This file is indexed.

/usr/include/llvm-3.5/llvm/IR/Constants.h is in llvm-3.5-dev 1:3.5-4ubuntu2~trusty2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// @file
/// This file contains the declarations for the subclasses of Constant,
/// which represent the different flavors of constant values that live in LLVM.
/// Note that Constants are immutable (once created they never change) and are
/// fully shared by structural equivalence.  This means that two structurally
/// equivalent constants will always have the same address.  Constant's are
/// created on demand as needed and never deleted: thus clients don't have to
/// worry about the lifetime of the objects.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_CONSTANTS_H
#define LLVM_IR_CONSTANTS_H

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/OperandTraits.h"

namespace llvm {

class ArrayType;
class IntegerType;
class StructType;
class PointerType;
class VectorType;
class SequentialType;

template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator;
template<class ConstantClass, class TypeClass>
struct ConstantArrayCreator;
template<class ConstantClass, class TypeClass>
struct ConvertConstantType;

//===----------------------------------------------------------------------===//
/// This is the shared class of boolean and integer constants. This class
/// represents both boolean and integral constants.
/// @brief Class for constant integers.
class ConstantInt : public Constant {
  void anchor() override;
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
  ConstantInt(const ConstantInt &) LLVM_DELETED_FUNCTION;
  ConstantInt(IntegerType *Ty, const APInt& V);
  APInt Val;
protected:
  // allocate space for exactly zero operands
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
public:
  static ConstantInt *getTrue(LLVMContext &Context);
  static ConstantInt *getFalse(LLVMContext &Context);
  static Constant *getTrue(Type *Ty);
  static Constant *getFalse(Type *Ty);

  /// If Ty is a vector type, return a Constant with a splat of the given
  /// value. Otherwise return a ConstantInt for the given value.
  static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);

  /// Return a ConstantInt with the specified integer value for the specified
  /// type. If the type is wider than 64 bits, the value will be zero-extended
  /// to fit the type, unless isSigned is true, in which case the value will
  /// be interpreted as a 64-bit signed integer and sign-extended to fit
  /// the type.
  /// @brief Get a ConstantInt for a specific value.
  static ConstantInt *get(IntegerType *Ty, uint64_t V,
                          bool isSigned = false);

  /// Return a ConstantInt with the specified value for the specified type. The
  /// value V will be canonicalized to a an unsigned APInt. Accessing it with
  /// either getSExtValue() or getZExtValue() will yield a correctly sized and
  /// signed value for the type Ty.
  /// @brief Get a ConstantInt for a specific signed value.
  static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
  static Constant *getSigned(Type *Ty, int64_t V);

  /// Return a ConstantInt with the specified value and an implied Type. The
  /// type is the integer type that corresponds to the bit width of the value.
  static ConstantInt *get(LLVMContext &Context, const APInt &V);

  /// Return a ConstantInt constructed from the string strStart with the given
  /// radix.
  static ConstantInt *get(IntegerType *Ty, StringRef Str,
                          uint8_t radix);

  /// If Ty is a vector type, return a Constant with a splat of the given
  /// value. Otherwise return a ConstantInt for the given value.
  static Constant *get(Type* Ty, const APInt& V);

  /// Return the constant as an APInt value reference. This allows clients to
  /// obtain a copy of the value, with all its precision in tact.
  /// @brief Return the constant's value.
  inline const APInt &getValue() const {
    return Val;
  }

  /// getBitWidth - Return the bitwidth of this constant.
  unsigned getBitWidth() const { return Val.getBitWidth(); }

  /// Return the constant as a 64-bit unsigned integer value after it
  /// has been zero extended as appropriate for the type of this constant. Note
  /// that this method can assert if the value does not fit in 64 bits.
  /// @brief Return the zero extended value.
  inline uint64_t getZExtValue() const {
    return Val.getZExtValue();
  }

  /// Return the constant as a 64-bit integer value after it has been sign
  /// extended as appropriate for the type of this constant. Note that
  /// this method can assert if the value does not fit in 64 bits.
  /// @brief Return the sign extended value.
  inline int64_t getSExtValue() const {
    return Val.getSExtValue();
  }

  /// A helper method that can be used to determine if the constant contained
  /// within is equal to a constant.  This only works for very small values,
  /// because this is all that can be represented with all types.
  /// @brief Determine if this constant's value is same as an unsigned char.
  bool equalsInt(uint64_t V) const {
    return Val == V;
  }

  /// getType - Specialize the getType() method to always return an IntegerType,
  /// which reduces the amount of casting needed in parts of the compiler.
  ///
  inline IntegerType *getType() const {
    return cast<IntegerType>(Value::getType());
  }

  /// This static method returns true if the type Ty is big enough to
  /// represent the value V. This can be used to avoid having the get method
  /// assert when V is larger than Ty can represent. Note that there are two
  /// versions of this method, one for unsigned and one for signed integers.
  /// Although ConstantInt canonicalizes everything to an unsigned integer,
  /// the signed version avoids callers having to convert a signed quantity
  /// to the appropriate unsigned type before calling the method.
  /// @returns true if V is a valid value for type Ty
  /// @brief Determine if the value is in range for the given type.
  static bool isValueValidForType(Type *Ty, uint64_t V);
  static bool isValueValidForType(Type *Ty, int64_t V);

  bool isNegative() const { return Val.isNegative(); }

  /// This is just a convenience method to make client code smaller for a
  /// common code. It also correctly performs the comparison without the
  /// potential for an assertion from getZExtValue().
  bool isZero() const {
    return Val == 0;
  }

  /// This is just a convenience method to make client code smaller for a
  /// common case. It also correctly performs the comparison without the
  /// potential for an assertion from getZExtValue().
  /// @brief Determine if the value is one.
  bool isOne() const {
    return Val == 1;
  }

  /// This function will return true iff every bit in this constant is set
  /// to true.
  /// @returns true iff this constant's bits are all set to true.
  /// @brief Determine if the value is all ones.
  bool isMinusOne() const {
    return Val.isAllOnesValue();
  }

  /// This function will return true iff this constant represents the largest
  /// value that may be represented by the constant's type.
  /// @returns true iff this is the largest value that may be represented
  /// by this type.
  /// @brief Determine if the value is maximal.
  bool isMaxValue(bool isSigned) const {
    if (isSigned)
      return Val.isMaxSignedValue();
    else
      return Val.isMaxValue();
  }

  /// This function will return true iff this constant represents the smallest
  /// value that may be represented by this constant's type.
  /// @returns true if this is the smallest value that may be represented by
  /// this type.
  /// @brief Determine if the value is minimal.
  bool isMinValue(bool isSigned) const {
    if (isSigned)
      return Val.isMinSignedValue();
    else
      return Val.isMinValue();
  }

  /// This function will return true iff this constant represents a value with
  /// active bits bigger than 64 bits or a value greater than the given uint64_t
  /// value.
  /// @returns true iff this constant is greater or equal to the given number.
  /// @brief Determine if the value is greater or equal to the given number.
  bool uge(uint64_t Num) const {
    return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
  }

  /// getLimitedValue - If the value is smaller than the specified limit,
  /// return it, otherwise return the limit value.  This causes the value
  /// to saturate to the limit.
  /// @returns the min of the value of the constant and the specified value
  /// @brief Get the constant's value with a saturation limit
  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    return Val.getLimitedValue(Limit);
  }

  /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantIntVal;
  }
};


//===----------------------------------------------------------------------===//
/// ConstantFP - Floating Point Values [float, double]
///
class ConstantFP : public Constant {
  APFloat Val;
  void anchor() override;
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
  ConstantFP(const ConstantFP &) LLVM_DELETED_FUNCTION;
  friend class LLVMContextImpl;
protected:
  ConstantFP(Type *Ty, const APFloat& V);
protected:
  // allocate space for exactly zero operands
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
public:
  /// Floating point negation must be implemented with f(x) = -0.0 - x. This
  /// method returns the negative zero constant for floating point or vector
  /// floating point types; for all other types, it returns the null value.
  static Constant *getZeroValueForNegation(Type *Ty);

  /// get() - This returns a ConstantFP, or a vector containing a splat of a
  /// ConstantFP, for the specified value in the specified type.  This should
  /// only be used for simple constant values like 2.0/1.0 etc, that are
  /// known-valid both as host double and as the target format.
  static Constant *get(Type* Ty, double V);
  static Constant *get(Type* Ty, StringRef Str);
  static ConstantFP *get(LLVMContext &Context, const APFloat &V);
  static Constant *getNegativeZero(Type *Ty);
  static Constant *getInfinity(Type *Ty, bool Negative = false);

  /// isValueValidForType - return true if Ty is big enough to represent V.
  static bool isValueValidForType(Type *Ty, const APFloat &V);
  inline const APFloat &getValueAPF() const { return Val; }

  /// isZero - Return true if the value is positive or negative zero.
  bool isZero() const { return Val.isZero(); }

  /// isNegative - Return true if the sign bit is set.
  bool isNegative() const { return Val.isNegative(); }

  /// isNaN - Return true if the value is a NaN.
  bool isNaN() const { return Val.isNaN(); }

  /// isExactlyValue - We don't rely on operator== working on double values, as
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
  /// As such, this method can be used to do an exact bit-for-bit comparison of
  /// two floating point values.  The version with a double operand is retained
  /// because it's so convenient to write isExactlyValue(2.0), but please use
  /// it only for simple constants.
  bool isExactlyValue(const APFloat &V) const;

  bool isExactlyValue(double V) const {
    bool ignored;
    APFloat FV(V);
    FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
    return isExactlyValue(FV);
  }
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantFPVal;
  }
};

//===----------------------------------------------------------------------===//
/// ConstantAggregateZero - All zero aggregate value
///
class ConstantAggregateZero : public Constant {
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
  ConstantAggregateZero(const ConstantAggregateZero &) LLVM_DELETED_FUNCTION;
protected:
  explicit ConstantAggregateZero(Type *ty)
    : Constant(ty, ConstantAggregateZeroVal, nullptr, 0) {}
protected:
  // allocate space for exactly zero operands
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
public:
  static ConstantAggregateZero *get(Type *Ty);

  void destroyConstant() override;

  /// getSequentialElement - If this CAZ has array or vector type, return a zero
  /// with the right element type.
  Constant *getSequentialElement() const;

  /// getStructElement - If this CAZ has struct type, return a zero with the
  /// right element type for the specified element.
  Constant *getStructElement(unsigned Elt) const;

  /// getElementValue - Return a zero of the right value for the specified GEP
  /// index.
  Constant *getElementValue(Constant *C) const;

  /// getElementValue - Return a zero of the right value for the specified GEP
  /// index.
  Constant *getElementValue(unsigned Idx) const;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  ///
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantAggregateZeroVal;
  }
};


//===----------------------------------------------------------------------===//
/// ConstantArray - Constant Array Declarations
///
class ConstantArray : public Constant {
  friend struct ConstantArrayCreator<ConstantArray, ArrayType>;
  ConstantArray(const ConstantArray &) LLVM_DELETED_FUNCTION;
protected:
  ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
public:
  // ConstantArray accessors
  static Constant *get(ArrayType *T, ArrayRef<Constant*> V);

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);

  /// getType - Specialize the getType() method to always return an ArrayType,
  /// which reduces the amount of casting needed in parts of the compiler.
  ///
  inline ArrayType *getType() const {
    return cast<ArrayType>(Value::getType());
  }

  void destroyConstant() override;
  void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantArrayVal;
  }
};

template <>
struct OperandTraits<ConstantArray> :
  public VariadicOperandTraits<ConstantArray> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)

//===----------------------------------------------------------------------===//
// ConstantStruct - Constant Struct Declarations
//
class ConstantStruct : public Constant {
  friend struct ConstantArrayCreator<ConstantStruct, StructType>;
  ConstantStruct(const ConstantStruct &) LLVM_DELETED_FUNCTION;
protected:
  ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
public:
  // ConstantStruct accessors
  static Constant *get(StructType *T, ArrayRef<Constant*> V);
  static Constant *get(StructType *T, ...) END_WITH_NULL;

  /// getAnon - Return an anonymous struct that has the specified
  /// elements.  If the struct is possibly empty, then you must specify a
  /// context.
  static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
    return get(getTypeForElements(V, Packed), V);
  }
  static Constant *getAnon(LLVMContext &Ctx,
                           ArrayRef<Constant*> V, bool Packed = false) {
    return get(getTypeForElements(Ctx, V, Packed), V);
  }

  /// getTypeForElements - Return an anonymous struct type to use for a constant
  /// with the specified set of elements.  The list must not be empty.
  static StructType *getTypeForElements(ArrayRef<Constant*> V,
                                        bool Packed = false);
  /// getTypeForElements - This version of the method allows an empty list.
  static StructType *getTypeForElements(LLVMContext &Ctx,
                                        ArrayRef<Constant*> V,
                                        bool Packed = false);

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);

  /// getType() specialization - Reduce amount of casting...
  ///
  inline StructType *getType() const {
    return cast<StructType>(Value::getType());
  }

  void destroyConstant() override;
  void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantStructVal;
  }
};

template <>
struct OperandTraits<ConstantStruct> :
  public VariadicOperandTraits<ConstantStruct> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)


//===----------------------------------------------------------------------===//
/// ConstantVector - Constant Vector Declarations
///
class ConstantVector : public Constant {
  friend struct ConstantArrayCreator<ConstantVector, VectorType>;
  ConstantVector(const ConstantVector &) LLVM_DELETED_FUNCTION;
protected:
  ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
public:
  // ConstantVector accessors
  static Constant *get(ArrayRef<Constant*> V);

  /// getSplat - Return a ConstantVector with the specified constant in each
  /// element.
  static Constant *getSplat(unsigned NumElts, Constant *Elt);

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);

  /// getType - Specialize the getType() method to always return a VectorType,
  /// which reduces the amount of casting needed in parts of the compiler.
  ///
  inline VectorType *getType() const {
    return cast<VectorType>(Value::getType());
  }

  /// getSplatValue - If this is a splat constant, meaning that all of the
  /// elements have the same value, return that value. Otherwise return NULL.
  Constant *getSplatValue() const;

  void destroyConstant() override;
  void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantVectorVal;
  }
};

template <>
struct OperandTraits<ConstantVector> :
  public VariadicOperandTraits<ConstantVector> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)

//===----------------------------------------------------------------------===//
/// ConstantPointerNull - a constant pointer value that points to null
///
class ConstantPointerNull : public Constant {
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
  ConstantPointerNull(const ConstantPointerNull &) LLVM_DELETED_FUNCTION;
protected:
  explicit ConstantPointerNull(PointerType *T)
    : Constant(T,
               Value::ConstantPointerNullVal, nullptr, 0) {}

protected:
  // allocate space for exactly zero operands
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
public:
  /// get() - Static factory methods - Return objects of the specified value
  static ConstantPointerNull *get(PointerType *T);

  void destroyConstant() override;

  /// getType - Specialize the getType() method to always return an PointerType,
  /// which reduces the amount of casting needed in parts of the compiler.
  ///
  inline PointerType *getType() const {
    return cast<PointerType>(Value::getType());
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantPointerNullVal;
  }
};

//===----------------------------------------------------------------------===//
/// ConstantDataSequential - A vector or array constant whose element type is a
/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
/// simple data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
/// operands because it stores all of the elements of the constant as densely
/// packed data, instead of as Value*'s.
///
/// This is the common base class of ConstantDataArray and ConstantDataVector.
///
class ConstantDataSequential : public Constant {
  friend class LLVMContextImpl;
  /// DataElements - A pointer to the bytes underlying this constant (which is
  /// owned by the uniquing StringMap).
  const char *DataElements;

  /// Next - This forms a link list of ConstantDataSequential nodes that have
  /// the same value but different type.  For example, 0,0,0,1 could be a 4
  /// element array of i8, or a 1-element array of i32.  They'll both end up in
  /// the same StringMap bucket, linked up.
  ConstantDataSequential *Next;
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
  ConstantDataSequential(const ConstantDataSequential &) LLVM_DELETED_FUNCTION;
protected:
  explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
    : Constant(ty, VT, nullptr, 0), DataElements(Data), Next(nullptr) {}
  ~ConstantDataSequential() { delete Next; }

  static Constant *getImpl(StringRef Bytes, Type *Ty);

protected:
  // allocate space for exactly zero operands.
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
public:

  /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
  /// formed with a vector or array of the specified element type.
  /// ConstantDataArray only works with normal float and int types that are
  /// stored densely in memory, not with things like i42 or x86_f80.
  static bool isElementTypeCompatible(const Type *Ty);

  /// getElementAsInteger - If this is a sequential container of integers (of
  /// any size), return the specified element in the low bits of a uint64_t.
  uint64_t getElementAsInteger(unsigned i) const;

  /// getElementAsAPFloat - If this is a sequential container of floating point
  /// type, return the specified element as an APFloat.
  APFloat getElementAsAPFloat(unsigned i) const;

  /// getElementAsFloat - If this is an sequential container of floats, return
  /// the specified element as a float.
  float getElementAsFloat(unsigned i) const;

  /// getElementAsDouble - If this is an sequential container of doubles, return
  /// the specified element as a double.
  double getElementAsDouble(unsigned i) const;

  /// getElementAsConstant - Return a Constant for a specified index's element.
  /// Note that this has to compute a new constant to return, so it isn't as
  /// efficient as getElementAsInteger/Float/Double.
  Constant *getElementAsConstant(unsigned i) const;

  /// getType - Specialize the getType() method to always return a
  /// SequentialType, which reduces the amount of casting needed in parts of the
  /// compiler.
  inline SequentialType *getType() const {
    return cast<SequentialType>(Value::getType());
  }

  /// getElementType - Return the element type of the array/vector.
  Type *getElementType() const;

  /// getNumElements - Return the number of elements in the array or vector.
  unsigned getNumElements() const;

  /// getElementByteSize - Return the size (in bytes) of each element in the
  /// array/vector.  The size of the elements is known to be a multiple of one
  /// byte.
  uint64_t getElementByteSize() const;


  /// isString - This method returns true if this is an array of i8.
  bool isString() const;

  /// isCString - This method returns true if the array "isString", ends with a
  /// nul byte, and does not contains any other nul bytes.
  bool isCString() const;

  /// getAsString - If this array is isString(), then this method returns the
  /// array as a StringRef.  Otherwise, it asserts out.
  ///
  StringRef getAsString() const {
    assert(isString() && "Not a string");
    return getRawDataValues();
  }

  /// getAsCString - If this array is isCString(), then this method returns the
  /// array (without the trailing null byte) as a StringRef. Otherwise, it
  /// asserts out.
  ///
  StringRef getAsCString() const {
    assert(isCString() && "Isn't a C string");
    StringRef Str = getAsString();
    return Str.substr(0, Str.size()-1);
  }

  /// getRawDataValues - Return the raw, underlying, bytes of this data.  Note
  /// that this is an extremely tricky thing to work with, as it exposes the
  /// host endianness of the data elements.
  StringRef getRawDataValues() const;

  void destroyConstant() override;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  ///
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantDataArrayVal ||
           V->getValueID() == ConstantDataVectorVal;
  }
private:
  const char *getElementPointer(unsigned Elt) const;
};

//===----------------------------------------------------------------------===//
/// ConstantDataArray - An array constant whose element type is a simple
/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
/// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
/// operands because it stores all of the elements of the constant as densely
/// packed data, instead of as Value*'s.
class ConstantDataArray : public ConstantDataSequential {
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
  ConstantDataArray(const ConstantDataArray &) LLVM_DELETED_FUNCTION;
  void anchor() override;
  friend class ConstantDataSequential;
  explicit ConstantDataArray(Type *ty, const char *Data)
    : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
protected:
  // allocate space for exactly zero operands.
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
public:

  /// get() constructors - Return a constant with array type with an element
  /// count and element type matching the ArrayRef passed in.  Note that this
  /// can return a ConstantAggregateZero object.
  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);

  /// getString - This method constructs a CDS and initializes it with a text
  /// string. The default behavior (AddNull==true) causes a null terminator to
  /// be placed at the end of the array (increasing the length of the string by
  /// one more than the StringRef would normally indicate.  Pass AddNull=false
  /// to disable this behavior.
  static Constant *getString(LLVMContext &Context, StringRef Initializer,
                             bool AddNull = true);

  /// getType - Specialize the getType() method to always return an ArrayType,
  /// which reduces the amount of casting needed in parts of the compiler.
  ///
  inline ArrayType *getType() const {
    return cast<ArrayType>(Value::getType());
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  ///
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantDataArrayVal;
  }
};

//===----------------------------------------------------------------------===//
/// ConstantDataVector - A vector constant whose element type is a simple
/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
/// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
/// operands because it stores all of the elements of the constant as densely
/// packed data, instead of as Value*'s.
class ConstantDataVector : public ConstantDataSequential {
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
  ConstantDataVector(const ConstantDataVector &) LLVM_DELETED_FUNCTION;
  void anchor() override;
  friend class ConstantDataSequential;
  explicit ConstantDataVector(Type *ty, const char *Data)
  : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
protected:
  // allocate space for exactly zero operands.
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
public:

  /// get() constructors - Return a constant with vector type with an element
  /// count and element type matching the ArrayRef passed in.  Note that this
  /// can return a ConstantAggregateZero object.
  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);

  /// getSplat - Return a ConstantVector with the specified constant in each
  /// element.  The specified constant has to be a of a compatible type (i8/i16/
  /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
  static Constant *getSplat(unsigned NumElts, Constant *Elt);

  /// getSplatValue - If this is a splat constant, meaning that all of the
  /// elements have the same value, return that value. Otherwise return NULL.
  Constant *getSplatValue() const;

  /// getType - Specialize the getType() method to always return a VectorType,
  /// which reduces the amount of casting needed in parts of the compiler.
  ///
  inline VectorType *getType() const {
    return cast<VectorType>(Value::getType());
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  ///
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantDataVectorVal;
  }
};



/// BlockAddress - The address of a basic block.
///
class BlockAddress : public Constant {
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
  void *operator new(size_t s) { return User::operator new(s, 2); }
  BlockAddress(Function *F, BasicBlock *BB);
public:
  /// get - Return a BlockAddress for the specified function and basic block.
  static BlockAddress *get(Function *F, BasicBlock *BB);

  /// get - Return a BlockAddress for the specified basic block.  The basic
  /// block must be embedded into a function.
  static BlockAddress *get(BasicBlock *BB);

  /// \brief Lookup an existing \c BlockAddress constant for the given
  /// BasicBlock.
  ///
  /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
  static BlockAddress *lookup(const BasicBlock *BB);

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  Function *getFunction() const { return (Function*)Op<0>().get(); }
  BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }

  void destroyConstant() override;
  void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Value *V) {
    return V->getValueID() == BlockAddressVal;
  }
};

template <>
struct OperandTraits<BlockAddress> :
  public FixedNumOperandTraits<BlockAddress, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)


//===----------------------------------------------------------------------===//
/// ConstantExpr - a constant value that is initialized with an expression using
/// other constant values.
///
/// This class uses the standard Instruction opcodes to define the various
/// constant expressions.  The Opcode field for the ConstantExpr class is
/// maintained in the Value::SubclassData field.
class ConstantExpr : public Constant {
  friend struct ConstantCreator<ConstantExpr,Type,
                            std::pair<unsigned, std::vector<Constant*> > >;
  friend struct ConvertConstantType<ConstantExpr, Type>;

protected:
  ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
    : Constant(ty, ConstantExprVal, Ops, NumOps) {
    // Operation type (an Instruction opcode) is stored as the SubclassData.
    setValueSubclassData(Opcode);
  }

public:
  // Static methods to construct a ConstantExpr of different kinds.  Note that
  // these methods may return a object that is not an instance of the
  // ConstantExpr class, because they will attempt to fold the constant
  // expression into something simpler if possible.

  /// getAlignOf constant expr - computes the alignment of a type in a target
  /// independent way (Note: the return type is an i64).
  static Constant *getAlignOf(Type *Ty);

  /// getSizeOf constant expr - computes the (alloc) size of a type (in
  /// address-units, not bits) in a target independent way (Note: the return
  /// type is an i64).
  ///
  static Constant *getSizeOf(Type *Ty);

  /// getOffsetOf constant expr - computes the offset of a struct field in a
  /// target independent way (Note: the return type is an i64).
  ///
  static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);

  /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
  /// which supports any aggregate type, and any Constant index.
  ///
  static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);

  static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
  static Constant *getFNeg(Constant *C);
  static Constant *getNot(Constant *C);
  static Constant *getAdd(Constant *C1, Constant *C2,
                          bool HasNUW = false, bool HasNSW = false);
  static Constant *getFAdd(Constant *C1, Constant *C2);
  static Constant *getSub(Constant *C1, Constant *C2,
                          bool HasNUW = false, bool HasNSW = false);
  static Constant *getFSub(Constant *C1, Constant *C2);
  static Constant *getMul(Constant *C1, Constant *C2,
                          bool HasNUW = false, bool HasNSW = false);
  static Constant *getFMul(Constant *C1, Constant *C2);
  static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
  static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
  static Constant *getFDiv(Constant *C1, Constant *C2);
  static Constant *getURem(Constant *C1, Constant *C2);
  static Constant *getSRem(Constant *C1, Constant *C2);
  static Constant *getFRem(Constant *C1, Constant *C2);
  static Constant *getAnd(Constant *C1, Constant *C2);
  static Constant *getOr(Constant *C1, Constant *C2);
  static Constant *getXor(Constant *C1, Constant *C2);
  static Constant *getShl(Constant *C1, Constant *C2,
                          bool HasNUW = false, bool HasNSW = false);
  static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
  static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
  static Constant *getTrunc   (Constant *C, Type *Ty);
  static Constant *getSExt    (Constant *C, Type *Ty);
  static Constant *getZExt    (Constant *C, Type *Ty);
  static Constant *getFPTrunc (Constant *C, Type *Ty);
  static Constant *getFPExtend(Constant *C, Type *Ty);
  static Constant *getUIToFP  (Constant *C, Type *Ty);
  static Constant *getSIToFP  (Constant *C, Type *Ty);
  static Constant *getFPToUI  (Constant *C, Type *Ty);
  static Constant *getFPToSI  (Constant *C, Type *Ty);
  static Constant *getPtrToInt(Constant *C, Type *Ty);
  static Constant *getIntToPtr(Constant *C, Type *Ty);
  static Constant *getBitCast (Constant *C, Type *Ty);
  static Constant *getAddrSpaceCast(Constant *C, Type *Ty);

  static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
  static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
  static Constant *getNSWAdd(Constant *C1, Constant *C2) {
    return getAdd(C1, C2, false, true);
  }
  static Constant *getNUWAdd(Constant *C1, Constant *C2) {
    return getAdd(C1, C2, true, false);
  }
  static Constant *getNSWSub(Constant *C1, Constant *C2) {
    return getSub(C1, C2, false, true);
  }
  static Constant *getNUWSub(Constant *C1, Constant *C2) {
    return getSub(C1, C2, true, false);
  }
  static Constant *getNSWMul(Constant *C1, Constant *C2) {
    return getMul(C1, C2, false, true);
  }
  static Constant *getNUWMul(Constant *C1, Constant *C2) {
    return getMul(C1, C2, true, false);
  }
  static Constant *getNSWShl(Constant *C1, Constant *C2) {
    return getShl(C1, C2, false, true);
  }
  static Constant *getNUWShl(Constant *C1, Constant *C2) {
    return getShl(C1, C2, true, false);
  }
  static Constant *getExactSDiv(Constant *C1, Constant *C2) {
    return getSDiv(C1, C2, true);
  }
  static Constant *getExactUDiv(Constant *C1, Constant *C2) {
    return getUDiv(C1, C2, true);
  }
  static Constant *getExactAShr(Constant *C1, Constant *C2) {
    return getAShr(C1, C2, true);
  }
  static Constant *getExactLShr(Constant *C1, Constant *C2) {
    return getLShr(C1, C2, true);
  }

  /// getBinOpIdentity - Return the identity for the given binary operation,
  /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
  /// returns null if the operator doesn't have an identity.
  static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);

  /// getBinOpAbsorber - Return the absorbing element for the given binary
  /// operation, i.e. a constant C such that X op C = C and C op X = C for
  /// every X.  For example, this returns zero for integer multiplication.
  /// It returns null if the operator doesn't have an absorbing element.
  static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);

  // @brief Convenience function for getting one of the casting operations
  // using a CastOps opcode.
  static Constant *getCast(
    unsigned ops,  ///< The opcode for the conversion
    Constant *C,   ///< The constant to be converted
    Type *Ty ///< The type to which the constant is converted
  );

  // @brief Create a ZExt or BitCast cast constant expression
  static Constant *getZExtOrBitCast(
    Constant *C,   ///< The constant to zext or bitcast
    Type *Ty ///< The type to zext or bitcast C to
  );

  // @brief Create a SExt or BitCast cast constant expression
  static Constant *getSExtOrBitCast(
    Constant *C,   ///< The constant to sext or bitcast
    Type *Ty ///< The type to sext or bitcast C to
  );

  // @brief Create a Trunc or BitCast cast constant expression
  static Constant *getTruncOrBitCast(
    Constant *C,   ///< The constant to trunc or bitcast
    Type *Ty ///< The type to trunc or bitcast C to
  );

  /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
  /// expression.
  static Constant *getPointerCast(
    Constant *C,   ///< The pointer value to be casted (operand 0)
    Type *Ty ///< The type to which cast should be made
  );

  /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on
  /// the address space.
  static Constant *getPointerBitCastOrAddrSpaceCast(
    Constant *C,   ///< The constant to addrspacecast or bitcast
    Type *Ty ///< The type to bitcast or addrspacecast C to
  );

  /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
  static Constant *getIntegerCast(
    Constant *C,    ///< The integer constant to be casted
    Type *Ty, ///< The integer type to cast to
    bool isSigned   ///< Whether C should be treated as signed or not
  );

  /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
  static Constant *getFPCast(
    Constant *C,    ///< The integer constant to be casted
    Type *Ty ///< The integer type to cast to
  );

  /// @brief Return true if this is a convert constant expression
  bool isCast() const;

  /// @brief Return true if this is a compare constant expression
  bool isCompare() const;

  /// @brief Return true if this is an insertvalue or extractvalue expression,
  /// and the getIndices() method may be used.
  bool hasIndices() const;

  /// @brief Return true if this is a getelementptr expression and all
  /// the index operands are compile-time known integers within the
  /// corresponding notional static array extents. Note that this is
  /// not equivalant to, a subset of, or a superset of the "inbounds"
  /// property.
  bool isGEPWithNoNotionalOverIndexing() const;

  /// Select constant expr
  ///
  static Constant *getSelect(Constant *C, Constant *V1, Constant *V2);

  /// get - Return a binary or shift operator constant expression,
  /// folding if possible.
  ///
  static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
                       unsigned Flags = 0);

  /// @brief Return an ICmp or FCmp comparison operator constant expression.
  static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);

  /// get* - Return some common constants without having to
  /// specify the full Instruction::OPCODE identifier.
  ///
  static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
  static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);

  /// Getelementptr form.  Value* is only accepted for convenience;
  /// all elements must be Constant's.
  ///
  static Constant *getGetElementPtr(Constant *C,
                                    ArrayRef<Constant *> IdxList,
                                    bool InBounds = false) {
    return getGetElementPtr(C, makeArrayRef((Value * const *)IdxList.data(),
                                            IdxList.size()),
                            InBounds);
  }
  static Constant *getGetElementPtr(Constant *C,
                                    Constant *Idx,
                                    bool InBounds = false) {
    // This form of the function only exists to avoid ambiguous overload
    // warnings about whether to convert Idx to ArrayRef<Constant *> or
    // ArrayRef<Value *>.
    return getGetElementPtr(C, cast<Value>(Idx), InBounds);
  }
  static Constant *getGetElementPtr(Constant *C,
                                    ArrayRef<Value *> IdxList,
                                    bool InBounds = false);

  /// Create an "inbounds" getelementptr. See the documentation for the
  /// "inbounds" flag in LangRef.html for details.
  static Constant *getInBoundsGetElementPtr(Constant *C,
                                            ArrayRef<Constant *> IdxList) {
    return getGetElementPtr(C, IdxList, true);
  }
  static Constant *getInBoundsGetElementPtr(Constant *C,
                                            Constant *Idx) {
    // This form of the function only exists to avoid ambiguous overload
    // warnings about whether to convert Idx to ArrayRef<Constant *> or
    // ArrayRef<Value *>.
    return getGetElementPtr(C, Idx, true);
  }
  static Constant *getInBoundsGetElementPtr(Constant *C,
                                            ArrayRef<Value *> IdxList) {
    return getGetElementPtr(C, IdxList, true);
  }

  static Constant *getExtractElement(Constant *Vec, Constant *Idx);
  static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
  static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
  static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs);
  static Constant *getInsertValue(Constant *Agg, Constant *Val,
                                  ArrayRef<unsigned> Idxs);

  /// getOpcode - Return the opcode at the root of this constant expression
  unsigned getOpcode() const { return getSubclassDataFromValue(); }

  /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
  /// not an ICMP or FCMP constant expression.
  unsigned getPredicate() const;

  /// getIndices - Assert that this is an insertvalue or exactvalue
  /// expression and return the list of indices.
  ArrayRef<unsigned> getIndices() const;

  /// getOpcodeName - Return a string representation for an opcode.
  const char *getOpcodeName() const;

  /// getWithOperandReplaced - Return a constant expression identical to this
  /// one, but with the specified operand set to the specified value.
  Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;

  /// getWithOperands - This returns the current constant expression with the
  /// operands replaced with the specified values.  The specified array must
  /// have the same number of operands as our current one.
  Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
    return getWithOperands(Ops, getType());
  }

  /// getWithOperands - This returns the current constant expression with the
  /// operands replaced with the specified values and with the specified result
  /// type.  The specified array must have the same number of operands as our
  /// current one.
  Constant *getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const;

  /// getAsInstruction - Returns an Instruction which implements the same operation
  /// as this ConstantExpr. The instruction is not linked to any basic block.
  ///
  /// A better approach to this could be to have a constructor for Instruction
  /// which would take a ConstantExpr parameter, but that would have spread
  /// implementation details of ConstantExpr outside of Constants.cpp, which
  /// would make it harder to remove ConstantExprs altogether.
  Instruction *getAsInstruction();

  void destroyConstant() override;
  void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Value *V) {
    return V->getValueID() == ConstantExprVal;
  }

private:
  // Shadow Value::setValueSubclassData with a private forwarding method so that
  // subclasses cannot accidentally use it.
  void setValueSubclassData(unsigned short D) {
    Value::setValueSubclassData(D);
  }
};

template <>
struct OperandTraits<ConstantExpr> :
  public VariadicOperandTraits<ConstantExpr, 1> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)

//===----------------------------------------------------------------------===//
/// UndefValue - 'undef' values are things that do not have specified contents.
/// These are used for a variety of purposes, including global variable
/// initializers and operands to instructions.  'undef' values can occur with
/// any first-class type.
///
/// Undef values aren't exactly constants; if they have multiple uses, they
/// can appear to have different bit patterns at each use. See
/// LangRef.html#undefvalues for details.
///
class UndefValue : public Constant {
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
  UndefValue(const UndefValue &) LLVM_DELETED_FUNCTION;
protected:
  explicit UndefValue(Type *T) : Constant(T, UndefValueVal, nullptr, 0) {}
protected:
  // allocate space for exactly zero operands
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
public:
  /// get() - Static factory methods - Return an 'undef' object of the specified
  /// type.
  ///
  static UndefValue *get(Type *T);

  /// getSequentialElement - If this Undef has array or vector type, return a
  /// undef with the right element type.
  UndefValue *getSequentialElement() const;

  /// getStructElement - If this undef has struct type, return a undef with the
  /// right element type for the specified element.
  UndefValue *getStructElement(unsigned Elt) const;

  /// getElementValue - Return an undef of the right value for the specified GEP
  /// index.
  UndefValue *getElementValue(Constant *C) const;

  /// getElementValue - Return an undef of the right value for the specified GEP
  /// index.
  UndefValue *getElementValue(unsigned Idx) const;

  void destroyConstant() override;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == UndefValueVal;
  }
};

} // End llvm namespace

#endif