/usr/include/boost/geometry/util/math.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | // Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_UTIL_MATH_HPP
#define BOOST_GEOMETRY_UTIL_MATH_HPP
#include <cmath>
#include <limits>
#include <boost/math/constants/constants.hpp>
#include <boost/geometry/util/select_most_precise.hpp>
namespace boost { namespace geometry
{
namespace math
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
template <typename Type, bool IsFloatingPoint>
struct equals
{
static inline bool apply(Type const& a, Type const& b)
{
return a == b;
}
};
template <typename Type>
struct equals<Type, true>
{
static inline Type get_max(Type const& a, Type const& b, Type const& c)
{
return (std::max)((std::max)(a, b), c);
}
static inline bool apply(Type const& a, Type const& b)
{
if (a == b)
{
return true;
}
// See http://www.parashift.com/c++-faq-lite/newbie.html#faq-29.17,
// FUTURE: replace by some boost tool or boost::test::close_at_tolerance
return std::abs(a - b) <= std::numeric_limits<Type>::epsilon() * get_max(std::abs(a), std::abs(b), 1.0);
}
};
template <typename Type, bool IsFloatingPoint>
struct smaller
{
static inline bool apply(Type const& a, Type const& b)
{
return a < b;
}
};
template <typename Type>
struct smaller<Type, true>
{
static inline bool apply(Type const& a, Type const& b)
{
if (equals<Type, true>::apply(a, b))
{
return false;
}
return a < b;
}
};
template <typename Type, bool IsFloatingPoint>
struct equals_with_epsilon : public equals<Type, IsFloatingPoint> {};
/*!
\brief Short construct to enable partial specialization for PI, currently not possible in Math.
*/
template <typename T>
struct define_pi
{
static inline T apply()
{
// Default calls Boost.Math
return boost::math::constants::pi<T>();
}
};
template <typename T>
struct relaxed_epsilon
{
static inline T apply(const T& factor)
{
return factor * std::numeric_limits<T>::epsilon();
}
};
} // namespace detail
#endif
template <typename T>
inline T pi() { return detail::define_pi<T>::apply(); }
template <typename T>
inline T relaxed_epsilon(T const& factor)
{
return detail::relaxed_epsilon<T>::apply(factor);
}
// Maybe replace this by boost equals or boost ublas numeric equals or so
/*!
\brief returns true if both arguments are equal.
\ingroup utility
\param a first argument
\param b second argument
\return true if a == b
\note If both a and b are of an integral type, comparison is done by ==.
If one of the types is floating point, comparison is done by abs and
comparing with epsilon. If one of the types is non-fundamental, it might
be a high-precision number and comparison is done using the == operator
of that class.
*/
template <typename T1, typename T2>
inline bool equals(T1 const& a, T2 const& b)
{
typedef typename select_most_precise<T1, T2>::type select_type;
return detail::equals
<
select_type,
boost::is_floating_point<select_type>::type::value
>::apply(a, b);
}
template <typename T1, typename T2>
inline bool equals_with_epsilon(T1 const& a, T2 const& b)
{
typedef typename select_most_precise<T1, T2>::type select_type;
return detail::equals_with_epsilon
<
select_type,
boost::is_floating_point<select_type>::type::value
>::apply(a, b);
}
template <typename T1, typename T2>
inline bool smaller(T1 const& a, T2 const& b)
{
typedef typename select_most_precise<T1, T2>::type select_type;
return detail::smaller
<
select_type,
boost::is_floating_point<select_type>::type::value
>::apply(a, b);
}
template <typename T1, typename T2>
inline bool larger(T1 const& a, T2 const& b)
{
typedef typename select_most_precise<T1, T2>::type select_type;
return detail::smaller
<
select_type,
boost::is_floating_point<select_type>::type::value
>::apply(b, a);
}
double const d2r = geometry::math::pi<double>() / 180.0;
double const r2d = 1.0 / d2r;
/*!
\brief Calculates the haversine of an angle
\ingroup utility
\note See http://en.wikipedia.org/wiki/Haversine_formula
haversin(alpha) = sin2(alpha/2)
*/
template <typename T>
inline T hav(T const& theta)
{
T const half = T(0.5);
T const sn = sin(half * theta);
return sn * sn;
}
/*!
\brief Short utility to return the square
\ingroup utility
\param value Value to calculate the square from
\return The squared value
*/
template <typename T>
inline T sqr(T const& value)
{
return value * value;
}
/*!
\brief Short utility to workaround gcc/clang problem that abs is converting to integer
\ingroup utility
*/
template<typename T>
inline T abs(const T& t)
{
using std::abs;
return abs(t);
}
} // namespace math
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_UTIL_MATH_HPP
|