwise_compatible<P1,P2,num_channels<P1>::value-1> > {};
/// \brief Concept for pixel compatibility
/// Pixels are compatible if their channels and color space types are compatible. Compatible pixels can be assigned and copy constructed from one another.
/// \ingroup PixelConcept
/**
\code
concept PixelsCompatibleConcept<PixelConcept P1, PixelConcept P2> : ColorBasesCompatibleConcept<P1,P2> {
// where for each K [0..size<P1>::value):
// ChannelsCompatibleConcept<kth_semantic_element_type<P1,K>::type, kth_semantic_element_type<P2,K>::type>;
};
\endcode
*/
template <typename P1, typename P2> // precondition: P1 and P2 model PixelConcept
struct PixelsCompatibleConcept {
void constraints() {
BOOST_STATIC_ASSERT((pixels_are_compatible<P1,P2>::value));
}
};
/// \brief Pixel convertible concept
///
/// Convertibility is non-symmetric and implies that one pixel can be converted to another, approximating the color. Conversion is explicit and sometimes lossy.
/// \ingroup PixelConcept
/**
\code
template <PixelConcept SrcPixel, MutablePixelConcept DstPixel>
concept PixelConvertibleConcept {
void color_convert(const SrcPixel&, DstPixel&);
};
\endcode
*/
template <typename SrcP, typename DstP>
struct PixelConvertibleConcept {
void constraints() {
gil_function_requires<PixelConcept<SrcP> >();
gil_function_requires<MutablePixelConcept<DstP> >();
color_convert(src,dst);
}
SrcP src;
DstP dst;
};
////////////////////////////////////////////////////////////////////////////////////////
///
/// DEREFERENCE ADAPTOR CONCEPTS
///
////////////////////////////////////////////////////////////////////////////////////////
/// \ingroup PixelDereferenceAdaptorConcept
/// \brief Represents a unary function object that can be invoked upon dereferencing a pixel iterator.
///
/// This can perform an arbitrary computation, such as color conversion or table lookup
/**
\code
concept PixelDereferenceAdaptorConcept<boost::UnaryFunctionConcept D>
: DefaultConstructibleConcept<D>, CopyConstructibleConcept<D>, AssignableConcept<D> {
typename const_t; where PixelDereferenceAdaptorConcept<const_t>;
typename value_type; where PixelValueConcept<value_type>;
typename reference; // may be mutable
typename const_reference; // must not be mutable
static const bool D::is_mutable;
where Convertible<value_type,result_type>;
};
\endcode
*/
template <typename D>
struct PixelDereferenceAdaptorConcept {
void constraints() {
gil_function_requires< boost::UnaryFunctionConcept<D,
typename remove_const_and_reference<typename D::result_type>::type,
typename D::argument_type> >();
gil_function_requires< boost::DefaultConstructibleConcept<D> >();
gil_function_requires< boost::CopyConstructibleConcept<D> >();
gil_function_requires< boost::AssignableConcept<D> >();
gil_function_requires<PixelConcept<typename remove_const_and_reference<typename D::result_type>::type> >();
typedef typename D::const_t const_t;
gil_function_requires<PixelDereferenceAdaptorConcept<const_t> >();
typedef typename D::value_type value_type;
gil_function_requires<PixelValueConcept<value_type> >();
typedef typename D::reference reference; // == PixelConcept (if you remove const and reference)
typedef typename D::const_reference const_reference; // == PixelConcept (if you remove const and reference)
const bool is_mutable=D::is_mutable; ignore_unused_variable_warning(is_mutable);
}
D d;
};
template <typename P>
struct PixelDereferenceAdaptorArchetype : public std::unary_function<P, P> {
typedef PixelDereferenceAdaptorArchetype const_t;
typedef typename remove_reference<P>::type value_type;
typedef typename add_reference<P>::type reference;
typedef reference const_reference;
static const bool is_mutable=false;
P operator()(P x) const { throw; }
};
////////////////////////////////////////////////////////////////////////////////////////
///
/// Pixel ITERATOR CONCEPTS
///
////////////////////////////////////////////////////////////////////////////////////////
/// \brief Concept for iterators, locators and views that can define a type just like the given iterator/locator/view, except it supports runtime specified step along the X navigation
/// \ingroup PixelIteratorConcept
/**
\code
concept HasDynamicXStepTypeConcept<typename T> {
typename dynamic_x_step_type<T>;
where Metafunction<dynamic_x_step_type<T> >;
};
\endcode
*/
template <typename T>
struct HasDynamicXStepTypeConcept {
void constraints() {
typedef typename dynamic_x_step_type<T>::type type;
}
};
/// \brief Concept for locators and views that can define a type just like the given locator or view, except it supports runtime specified step along the Y navigation
/// \ingroup PixelLocatorConcept
/**
\code
concept HasDynamicYStepTypeConcept<typename T> {
typename dynamic_y_step_type<T>;
where Metafunction<dynamic_y_step_type<T> >;
};
\endcode
*/
template <typename T>
struct HasDynamicYStepTypeConcept {
void constraints() {
typedef typename dynamic_y_step_type<T>::type type;
}
};
/// \brief Concept for locators and views that can define a type just like the given locator or view, except X and Y is swapped
/// \ingroup PixelLocatorConcept
/**
\code
concept HasTransposedTypeConcept<typename T> {
typename transposed_type<T>;
where Metafunction<transposed_type<T> >;
};
\endcode
*/
template <typename T>
struct HasTransposedTypeConcept {
void constraints() {
typedef typename transposed_type<T>::type type;
}
};
/// \defgroup PixelIteratorConceptPixelIterator PixelIteratorConcept
/// \ingroup PixelIteratorConcept
/// \brief STL iterator over pixels
/// \ingroup PixelIteratorConceptPixelIterator
/// \brief An STL random access traversal iterator over a model of PixelConcept.
/**
GIL's iterators must also provide the following metafunctions:
- \p const_iterator_type<Iterator>: Returns a read-only equivalent of \p Iterator
- \p iterator_is_mutable<Iterator>: Returns whether the given iterator is read-only or mutable
- \p is_iterator_adaptor<Iterator>: Returns whether the given iterator is an adaptor over another iterator. See IteratorAdaptorConcept for additional requirements of adaptors.
\code
concept PixelIteratorConcept<typename Iterator> : boost_concepts::RandomAccessTraversalConcept<Iterator>, PixelBasedConcept<Iterator> {
where PixelValueConcept<value_type>;
typename const_iterator_type<It>::type;
where PixelIteratorConcept<const_iterator_type<It>::type>;
static const bool iterator_is_mutable<It>::type::value;
static const bool is_iterator_adaptor<It>::type::value; // is it an iterator adaptor
};
\endcode
*/
template <typename Iterator>
struct PixelIteratorConcept {
void constraints() {
gil_function_requires<boost_concepts::RandomAccessTraversalConcept<Iterator> >();
gil_function_requires<PixelBasedConcept<Iterator> >();
typedef typename std::iterator_traits<Iterator>::value_type value_type;
gil_function_requires<PixelValueConcept<value_type> >();
typedef typename const_iterator_type<Iterator>::type const_t;
static const bool is_mut = iterator_is_mutable<Iterator>::type::value; ignore_unused_variable_warning(is_mut);
const_t const_it(it); ignore_unused_variable_warning(const_it); // immutable iterator must be constructible from (possibly mutable) iterator
check_base(typename is_iterator_adaptor<Iterator>::type());
}
void check_base(mpl::false_) {}
void check_base(mpl::true_) {
typedef typename iterator_adaptor_get_base<Iterator>::type base_t;
gil_function_requires<PixelIteratorConcept<base_t> >();
}
Iterator it;
};
namespace detail {
template <typename Iterator> // Preconditions: Iterator Models PixelIteratorConcept
struct PixelIteratorIsMutableConcept {
void constraints() {
gil_function_requires<detail::RandomAccessIteratorIsMutableConcept<Iterator> >();
typedef typename remove_reference<typename std::iterator_traits<Iterator>::reference>::type ref;
typedef typename element_type<ref>::type channel_t;
gil_function_requires<detail::ChannelIsMutableConcept<channel_t> >();
}
};
}
/// \brief Pixel iterator that allows for changing its pixel
/// \ingroup PixelIteratorConceptPixelIterator
/**
\code
concept MutablePixelIteratorConcept<PixelIteratorConcept Iterator> : MutableRandomAccessIteratorConcept<Iterator> {};
\endcode
*/
template <typename Iterator>
struct MutablePixelIteratorConcept {
void constraints() {
gil_function_requires<PixelIteratorConcept<Iterator> >();
gil_function_requires<detail::PixelIteratorIsMutableConcept<Iterator> >();
}
};
namespace detail {
// Iterators that can be used as the base of memory_based_step_iterator require some additional functions
template <typename Iterator> // Preconditions: Iterator Models boost_concepts::RandomAccessTraversalConcept
struct RandomAccessIteratorIsMemoryBasedConcept {
void constraints() {
std::ptrdiff_t bs=memunit_step(it); ignore_unused_variable_warning(bs);
it=memunit_advanced(it,3);
std::ptrdiff_t bd=memunit_distance(it,it); ignore_unused_variable_warning(bd);
memunit_advance(it,3);
// for performace you may also provide a customized implementation of memunit_advanced_ref
}
Iterator it;
};
}
/// \defgroup PixelIteratorConceptStepIterator StepIteratorConcept
/// \ingroup PixelIteratorConcept
/// \brief Iterator that advances by a specified step
/// \brief Concept of a random-access iterator that can be advanced in memory units (bytes or bits)
/// \ingroup PixelIteratorConceptStepIterator
/**
\code
concept MemoryBasedIteratorConcept<boost_concepts::RandomAccessTraversalConcept Iterator> {
typename byte_to_memunit<Iterator>; where metafunction<byte_to_memunit<Iterator> >;
std::ptrdiff_t memunit_step(const Iterator&);
std::ptrdiff_t memunit_distance(const Iterator& , const Iterator&);
void memunit_advance(Iterator&, std::ptrdiff_t diff);
Iterator memunit_advanced(const Iterator& p, std::ptrdiff_t diff) { Iterator tmp; memunit_advance(tmp,diff); return tmp; }
Iterator::reference memunit_advanced_ref(const Iterator& p, std::ptrdiff_t diff) { return *memunit_advanced(p,diff); }
};
\endcode
*/
template <typename Iterator>
struct MemoryBasedIteratorConcept {
void constraints() {
gil_function_requires<boost_concepts::RandomAccessTraversalConcept<Iterator> >();
gil_function_requires<detail::RandomAccessIteratorIsMemoryBasedConcept<Iterator> >();
}
};
/// \brief Step iterator concept
///
/// Step iterators are iterators that have a set_step method
/// \ingroup PixelIteratorConceptStepIterator
/**
\code
concept StepIteratorConcept<boost_concepts::ForwardTraversalConcept Iterator> {
template <Integral D> void Iterator::set_step(D step);
};
\endcode
*/
template <typename Iterator>
struct StepIteratorConcept {
void constraints() {
gil_function_requires<boost_concepts::ForwardTraversalConcept<Iterator> >();
it.set_step(0);
}
Iterator it;
};
/// \brief Step iterator that allows for modifying its current value
///
/// \ingroup PixelIteratorConceptStepIterator
/**
\code
concept MutableStepIteratorConcept<Mutable_ForwardIteratorConcept Iterator> : StepIteratorConcept<Iterator> {};
\endcode
*/
template <typename Iterator>
struct MutableStepIteratorConcept {
void constraints() {
gil_function_requires<StepIteratorConcept<Iterator> >();
gil_function_requires<detail::ForwardIteratorIsMutableConcept<Iterator> >();
}
};
/// \defgroup PixelIteratorConceptIteratorAdaptor IteratorAdaptorConcept
/// \ingroup PixelIteratorConcept
/// \brief Adaptor over another iterator
/// \ingroup PixelIteratorConceptIteratorAdaptor
/// \brief Iterator adaptor is a forward iterator adapting another forward iterator.
/**
In addition to GIL iterator requirements, GIL iterator adaptors must provide the following metafunctions:
- \p is_iterator_adaptor<Iterator>: Returns \p mpl::true_
- \p iterator_adaptor_get_base<Iterator>: Returns the base iterator type
- \p iterator_adaptor_rebind<Iterator,NewBase>: Replaces the base iterator with the new one
The adaptee can be obtained from the iterator via the "base()" method.
\code
concept IteratorAdaptorConcept<boost_concepts::ForwardTraversalConcept Iterator> {
where SameType<is_iterator_adaptor<Iterator>::type, mpl::true_>;
typename iterator_adaptor_get_base<Iterator>;
where Metafunction<iterator_adaptor_get_base<Iterator> >;
where boost_concepts::ForwardTraversalConcept<iterator_adaptor_get_base<Iterator>::type>;
typename another_iterator;
typename iterator_adaptor_rebind<Iterator,another_iterator>::type;
where boost_concepts::ForwardTraversalConcept<another_iterator>;
where IteratorAdaptorConcept<iterator_adaptor_rebind<Iterator,another_iterator>::type>;
const iterator_adaptor_get_base<Iterator>::type& Iterator::base() const;
};
\endcode
*/
template <typename Iterator>
struct IteratorAdaptorConcept {
void constraints() {
gil_function_requires<boost_concepts::ForwardTraversalConcept<Iterator> >();
typedef typename iterator_adaptor_get_base<Iterator>::type base_t;
gil_function_requires<boost_concepts::ForwardTraversalConcept<base_t> >();
BOOST_STATIC_ASSERT(is_iterator_adaptor<Iterator>::value);
typedef typename iterator_adaptor_rebind<Iterator, void*>::type rebind_t;
base_t base=it.base(); ignore_unused_variable_warning(base);
}
Iterator it;
};
/// \brief Iterator adaptor that is mutable
/// \ingroup PixelIteratorConceptIteratorAdaptor
/**
\code
concept MutableIteratorAdaptorConcept<Mutable_ForwardIteratorConcept Iterator> : IteratorAdaptorConcept<Iterator> {};
\endcode
*/
template <typename Iterator>
struct MutableIteratorAdaptorConcept {
void constraints() {
gil_function_requires<IteratorAdaptorConcept<Iterator> >();
gil_function_requires<detail::ForwardIteratorIsMutableConcept<Iterator> >();
}
};
////////////////////////////////////////////////////////////////////////////////////////
///
/// LOCATOR CONCEPTS
///
////////////////////////////////////////////////////////////////////////////////////////
/// \defgroup LocatorNDConcept RandomAccessNDLocatorConcept
/// \ingroup PixelLocatorConcept
/// \brief N-dimensional locator
/// \defgroup Locator2DConcept RandomAccess2DLocatorConcept
/// \ingroup PixelLocatorConcept
/// \brief 2-dimensional locator
/// \defgroup PixelLocator2DConcept PixelLocatorConcept
/// \ingroup PixelLocatorConcept
/// \brief 2-dimensional locator over pixel data
/// \ingroup LocatorNDConcept
/// \brief N-dimensional locator over immutable values
/**
\code
concept RandomAccessNDLocatorConcept<Regular Loc> {
typename value_type; // value over which the locator navigates
typename reference; // result of dereferencing
typename difference_type; where PointNDConcept<difference_type>; // return value of operator-.
typename const_t; // same as Loc, but operating over immutable values
typename cached_location_t; // type to store relative location (for efficient repeated access)
typename point_t = difference_type;
static const size_t num_dimensions; // dimensionality of the locator
where num_dimensions = point_t::num_dimensions;
// The difference_type and iterator type along each dimension. The iterators may only differ in
// difference_type. Their value_type must be the same as Loc::value_type
template <size_t D> struct axis {
typename coord_t = point_t::axis<D>::coord_t;
typename iterator; where RandomAccessTraversalConcept<iterator>; // iterator along D-th axis.
where iterator::value_type == value_type;
};
// Defines the type of a locator similar to this type, except it invokes Deref upon dereferencing
template <PixelDereferenceAdaptorConcept Deref> struct add_deref {
typename type; where RandomAccessNDLocatorConcept<type>;
static type make(const Loc& loc, const Deref& deref);
};
Loc& operator+=(Loc&, const difference_type&);
Loc& operator-=(Loc&, const difference_type&);
Loc operator+(const Loc&, const difference_type&);
Loc operator-(const Loc&, const difference_type&);
reference operator*(const Loc&);
reference operator[](const Loc&, const difference_type&);
// Storing relative location for faster repeated access and accessing it
cached_location_t Loc::cache_location(const difference_type&) const;
reference operator[](const Loc&,const cached_location_t&);
// Accessing iterators along a given dimension at the current location or at a given offset
template <size_t D> axis<D>::iterator& Loc::axis_iterator();
template <size_t D> axis<D>::iterator const& Loc::axis_iterator() const;
template <size_t D> axis<D>::iterator Loc::axis_iterator(const difference_type&) const;
};
\endcode
*/
template <typename Loc>
struct RandomAccessNDLocatorConcept {
void constraints() {
gil_function_requires< Regular<Loc> >();
typedef typename Loc::value_type value_type;
typedef typename Loc::reference reference; // result of dereferencing
typedef typename Loc::difference_type difference_type; // result of operator-(pixel_locator, pixel_locator)
typedef typename Loc::cached_location_t cached_location_t; // type used to store relative location (to allow for more efficient repeated access)
typedef typename Loc::const_t const_t; // same as this type, but over const values
typedef typename Loc::point_t point_t; // same as difference_type
static const std::size_t N=Loc::num_dimensions; ignore_unused_variable_warning(N);
typedef typename Loc::template axis<0>::iterator first_it_type;
typedef typename Loc::template axis<N-1>::iterator last_it_type;
gil_function_requires<boost_concepts::RandomAccessTraversalConcept<first_it_type> >();
gil_function_requires<boost_concepts::RandomAccessTraversalConcept<last_it_type> >();
// point_t must be an N-dimensional point, each dimension of which must have the same type as difference_type of the corresponding iterator
gil_function_requires<PointNDConcept<point_t> >();
BOOST_STATIC_ASSERT(point_t::num_dimensions==N);
BOOST_STATIC_ASSERT((is_same<typename std::iterator_traits<first_it_type>::difference_type, typename point_t::template axis<0>::coord_t>::value));
BOOST_STATIC_ASSERT((is_same<typename std::iterator_traits<last_it_type>::difference_type, typename point_t::template axis<N-1>::coord_t>::value));
difference_type d;
loc+=d;
loc-=d;
loc=loc+d;
loc=loc-d;
reference r1=loc[d]; ignore_unused_variable_warning(r1);
reference r2=*loc; ignore_unused_variable_warning(r2);
cached_location_t cl=loc.cache_location(d); ignore_unused_variable_warning(cl);
reference r3=loc[d]; ignore_unused_variable_warning(r3);
first_it_type fi=loc.template axis_iterator<0>();
fi=loc.template axis_iterator<0>(d);
last_it_type li=loc.template axis_iterator<N-1>();
li=loc.template axis_iterator<N-1>(d);
typedef PixelDereferenceAdaptorArchetype<typename Loc::value_type> deref_t;
typedef typename Loc::template add_deref<deref_t>::type dtype;
//gil_function_requires<RandomAccessNDLocatorConcept<dtype> >(); // infinite recursion
}
Loc loc;
};
/// \ingroup Locator2DConcept
/// \brief 2-dimensional locator over immutable values
/**
\code
concept RandomAccess2DLocatorConcept<RandomAccessNDLocatorConcept Loc> {
where num_dimensions==2;
where Point2DConcept<point_t>;
typename x_iterator = axis<0>::iterator;
typename y_iterator = axis<1>::iterator;
typename x_coord_t = axis<0>::coord_t;
typename y_coord_t = axis<1>::coord_t;
// Only available to locators that have dynamic step in Y
//Loc::Loc(const Loc& loc, y_coord_t);
// Only available to locators that have dynamic step in X and Y
//Loc::Loc(const Loc& loc, x_coord_t, y_coord_t, bool transposed=false);
x_iterator& Loc::x();
x_iterator const& Loc::x() const;
y_iterator& Loc::y();
y_iterator const& Loc::y() const;
x_iterator Loc::x_at(const difference_type&) const;
y_iterator Loc::y_at(const difference_type&) const;
Loc Loc::xy_at(const difference_type&) const;
// x/y versions of all methods that can take difference type
x_iterator Loc::x_at(x_coord_t, y_coord_t) const;
y_iterator Loc::y_at(x_coord_t, y_coord_t) const;
Loc Loc::xy_at(x_coord_t, y_coord_t) const;
reference operator()(const Loc&, x_coord_t, y_coord_t);
cached_location_t Loc::cache_location(x_coord_t, y_coord_t) const;
bool Loc::is_1d_traversable(x_coord_t width) const;
y_coord_t Loc::y_distance_to(const Loc& loc2, x_coord_t x_diff) const;
};
\endcode
*/
template <typename Loc>
struct RandomAccess2DLocatorConcept {
void constraints() {
gil_function_requires<RandomAccessNDLocatorConcept<Loc> >();
BOOST_STATIC_ASSERT(Loc::num_dimensions==2);
typedef typename dynamic_x_step_type<Loc>::type dynamic_x_step_t;
typedef typename dynamic_y_step_type<Loc>::type dynamic_y_step_t;
typedef typename transposed_type<Loc>::type transposed_t;
typedef typename Loc::cached_location_t cached_location_t;
gil_function_requires<Point2DConcept<typename Loc::point_t> >();
typedef typename Loc::x_iterator x_iterator;
typedef typename Loc::y_iterator y_iterator;
typedef typename Loc::x_coord_t x_coord_t;
typedef typename Loc::y_coord_t y_coord_t;
x_coord_t xd=0; ignore_unused_variable_warning(xd);
y_coord_t yd=0; ignore_unused_variable_warning(yd);
typename Loc::difference_type d;
typename Loc::reference r=loc(xd,yd); ignore_unused_variable_warning(r);
dynamic_x_step_t loc2(dynamic_x_step_t(), yd);
dynamic_x_step_t loc3(dynamic_x_step_t(), xd, yd);
typedef typename dynamic_y_step_type<typename dynamic_x_step_type<transposed_t>::type>::type dynamic_xy_step_transposed_t;
dynamic_xy_step_transposed_t loc4(loc, xd,yd,true);
bool is_contiguous=loc.is_1d_traversable(xd); ignore_unused_variable_warning(is_contiguous);
loc.y_distance_to(loc, xd);
loc=loc.xy_at(d);
loc=loc.xy_at(xd,yd);
x_iterator xit=loc.x_at(d);
xit=loc.x_at(xd,yd);
xit=loc.x();
y_iterator yit=loc.y_at(d);
yit=loc.y_at(xd,yd);
yit=loc.y();
cached_location_t cl=loc.cache_location(xd,yd); ignore_unused_variable_warning(cl);
}
Loc loc;
};
/// \ingroup PixelLocator2DConcept
/// \brief GIL's 2-dimensional locator over immutable GIL pixels
/**
\code
concept PixelLocatorConcept<RandomAccess2DLocatorConcept Loc> {
where PixelValueConcept<value_type>;
where PixelIteratorConcept<x_iterator>;
where PixelIteratorConcept<y_iterator>;
where x_coord_t == y_coord_t;
typename coord_t = x_coord_t;
};
\endcode
*/
template <typename Loc>
struct PixelLocatorConcept {
void constraints() {
gil_function_requires< RandomAccess2DLocatorConcept<Loc> >();
gil_function_requires< PixelIteratorConcept<typename Loc::x_iterator> >();
gil_function_requires< PixelIteratorConcept<typename Loc::y_iterator> >();
typedef typename Loc::coord_t coord_t;
BOOST_STATIC_ASSERT((is_same<typename Loc::x_coord_t, typename Loc::y_coord_t>::value));
}
Loc loc;
};
namespace detail {
template <typename Loc> // preconditions: Loc Models RandomAccessNDLocatorConcept
struct RandomAccessNDLocatorIsMutableConcept {
void constraints() {
gil_function_requires<detail::RandomAccessIteratorIsMutableConcept<typename Loc::template axis<0>::iterator> >();
gil_function_requires<detail::RandomAccessIteratorIsMutableConcept<typename Loc::template axis<Loc::num_dimensions-1>::iterator> >();
typename Loc::difference_type d; initialize_it(d);
typename Loc::value_type v;initialize_it(v);
typename Loc::cached_location_t cl=loc.cache_location(d);
*loc=v;
loc[d]=v;
loc[cl]=v;
}
Loc loc;
};
template <typename Loc> // preconditions: Loc Models RandomAccess2DLocatorConcept
struct RandomAccess2DLocatorIsMutableConcept {
void constraints() {
gil_function_requires<detail::RandomAccessNDLocatorIsMutableConcept<Loc> >();
typename Loc::x_coord_t xd=0; ignore_unused_variable_warning(xd);
typename Loc::y_coord_t yd=0; ignore_unused_variable_warning(yd);
typename Loc::value_type v; initialize_it(v);
loc(xd,yd)=v;
}
Loc loc;
};
}
/// \ingroup LocatorNDConcept
/// \brief N-dimensional locator over mutable pixels
/**
\code
concept MutableRandomAccessNDLocatorConcept<RandomAccessNDLocatorConcept Loc> {
where Mutable<reference>;
};
\endcode
*/
template <typename Loc>
struct MutableRandomAccessNDLocatorConcept {
void constraints() {
gil_function_requires<RandomAccessNDLocatorConcept<Loc> >();
gil_function_requires<detail::RandomAccessNDLocatorIsMutableConcept<Loc> >();
}
};
/// \ingroup Locator2DConcept
/// \brief 2-dimensional locator over mutable pixels
/**
\code
concept MutableRandomAccess2DLocatorConcept<RandomAccess2DLocatorConcept Loc> : MutableRandomAccessNDLocatorConcept<Loc> {};
\endcode
*/
template <typename Loc>
struct MutableRandomAccess2DLocatorConcept {
void constraints() {
gil_function_requires< RandomAccess2DLocatorConcept<Loc> >();
gil_function_requires<detail::RandomAccess2DLocatorIsMutableConcept<Loc> >();
}
};
/// \ingroup PixelLocator2DConcept
/// \brief GIL's 2-dimensional locator over mutable GIL pixels
/**
\code
concept MutablePixelLocatorConcept<PixelLocatorConcept Loc> : MutableRandomAccess2DLocatorConcept<Loc> {};
\endcode
*/
template <typename Loc>
struct MutablePixelLocatorConcept {
void constraints() {
gil_function_requires<PixelLocatorConcept<Loc> >();
gil_function_requires<detail::RandomAccess2DLocatorIsMutableConcept<Loc> >();
}
};
////////////////////////////////////////////////////////////////////////////////////////
///
/// IMAGE VIEW CONCEPTS
///
////////////////////////////////////////////////////////////////////////////////////////
/// \defgroup ImageViewNDConcept ImageViewNDLocatorConcept
/// \ingroup ImageViewConcept
/// \brief N-dimensional range
/// \defgroup ImageView2DConcept ImageView2DConcept
/// \ingroup ImageViewConcept
/// \brief 2-dimensional range
/// \defgroup PixelImageViewConcept ImageViewConcept
/// \ingroup ImageViewConcept
/// \brief 2-dimensional range over pixel data
/// \ingroup ImageViewNDConcept
/// \brief N-dimensional view over immutable values
/**
\code
concept RandomAccessNDImageViewConcept<Regular View> {
typename value_type;
typename reference; // result of dereferencing
typename difference_type; // result of operator-(iterator,iterator) (1-dimensional!)
typename const_t; where RandomAccessNDImageViewConcept<View>; // same as View, but over immutable values
typename point_t; where PointNDConcept<point_t>; // N-dimensional point
typename locator; where RandomAccessNDLocatorConcept<locator>; // N-dimensional locator.
typename iterator; where RandomAccessTraversalConcept<iterator>; // 1-dimensional iterator over all values
typename reverse_iterator; where RandomAccessTraversalConcept<reverse_iterator>;
typename size_type; // the return value of size()
// Equivalent to RandomAccessNDLocatorConcept::axis
template <size_t D> struct axis {
typename coord_t = point_t::axis<D>::coord_t;
typename iterator; where RandomAccessTraversalConcept<iterator>; // iterator along D-th axis.
where SameType<coord_t, iterator::difference_type>;
where SameType<iterator::value_type,value_type>;
};
// Defines the type of a view similar to this type, except it invokes Deref upon dereferencing
template <PixelDereferenceAdaptorConcept Deref> struct add_deref {
typename type; where RandomAccessNDImageViewConcept<type>;
static type make(const View& v, const Deref& deref);
};
static const size_t num_dimensions = point_t::num_dimensions;
// Create from a locator at the top-left corner and dimensions
View::View(const locator&, const point_type&);
size_type View::size() const; // total number of elements
reference operator[](View, const difference_type&) const; // 1-dimensional reference
iterator View::begin() const;
iterator View::end() const;
reverse_iterator View::rbegin() const;
reverse_iterator View::rend() const;
iterator View::at(const point_t&);
point_t View::dimensions() const; // number of elements along each dimension
bool View::is_1d_traversable() const; // can an iterator over the first dimension visit each value? I.e. are there gaps between values?
// iterator along a given dimension starting at a given point
template <size_t D> View::axis<D>::iterator View::axis_iterator(const point_t&) const;
reference operator()(View,const point_t&) const;
};
\endcode
*/
template <typename View>
struct RandomAccessNDImageViewConcept {
void constraints() {
gil_function_requires< Regular<View> >();
typedef typename View::value_type value_type;
typedef typename View::reference reference; // result of dereferencing
typedef typename View::difference_type difference_type; // result of operator-(1d_iterator,1d_iterator)
typedef typename View::const_t const_t; // same as this type, but over const values
typedef typename View::point_t point_t; // N-dimensional point
typedef typename View::locator locator; // N-dimensional locator
typedef typename View::iterator iterator;
typedef typename View::reverse_iterator reverse_iterator;
typedef typename View::size_type size_type;
static const std::size_t N=View::num_dimensions;
gil_function_requires<RandomAccessNDLocatorConcept<locator> >();
gil_function_requires<boost_concepts::RandomAccessTraversalConcept<iterator> >();
gil_function_requires<boost_concepts::RandomAccessTraversalConcept<reverse_iterator> >();
typedef typename View::template axis<0>::iterator first_it_type;
typedef typename View::template axis<N-1>::iterator last_it_type;
gil_function_requires<boost_concepts::RandomAccessTraversalConcept<first_it_type> >();
gil_function_requires<boost_concepts::RandomAccessTraversalConcept<last_it_type> >();
// BOOST_STATIC_ASSERT((typename std::iterator_traits<first_it_type>::difference_type, typename point_t::template axis<0>::coord_t>::value));
// BOOST_STATIC_ASSERT((typename std::iterator_traits< last_it_type>::difference_type, typename point_t::template axis<N-1>::coord_t>::value));
// point_t must be an N-dimensional point, each dimension of which must have the same type as difference_type of the corresponding iterator
gil_function_requires<PointNDConcept<point_t> >();
BOOST_STATIC_ASSERT(point_t::num_dimensions==N);
BOOST_STATIC_ASSERT((is_same<typename std::iterator_traits<first_it_type>::difference_type, typename point_t::template axis<0>::coord_t>::value));
BOOST_STATIC_ASSERT((is_same<typename std::iterator_traits<last_it_type>::difference_type, typename point_t::template axis<N-1>::coord_t>::value));
point_t p;
locator lc;
iterator it;
reverse_iterator rit;
difference_type d; detail::initialize_it(d); ignore_unused_variable_warning(d);
View(p,lc); // view must be constructible from a locator and a point
p=view.dimensions();
lc=view.pixels();
size_type sz=view.size(); ignore_unused_variable_warning(sz);
bool is_contiguous=view.is_1d_traversable(); ignore_unused_variable_warning(is_contiguous);
it=view.begin();
it=view.end();
rit=view.rbegin();
rit=view.rend();
reference r1=view[d]; ignore_unused_variable_warning(r1); // 1D access
reference r2=view(p); ignore_unused_variable_warning(r2); // 2D access
// get 1-D iterator of any dimension at a given pixel location
first_it_type fi=view.template axis_iterator<0>(p); ignore_unused_variable_warning(fi);
last_it_type li=view.template axis_iterator<N-1>(p); ignore_unused_variable_warning(li);
typedef PixelDereferenceAdaptorArchetype<typename View::value_type> deref_t;
typedef typename View::template add_deref<deref_t>::type dtype;
}
View view;
};
/// \ingroup ImageView2DConcept
/// \brief 2-dimensional view over immutable values
/**
\code
concept RandomAccess2DImageViewConcept<RandomAccessNDImageViewConcept View> {
where num_dimensions==2;
typename x_iterator = axis<0>::iterator;
typename y_iterator = axis<1>::iterator;
typename x_coord_t = axis<0>::coord_t;
typename y_coord_t = axis<1>::coord_t;
typename xy_locator = locator;
x_coord_t View::width() const;
y_coord_t View::height() const;
// X-navigation
x_iterator View::x_at(const point_t&) const;
x_iterator View::row_begin(y_coord_t) const;
x_iterator View::row_end (y_coord_t) const;
// Y-navigation
y_iterator View::y_at(const point_t&) const;
y_iterator View::col_begin(x_coord_t) const;
y_iterator View::col_end (x_coord_t) const;
// navigating in 2D
xy_locator View::xy_at(const point_t&) const;
// (x,y) versions of all methods taking point_t
View::View(x_coord_t,y_coord_t,const locator&);
iterator View::at(x_coord_t,y_coord_t) const;
reference operator()(View,x_coord_t,y_coord_t) const;
xy_locator View::xy_at(x_coord_t,y_coord_t) const;
x_iterator View::x_at(x_coord_t,y_coord_t) const;
y_iterator View::y_at(x_coord_t,y_coord_t) const;
};
\endcode
*/
template <typename View>
struct RandomAccess2DImageViewConcept {
void constraints() {
gil_function_requires<RandomAccessNDImageViewConcept<View> >();
BOOST_STATIC_ASSERT(View::num_dimensions==2);
// TODO: This executes the requirements for RandomAccessNDLocatorConcept again. Fix it to improve compile time
gil_function_requires<RandomAccess2DLocatorConcept<typename View::locator> >();
typedef typename dynamic_x_step_type<View>::type dynamic_x_step_t;
typedef typename dynamic_y_step_type<View>::type dynamic_y_step_t;
typedef typename transposed_type<View>::type transposed_t;
typedef typename View::x_iterator x_iterator;
typedef typename View::y_iterator y_iterator;
typedef typename View::x_coord_t x_coord_t;
typedef typename View::y_coord_t y_coord_t;
typedef typename View::xy_locator xy_locator;
x_coord_t xd=0; ignore_unused_variable_warning(xd);
y_coord_t yd=0; ignore_unused_variable_warning(yd);
x_iterator xit;
y_iterator yit;
typename View::point_t d;
View(xd,yd,xy_locator()); // constructible with width, height, 2d_locator
xy_locator lc=view.xy_at(xd,yd);
lc=view.xy_at(d);
typename View::reference r=view(xd,yd); ignore_unused_variable_warning(r);
xd=view.width();
yd=view.height();
xit=view.x_at(d);
xit=view.x_at(xd,yd);
xit=view.row_begin(xd);
xit=view.row_end(xd);
yit=view.y_at(d);
yit=view.y_at(xd,yd);
yit=view.col_begin(xd);
yit=view.col_end(xd);
}
View view;
};
/// \ingroup PixelImageViewConcept
/// \brief GIL's 2-dimensional view over immutable GIL pixels
/**
\code
concept ImageViewConcept<RandomAccess2DImageViewConcept View> {
where PixelValueConcept<value_type>;
where PixelIteratorConcept<x_iterator>;
where PixelIteratorConcept<y_iterator>;
where x_coord_t == y_coord_t;
typename coord_t = x_coord_t;
std::size_t View::num_channels() const;
};
\endcode
*/
template <typename View>
struct ImageViewConcept {
void constraints() {
gil_function_requires<RandomAccess2DImageViewConcept<View> >();
// TODO: This executes the requirements for RandomAccess2DLocatorConcept again. Fix it to improve compile time
gil_function_requires<PixelLocatorConcept<typename View::xy_locator> >();
BOOST_STATIC_ASSERT((is_same<typename View::x_coord_t, typename View::y_coord_t>::value));
typedef typename View::coord_t coord_t; // 1D difference type (same for all dimensions)
std::size_t num_chan = view.num_channels(); ignore_unused_variable_warning(num_chan);
}
View view;
};
namespace detail {
template <typename View> // Preconditions: View Models RandomAccessNDImageViewConcept
struct RandomAccessNDImageViewIsMutableConcept {
void constraints() {
gil_function_requires<detail::RandomAccessNDLocatorIsMutableConcept<typename View::locator> >();
gil_function_requires<detail::RandomAccessIteratorIsMutableConcept<typename View::iterator> >();
gil_function_requires<detail::RandomAccessIteratorIsMutableConcept<typename View::reverse_iterator> >();
gil_function_requires<detail::RandomAccessIteratorIsMutableConcept<typename View::template axis<0>::iterator> >();
gil_function_requires<detail::RandomAccessIteratorIsMutableConcept<typename View::template axis<View::num_dimensions-1>::iterator> >();
typename View::difference_type diff; initialize_it(diff); ignore_unused_variable_warning(diff);
typename View::point_t pt;
typename View::value_type v; initialize_it(v);
view[diff]=v;
view(pt)=v;
}
View view;
};
template <typename View> // preconditions: View Models RandomAccessNDImageViewConcept
struct RandomAccess2DImageViewIsMutableConcept {
void constraints() {
gil_function_requires<detail::RandomAccessNDImageViewIsMutableConcept<View> >();
typename View::x_coord_t xd=0; ignore_unused_variable_warning(xd);
typename View::y_coord_t yd=0; ignore_unused_variable_warning(yd);
typename View::value_type v; initialize_it(v);
view(xd,yd)=v;
}
View view;
};
template <typename View> // preconditions: View Models ImageViewConcept
struct PixelImageViewIsMutableConcept {
void constraints() {
gil_function_requires<detail::RandomAccess2DImageViewIsMutableConcept<View> >();
}
};
}
/// \ingroup ImageViewNDConcept
/// \brief N-dimensional view over mutable values
/**
\code
concept MutableRandomAccessNDImageViewConcept<RandomAccessNDImageViewConcept View> {
where Mutable<reference>;
};
\endcode
*/
template <typename View>
struct MutableRandomAccessNDImageViewConcept {
void constraints() {
gil_function_requires<RandomAccessNDImageViewConcept<View> >();
gil_function_requires<detail::RandomAccessNDImageViewIsMutableConcept<View> >();
}
};
/// \ingroup ImageView2DConcept
/// \brief 2-dimensional view over mutable values
/**
\code
concept MutableRandomAccess2DImageViewConcept<RandomAccess2DImageViewConcept View> : MutableRandomAccessNDImageViewConcept<View> {};
\endcode
*/
template <typename View>
struct MutableRandomAccess2DImageViewConcept {
void constraints() {
gil_function_requires<RandomAccess2DImageViewConcept<View> >();
gil_function_requires<detail::RandomAccess2DImageViewIsMutableConcept<View> >();
}
};
/// \ingroup PixelImageViewConcept
/// \brief GIL's 2-dimensional view over mutable GIL pixels
/**
\code
concept MutableImageViewConcept<ImageViewConcept View> : MutableRandomAccess2DImageViewConcept<View> {};
\endcode
*/
template <typename View>
struct MutableImageViewConcept {
void constraints() {
gil_function_requires<ImageViewConcept<View> >();
gil_function_requires<detail::PixelImageViewIsMutableConcept<View> >();
}
};
/// \brief Returns whether two views are compatible
///
/// Views are compatible if their pixels are compatible. Compatible views can be assigned and copy constructed from one another.
template <typename V1, typename V2> // Model ImageViewConcept
struct views_are_compatible : public pixels_are_compatible<typename V1::value_type, typename V2::value_type> {};
/// \brief Views are compatible if they have the same color spaces and compatible channel values. Constness and layout are not important for compatibility
/// \ingroup ImageViewConcept
/**
\code
concept ViewsCompatibleConcept<ImageViewConcept V1, ImageViewConcept V2> {
where PixelsCompatibleConcept<V1::value_type, P2::value_type>;
};
\endcode
*/
template <typename V1, typename V2>
struct ViewsCompatibleConcept {
void constraints() {
BOOST_STATIC_ASSERT((views_are_compatible<V1,V2>::value));
}
};
////////////////////////////////////////////////////////////////////////////////////////
///
/// IMAGE CONCEPTS
///
////////////////////////////////////////////////////////////////////////////////////////
/// \ingroup ImageConcept
/// \brief N-dimensional container of values
/**
\code
concept RandomAccessNDImageConcept<typename Img> : Regular<Img> {
typename view_t; where MutableRandomAccessNDImageViewConcept<view_t>;
typename const_view_t = view_t::const_t;
typename point_t = view_t::point_t;
typename value_type = view_t::value_type;
typename allocator_type;
Img::Img(point_t dims, std::size_t alignment=1);
Img::Img(point_t dims, value_type fill_value, std::size_t alignment);
void Img::recreate(point_t new_dims, std::size_t alignment=1);
void Img::recreate(point_t new_dims, value_type fill_value, std::size_t alignment);
const point_t& Img::dimensions() const;
const const_view_t& const_view(const Img&);
const view_t& view(Img&);
};
\endcode
*/
template <typename Img>
struct RandomAccessNDImageConcept {
void constraints() {
gil_function_requires<Regular<Img> >();
typedef typename Img::view_t view_t;
gil_function_requires<MutableRandomAccessNDImageViewConcept<view_t> >();
typedef typename Img::const_view_t const_view_t;
typedef typename Img::value_type pixel_t;
typedef typename Img::point_t point_t;
gil_function_requires<PointNDConcept<point_t> >();
const_view_t cv = const_view(img); ignore_unused_variable_warning(cv);
view_t v = view(img); ignore_unused_variable_warning(v);
pixel_t fill_value;
point_t pt=img.dimensions();
Img im1(pt);
Img im2(pt,1);
Img im3(pt,fill_value,1);
img.recreate(pt);
img.recreate(pt,1);
img.recreate(pt,fill_value,1);
}
Img img;
};
/// \ingroup ImageConcept
/// \brief 2-dimensional container of values
/**
\code
concept RandomAccess2DImageConcept<RandomAccessNDImageConcept Img> {
typename x_coord_t = const_view_t::x_coord_t;
typename y_coord_t = const_view_t::y_coord_t;
Img::Img(x_coord_t width, y_coord_t height, std::size_t alignment=1);
Img::Img(x_coord_t width, y_coord_t height, value_type fill_value, std::size_t alignment);
x_coord_t Img::width() const;
y_coord_t Img::height() const;
void Img::recreate(x_coord_t width, y_coord_t height, std::size_t alignment=1);
void Img::recreate(x_coord_t width, y_coord_t height, value_type fill_value, std::size_t alignment);
};
\endcode
*/
template <typename Img>
struct RandomAccess2DImageConcept {
void constraints() {
gil_function_requires<RandomAccessNDImageConcept<Img> >();
typedef typename Img::x_coord_t x_coord_t;
typedef typename Img::y_coord_t y_coord_t;
typedef typename Img::value_type value_t;
gil_function_requires<MutableRandomAccess2DImageViewConcept<typename Img::view_t> >();
x_coord_t w=img.width();
y_coord_t h=img.height();
value_t fill_value;
Img im1(w,h);
Img im2(w,h,1);
Img im3(w,h,fill_value,1);
img.recreate(w,h);
img.recreate(w,h,1);
img.recreate(w,h,fill_value,1);
}
Img img;
};
/// \ingroup ImageConcept
/// \brief 2-dimensional image whose value type models PixelValueConcept
/**
\code
concept ImageConcept<RandomAccess2DImageConcept Img> {
where MutableImageViewConcept<view_t>;
typename coord_t = view_t::coord_t;
};
\endcode
*/
template <typename Img>
struct ImageConcept {
void constraints() {
gil_function_requires<RandomAccess2DImageConcept<Img> >();
gil_function_requires<MutableImageViewConcept<typename Img::view_t> >();
typedef typename Img::coord_t coord_t;
BOOST_STATIC_ASSERT(num_channels<Img>::value == mpl::size<typename color_space_type<Img>::type>::value);
BOOST_STATIC_ASSERT((is_same<coord_t, typename Img::x_coord_t>::value));
BOOST_STATIC_ASSERT((is_same<coord_t, typename Img::y_coord_t>::value));
}
Img img;
};
} } // namespace boost::gil
#endif
|