This file is indexed.

/usr/include/gmock/gmock-actions.h is in google-mock 1.6.0+svn437-0ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)

// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used actions.

#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_

#ifndef _WIN32_WCE
# include <errno.h>
#endif

#include <algorithm>
#include <string>

#include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h"

namespace testing {

// To implement an action Foo, define:
//   1. a class FooAction that implements the ActionInterface interface, and
//   2. a factory function that creates an Action object from a
//      const FooAction*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers.  It also eases ownership
// management as Action objects can now be copied like plain values.

namespace internal {

template <typename F1, typename F2>
class ActionAdaptor;

// BuiltInDefaultValue<T>::Get() returns the "built-in" default
// value for type T, which is NULL when T is a pointer type, 0 when T
// is a numeric type, false when T is bool, or "" when T is string or
// std::string.  For any other type T, this value is undefined and the
// function will abort the process.
template <typename T>
class BuiltInDefaultValue {
 public:
  // This function returns true iff type T has a built-in default value.
  static bool Exists() { return false; }
  static T Get() {
    Assert(false, __FILE__, __LINE__,
           "Default action undefined for the function return type.");
    return internal::Invalid<T>();
    // The above statement will never be reached, but is required in
    // order for this function to compile.
  }
};

// This partial specialization says that we use the same built-in
// default value for T and const T.
template <typename T>
class BuiltInDefaultValue<const T> {
 public:
  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
  static T Get() { return BuiltInDefaultValue<T>::Get(); }
};

// This partial specialization defines the default values for pointer
// types.
template <typename T>
class BuiltInDefaultValue<T*> {
 public:
  static bool Exists() { return true; }
  static T* Get() { return NULL; }
};

// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
  template <> \
  class BuiltInDefaultValue<type> { \
   public: \
    static bool Exists() { return true; } \
    static type Get() { return value; } \
  }

GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
#if GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
#endif  // GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');

// There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC.
//
// There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for
// MSVC.
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
#endif

GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);

#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_

}  // namespace internal

// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have
// to abort the process.
//
// The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return
// type).  The usage is:
//
//   // Sets the default value for type T to be foo.
//   DefaultValue<T>::Set(foo);
template <typename T>
class DefaultValue {
 public:
  // Sets the default value for type T; requires T to be
  // copy-constructable and have a public destructor.
  static void Set(T x) {
    delete value_;
    value_ = new T(x);
  }

  // Unsets the default value for type T.
  static void Clear() {
    delete value_;
    value_ = NULL;
  }

  // Returns true iff the user has set the default value for type T.
  static bool IsSet() { return value_ != NULL; }

  // Returns true if T has a default return value set by the user or there
  // exists a built-in default value.
  static bool Exists() {
    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
  }

  // Returns the default value for type T if the user has set one;
  // otherwise returns the built-in default value if there is one;
  // otherwise aborts the process.
  static T Get() {
    return value_ == NULL ?
        internal::BuiltInDefaultValue<T>::Get() : *value_;
  }

 private:
  static const T* value_;
};

// This partial specialization allows a user to set default values for
// reference types.
template <typename T>
class DefaultValue<T&> {
 public:
  // Sets the default value for type T&.
  static void Set(T& x) {  // NOLINT
    address_ = &x;
  }

  // Unsets the default value for type T&.
  static void Clear() {
    address_ = NULL;
  }

  // Returns true iff the user has set the default value for type T&.
  static bool IsSet() { return address_ != NULL; }

  // Returns true if T has a default return value set by the user or there
  // exists a built-in default value.
  static bool Exists() {
    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
  }

  // Returns the default value for type T& if the user has set one;
  // otherwise returns the built-in default value if there is one;
  // otherwise aborts the process.
  static T& Get() {
    return address_ == NULL ?
        internal::BuiltInDefaultValue<T&>::Get() : *address_;
  }

 private:
  static T* address_;
};

// This specialization allows DefaultValue<void>::Get() to
// compile.
template <>
class DefaultValue<void> {
 public:
  static bool Exists() { return true; }
  static void Get() {}
};

// Points to the user-set default value for type T.
template <typename T>
const T* DefaultValue<T>::value_ = NULL;

// Points to the user-set default value for type T&.
template <typename T>
T* DefaultValue<T&>::address_ = NULL;

// Implement this interface to define an action for function type F.
template <typename F>
class ActionInterface {
 public:
  typedef typename internal::Function<F>::Result Result;
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

  ActionInterface() {}
  virtual ~ActionInterface() {}

  // Performs the action.  This method is not const, as in general an
  // action can have side effects and be stateful.  For example, a
  // get-the-next-element-from-the-collection action will need to
  // remember the current element.
  virtual Result Perform(const ArgumentTuple& args) = 0;

 private:
  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
};

// An Action<F> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function
// of type F is called.  The implementation of Action<T> is just a
// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
// Don't inherit from Action!
//
// You can view an object implementing ActionInterface<F> as a
// concrete action (including its current state), and an Action<F>
// object as a handle to it.
template <typename F>
class Action {
 public:
  typedef typename internal::Function<F>::Result Result;
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

  // Constructs a null Action.  Needed for storing Action objects in
  // STL containers.
  Action() : impl_(NULL) {}

  // Constructs an Action from its implementation.  A NULL impl is
  // used to represent the "do-default" action.
  explicit Action(ActionInterface<F>* impl) : impl_(impl) {}

  // Copy constructor.
  Action(const Action& action) : impl_(action.impl_) {}

  // This constructor allows us to turn an Action<Func> object into an
  // Action<F>, as long as F's arguments can be implicitly converted
  // to Func's and Func's return type can be implicitly converted to
  // F's.
  template <typename Func>
  explicit Action(const Action<Func>& action);

  // Returns true iff this is the DoDefault() action.
  bool IsDoDefault() const { return impl_.get() == NULL; }

  // Performs the action.  Note that this method is const even though
  // the corresponding method in ActionInterface is not.  The reason
  // is that a const Action<F> means that it cannot be re-bound to
  // another concrete action, not that the concrete action it binds to
  // cannot change state.  (Think of the difference between a const
  // pointer and a pointer to const.)
  Result Perform(const ArgumentTuple& args) const {
    internal::Assert(
        !IsDoDefault(), __FILE__, __LINE__,
        "You are using DoDefault() inside a composite action like "
        "DoAll() or WithArgs().  This is not supported for technical "
        "reasons.  Please instead spell out the default action, or "
        "assign the default action to an Action variable and use "
        "the variable in various places.");
    return impl_->Perform(args);
  }

 private:
  template <typename F1, typename F2>
  friend class internal::ActionAdaptor;

  internal::linked_ptr<ActionInterface<F> > impl_;
};

// The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()).
//
// To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template:
//
//   class FooAction {
//    public:
//     template <typename Result, typename ArgumentTuple>
//     Result Perform(const ArgumentTuple& args) const {
//       // Processes the arguments and returns a result, using
//       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
//     }
//     ...
//   };
//
// Then the user creates the polymorphic action using
// MakePolymorphicAction(object) where object has type FooAction.  See
// the definition of Return(void) and SetArgumentPointee<N>(value) for
// complete examples.
template <typename Impl>
class PolymorphicAction {
 public:
  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}

  template <typename F>
  operator Action<F>() const {
    return Action<F>(new MonomorphicImpl<F>(impl_));
  }

 private:
  template <typename F>
  class MonomorphicImpl : public ActionInterface<F> {
   public:
    typedef typename internal::Function<F>::Result Result;
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}

    virtual Result Perform(const ArgumentTuple& args) {
      return impl_.template Perform<Result>(args);
    }

   private:
    Impl impl_;

    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
  };

  Impl impl_;

  GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
};

// Creates an Action from its implementation and returns it.  The
// created Action object owns the implementation.
template <typename F>
Action<F> MakeAction(ActionInterface<F>* impl) {
  return Action<F>(impl);
}

// Creates a polymorphic action from its implementation.  This is
// easier to use than the PolymorphicAction<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
//   MakePolymorphicAction(foo);
// vs
//   PolymorphicAction<TypeOfFoo>(foo);
template <typename Impl>
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
  return PolymorphicAction<Impl>(impl);
}

namespace internal {

// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
// and F1 are compatible.
template <typename F1, typename F2>
class ActionAdaptor : public ActionInterface<F1> {
 public:
  typedef typename internal::Function<F1>::Result Result;
  typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;

  explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}

  virtual Result Perform(const ArgumentTuple& args) {
    return impl_->Perform(args);
  }

 private:
  const internal::linked_ptr<ActionInterface<F2> > impl_;

  GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
};

// Implements the polymorphic Return(x) action, which can be used in
// any function that returns the type of x, regardless of the argument
// types.
//
// Note: The value passed into Return must be converted into
// Function<F>::Result when this action is cast to Action<F> rather than
// when that action is performed. This is important in scenarios like
//
// MOCK_METHOD1(Method, T(U));
// ...
// {
//   Foo foo;
//   X x(&foo);
//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
// }
//
// In the example above the variable x holds reference to foo which leaves
// scope and gets destroyed.  If copying X just copies a reference to foo,
// that copy will be left with a hanging reference.  If conversion to T
// makes a copy of foo, the above code is safe. To support that scenario, we
// need to make sure that the type conversion happens inside the EXPECT_CALL
// statement, and conversion of the result of Return to Action<T(U)> is a
// good place for that.
//
template <typename R>
class ReturnAction {
 public:
  // Constructs a ReturnAction object from the value to be returned.
  // 'value' is passed by value instead of by const reference in order
  // to allow Return("string literal") to compile.
  explicit ReturnAction(R value) : value_(value) {}

  // This template type conversion operator allows Return(x) to be
  // used in ANY function that returns x's type.
  template <typename F>
  operator Action<F>() const {
    // Assert statement belongs here because this is the best place to verify
    // conditions on F. It produces the clearest error messages
    // in most compilers.
    // Impl really belongs in this scope as a local class but can't
    // because MSVC produces duplicate symbols in different translation units
    // in this case. Until MS fixes that bug we put Impl into the class scope
    // and put the typedef both here (for use in assert statement) and
    // in the Impl class. But both definitions must be the same.
    typedef typename Function<F>::Result Result;
    GTEST_COMPILE_ASSERT_(
        !internal::is_reference<Result>::value,
        use_ReturnRef_instead_of_Return_to_return_a_reference);
    return Action<F>(new Impl<F>(value_));
  }

 private:
  // Implements the Return(x) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    // The implicit cast is necessary when Result has more than one
    // single-argument constructor (e.g. Result is std::vector<int>) and R
    // has a type conversion operator template.  In that case, value_(value)
    // won't compile as the compiler doesn't known which constructor of
    // Result to call.  ImplicitCast_ forces the compiler to convert R to
    // Result without considering explicit constructors, thus resolving the
    // ambiguity. value_ is then initialized using its copy constructor.
    explicit Impl(R value)
        : value_(::testing::internal::ImplicitCast_<Result>(value)) {}

    virtual Result Perform(const ArgumentTuple&) { return value_; }

   private:
    GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value,
                          Result_cannot_be_a_reference_type);
    Result value_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  R value_;

  GTEST_DISALLOW_ASSIGN_(ReturnAction);
};

// Implements the ReturnNull() action.
class ReturnNullAction {
 public:
  // Allows ReturnNull() to be used in any pointer-returning function.
  template <typename Result, typename ArgumentTuple>
  static Result Perform(const ArgumentTuple&) {
    GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
                          ReturnNull_can_be_used_to_return_a_pointer_only);
    return NULL;
  }
};

// Implements the Return() action.
class ReturnVoidAction {
 public:
  // Allows Return() to be used in any void-returning function.
  template <typename Result, typename ArgumentTuple>
  static void Perform(const ArgumentTuple&) {
    CompileAssertTypesEqual<void, Result>();
  }
};

// Implements the polymorphic ReturnRef(x) action, which can be used
// in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefAction {
 public:
  // Constructs a ReturnRefAction object from the reference to be returned.
  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT

  // This template type conversion operator allows ReturnRef(x) to be
  // used in ANY function that returns a reference to x's type.
  template <typename F>
  operator Action<F>() const {
    typedef typename Function<F>::Result Result;
    // Asserts that the function return type is a reference.  This
    // catches the user error of using ReturnRef(x) when Return(x)
    // should be used, and generates some helpful error message.
    GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
                          use_Return_instead_of_ReturnRef_to_return_a_value);
    return Action<F>(new Impl<F>(ref_));
  }

 private:
  // Implements the ReturnRef(x) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT

    virtual Result Perform(const ArgumentTuple&) {
      return ref_;
    }

   private:
    T& ref_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  T& ref_;

  GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
};

// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
// used in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefOfCopyAction {
 public:
  // Constructs a ReturnRefOfCopyAction object from the reference to
  // be returned.
  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT

  // This template type conversion operator allows ReturnRefOfCopy(x) to be
  // used in ANY function that returns a reference to x's type.
  template <typename F>
  operator Action<F>() const {
    typedef typename Function<F>::Result Result;
    // Asserts that the function return type is a reference.  This
    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
    // should be used, and generates some helpful error message.
    GTEST_COMPILE_ASSERT_(
        internal::is_reference<Result>::value,
        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
    return Action<F>(new Impl<F>(value_));
  }

 private:
  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(const T& value) : value_(value) {}  // NOLINT

    virtual Result Perform(const ArgumentTuple&) {
      return value_;
    }

   private:
    T value_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const T value_;

  GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
};

// Implements the polymorphic DoDefault() action.
class DoDefaultAction {
 public:
  // This template type conversion operator allows DoDefault() to be
  // used in any function.
  template <typename F>
  operator Action<F>() const { return Action<F>(NULL); }
};

// Implements the Assign action to set a given pointer referent to a
// particular value.
template <typename T1, typename T2>
class AssignAction {
 public:
  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}

  template <typename Result, typename ArgumentTuple>
  void Perform(const ArgumentTuple& /* args */) const {
    *ptr_ = value_;
  }

 private:
  T1* const ptr_;
  const T2 value_;

  GTEST_DISALLOW_ASSIGN_(AssignAction);
};

#if !GTEST_OS_WINDOWS_MOBILE

// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
template <typename T>
class SetErrnoAndReturnAction {
 public:
  SetErrnoAndReturnAction(int errno_value, T result)
      : errno_(errno_value),
        result_(result) {}
  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple& /* args */) const {
    errno = errno_;
    return result_;
  }

 private:
  const int errno_;
  const T result_;

  GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
};

#endif  // !GTEST_OS_WINDOWS_MOBILE

// Implements the SetArgumentPointee<N>(x) action for any function
// whose N-th argument (0-based) is a pointer to x's type.  The
// template parameter kIsProto is true iff type A is ProtocolMessage,
// proto2::Message, or a sub-class of those.
template <size_t N, typename A, bool kIsProto>
class SetArgumentPointeeAction {
 public:
  // Constructs an action that sets the variable pointed to by the
  // N-th function argument to 'value'.
  explicit SetArgumentPointeeAction(const A& value) : value_(value) {}

  template <typename Result, typename ArgumentTuple>
  void Perform(const ArgumentTuple& args) const {
    CompileAssertTypesEqual<void, Result>();
    *::std::tr1::get<N>(args) = value_;
  }

 private:
  const A value_;

  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
};

template <size_t N, typename Proto>
class SetArgumentPointeeAction<N, Proto, true> {
 public:
  // Constructs an action that sets the variable pointed to by the
  // N-th function argument to 'proto'.  Both ProtocolMessage and
  // proto2::Message have the CopyFrom() method, so the same
  // implementation works for both.
  explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
    proto_->CopyFrom(proto);
  }

  template <typename Result, typename ArgumentTuple>
  void Perform(const ArgumentTuple& args) const {
    CompileAssertTypesEqual<void, Result>();
    ::std::tr1::get<N>(args)->CopyFrom(*proto_);
  }

 private:
  const internal::linked_ptr<Proto> proto_;

  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
};

// Implements the InvokeWithoutArgs(f) action.  The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
// Action<F> as long as f's type is compatible with F (i.e. f can be
// assigned to a tr1::function<F>).
template <typename FunctionImpl>
class InvokeWithoutArgsAction {
 public:
  // The c'tor makes a copy of function_impl (either a function
  // pointer or a functor).
  explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
      : function_impl_(function_impl) {}

  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
  // compatible with f.
  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple&) { return function_impl_(); }

 private:
  FunctionImpl function_impl_;

  GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
};

// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
class InvokeMethodWithoutArgsAction {
 public:
  InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
      : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}

  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple&) const {
    return (obj_ptr_->*method_ptr_)();
  }

 private:
  Class* const obj_ptr_;
  const MethodPtr method_ptr_;

  GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
};

// Implements the IgnoreResult(action) action.
template <typename A>
class IgnoreResultAction {
 public:
  explicit IgnoreResultAction(const A& action) : action_(action) {}

  template <typename F>
  operator Action<F>() const {
    // Assert statement belongs here because this is the best place to verify
    // conditions on F. It produces the clearest error messages
    // in most compilers.
    // Impl really belongs in this scope as a local class but can't
    // because MSVC produces duplicate symbols in different translation units
    // in this case. Until MS fixes that bug we put Impl into the class scope
    // and put the typedef both here (for use in assert statement) and
    // in the Impl class. But both definitions must be the same.
    typedef typename internal::Function<F>::Result Result;

    // Asserts at compile time that F returns void.
    CompileAssertTypesEqual<void, Result>();

    return Action<F>(new Impl<F>(action_));
  }

 private:
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename internal::Function<F>::Result Result;
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(const A& action) : action_(action) {}

    virtual void Perform(const ArgumentTuple& args) {
      // Performs the action and ignores its result.
      action_.Perform(args);
    }

   private:
    // Type OriginalFunction is the same as F except that its return
    // type is IgnoredValue.
    typedef typename internal::Function<F>::MakeResultIgnoredValue
        OriginalFunction;

    const Action<OriginalFunction> action_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const A action_;

  GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
};

// A ReferenceWrapper<T> object represents a reference to type T,
// which can be either const or not.  It can be explicitly converted
// from, and implicitly converted to, a T&.  Unlike a reference,
// ReferenceWrapper<T> can be copied and can survive template type
// inference.  This is used to support by-reference arguments in the
// InvokeArgument<N>(...) action.  The idea was from "reference
// wrappers" in tr1, which we don't have in our source tree yet.
template <typename T>
class ReferenceWrapper {
 public:
  // Constructs a ReferenceWrapper<T> object from a T&.
  explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT

  // Allows a ReferenceWrapper<T> object to be implicitly converted to
  // a T&.
  operator T&() const { return *pointer_; }
 private:
  T* pointer_;
};

// Allows the expression ByRef(x) to be printed as a reference to x.
template <typename T>
void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
  T& value = ref;
  UniversalPrinter<T&>::Print(value, os);
}

// Does two actions sequentially.  Used for implementing the DoAll(a1,
// a2, ...) action.
template <typename Action1, typename Action2>
class DoBothAction {
 public:
  DoBothAction(Action1 action1, Action2 action2)
      : action1_(action1), action2_(action2) {}

  // This template type conversion operator allows DoAll(a1, ..., a_n)
  // to be used in ANY function of compatible type.
  template <typename F>
  operator Action<F>() const {
    return Action<F>(new Impl<F>(action1_, action2_));
  }

 private:
  // Implements the DoAll(...) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    typedef typename Function<F>::MakeResultVoid VoidResult;

    Impl(const Action<VoidResult>& action1, const Action<F>& action2)
        : action1_(action1), action2_(action2) {}

    virtual Result Perform(const ArgumentTuple& args) {
      action1_.Perform(args);
      return action2_.Perform(args);
    }

   private:
    const Action<VoidResult> action1_;
    const Action<F> action2_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  Action1 action1_;
  Action2 action2_;

  GTEST_DISALLOW_ASSIGN_(DoBothAction);
};

}  // namespace internal

// An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the
// mock function arguments.  For example, given
//
//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
//   MOCK_METHOD3(Bar, double(int index, double x, double y));
//
// instead of
//
//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   double DistanceToOriginWithIndex(int index, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   ...
//   EXEPCT_CALL(mock, Foo("abc", _, _))
//       .WillOnce(Invoke(DistanceToOriginWithLabel));
//   EXEPCT_CALL(mock, Bar(5, _, _))
//       .WillOnce(Invoke(DistanceToOriginWithIndex));
//
// you could write
//
//   // We can declare any uninteresting argument as Unused.
//   double DistanceToOrigin(Unused, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   ...
//   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
//   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused;

// This constructor allows us to turn an Action<From> object into an
// Action<To>, as long as To's arguments can be implicitly converted
// to From's and From's return type cann be implicitly converted to
// To's.
template <typename To>
template <typename From>
Action<To>::Action(const Action<From>& from)
    : impl_(new internal::ActionAdaptor<To, From>(from)) {}

// Creates an action that returns 'value'.  'value' is passed by value
// instead of const reference - otherwise Return("string literal")
// will trigger a compiler error about using array as initializer.
template <typename R>
internal::ReturnAction<R> Return(R value) {
  return internal::ReturnAction<R>(value);
}

// Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
  return MakePolymorphicAction(internal::ReturnNullAction());
}

// Creates an action that returns from a void function.
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
  return MakePolymorphicAction(internal::ReturnVoidAction());
}

// Creates an action that returns the reference to a variable.
template <typename R>
inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
  return internal::ReturnRefAction<R>(x);
}

// Creates an action that returns the reference to a copy of the
// argument.  The copy is created when the action is constructed and
// lives as long as the action.
template <typename R>
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
  return internal::ReturnRefOfCopyAction<R>(x);
}

// Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() {
  return internal::DoDefaultAction();
}

// Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'.
template <size_t N, typename T>
PolymorphicAction<
  internal::SetArgumentPointeeAction<
    N, T, internal::IsAProtocolMessage<T>::value> >
SetArgPointee(const T& x) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, T, internal::IsAProtocolMessage<T>::value>(x));
}

#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
// This overload allows SetArgPointee() to accept a string literal.
// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
// this overload from the templated version and emit a compile error.
template <size_t N>
PolymorphicAction<
  internal::SetArgumentPointeeAction<N, const char*, false> >
SetArgPointee(const char* p) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, const char*, false>(p));
}

template <size_t N>
PolymorphicAction<
  internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
SetArgPointee(const wchar_t* p) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, const wchar_t*, false>(p));
}
#endif

// The following version is DEPRECATED.
template <size_t N, typename T>
PolymorphicAction<
  internal::SetArgumentPointeeAction<
    N, T, internal::IsAProtocolMessage<T>::value> >
SetArgumentPointee(const T& x) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, T, internal::IsAProtocolMessage<T>::value>(x));
}

// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
}

#if !GTEST_OS_WINDOWS_MOBILE

// Creates an action that sets errno and returns the appropriate error.
template <typename T>
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
SetErrnoAndReturn(int errval, T result) {
  return MakePolymorphicAction(
      internal::SetErrnoAndReturnAction<T>(errval, result));
}

#endif  // !GTEST_OS_WINDOWS_MOBILE

// Various overloads for InvokeWithoutArgs().

// Creates an action that invokes 'function_impl' with no argument.
template <typename FunctionImpl>
PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
InvokeWithoutArgs(FunctionImpl function_impl) {
  return MakePolymorphicAction(
      internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
}

// Creates an action that invokes the given method on the given object
// with no argument.
template <class Class, typename MethodPtr>
PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
  return MakePolymorphicAction(
      internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
          obj_ptr, method_ptr));
}

// Creates an action that performs an_action and throws away its
// result.  In other words, it changes the return type of an_action to
// void.  an_action MUST NOT return void, or the code won't compile.
template <typename A>
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
  return internal::IgnoreResultAction<A>(an_action);
}

// Creates a reference wrapper for the given L-value.  If necessary,
// you can explicitly specify the type of the reference.  For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&.  If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
//   ByRef<const Base>(derived)
template <typename T>
inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
  return internal::ReferenceWrapper<T>(l_value);
}

}  // namespace testing

#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_