This file is indexed.

/usr/include/llvm-3.5/llvm/Analysis/LoopInfoImpl.h is in llvm-3.5-dev 1:3.5-4ubuntu2~trusty2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the generic implementation of LoopInfo used for both Loops and
// MachineLoops.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
#define LLVM_ANALYSIS_LOOPINFOIMPL_H

#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"

namespace llvm {

//===----------------------------------------------------------------------===//
// APIs for simple analysis of the loop. See header notes.

/// getExitingBlocks - Return all blocks inside the loop that have successors
/// outside of the loop.  These are the blocks _inside of the current loop_
/// which branch out.  The returned list is always unique.
///
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
  typedef GraphTraits<BlockT*> BlockTraits;
  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    for (typename BlockTraits::ChildIteratorType I =
           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
         I != E; ++I)
      if (!contains(*I)) {
        // Not in current loop? It must be an exit block.
        ExitingBlocks.push_back(*BI);
        break;
      }
}

/// getExitingBlock - If getExitingBlocks would return exactly one block,
/// return that block. Otherwise return null.
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
  SmallVector<BlockT*, 8> ExitingBlocks;
  getExitingBlocks(ExitingBlocks);
  if (ExitingBlocks.size() == 1)
    return ExitingBlocks[0];
  return nullptr;
}

/// getExitBlocks - Return all of the successor blocks of this loop.  These
/// are the blocks _outside of the current loop_ which are branched to.
///
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
  typedef GraphTraits<BlockT*> BlockTraits;
  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    for (typename BlockTraits::ChildIteratorType I =
           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
         I != E; ++I)
      if (!contains(*I))
        // Not in current loop? It must be an exit block.
        ExitBlocks.push_back(*I);
}

/// getExitBlock - If getExitBlocks would return exactly one block,
/// return that block. Otherwise return null.
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
  SmallVector<BlockT*, 8> ExitBlocks;
  getExitBlocks(ExitBlocks);
  if (ExitBlocks.size() == 1)
    return ExitBlocks[0];
  return nullptr;
}

/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
  typedef GraphTraits<BlockT*> BlockTraits;
  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    for (typename BlockTraits::ChildIteratorType I =
           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
         I != E; ++I)
      if (!contains(*I))
        // Not in current loop? It must be an exit block.
        ExitEdges.push_back(Edge(*BI, *I));
}

/// getLoopPreheader - If there is a preheader for this loop, return it.  A
/// loop has a preheader if there is only one edge to the header of the loop
/// from outside of the loop.  If this is the case, the block branching to the
/// header of the loop is the preheader node.
///
/// This method returns null if there is no preheader for the loop.
///
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
  // Keep track of nodes outside the loop branching to the header...
  BlockT *Out = getLoopPredecessor();
  if (!Out) return nullptr;

  // Make sure there is only one exit out of the preheader.
  typedef GraphTraits<BlockT*> BlockTraits;
  typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
  ++SI;
  if (SI != BlockTraits::child_end(Out))
    return nullptr;  // Multiple exits from the block, must not be a preheader.

  // The predecessor has exactly one successor, so it is a preheader.
  return Out;
}

/// getLoopPredecessor - If the given loop's header has exactly one unique
/// predecessor outside the loop, return it. Otherwise return null.
/// This is less strict that the loop "preheader" concept, which requires
/// the predecessor to have exactly one successor.
///
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
  // Keep track of nodes outside the loop branching to the header...
  BlockT *Out = nullptr;

  // Loop over the predecessors of the header node...
  BlockT *Header = getHeader();
  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
  for (typename InvBlockTraits::ChildIteratorType PI =
         InvBlockTraits::child_begin(Header),
         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
    typename InvBlockTraits::NodeType *N = *PI;
    if (!contains(N)) {     // If the block is not in the loop...
      if (Out && Out != N)
        return nullptr;     // Multiple predecessors outside the loop
      Out = N;
    }
  }

  // Make sure there is only one exit out of the preheader.
  assert(Out && "Header of loop has no predecessors from outside loop?");
  return Out;
}

/// getLoopLatch - If there is a single latch block for this loop, return it.
/// A latch block is a block that contains a branch back to the header.
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
  BlockT *Header = getHeader();
  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
  typename InvBlockTraits::ChildIteratorType PI =
    InvBlockTraits::child_begin(Header);
  typename InvBlockTraits::ChildIteratorType PE =
    InvBlockTraits::child_end(Header);
  BlockT *Latch = nullptr;
  for (; PI != PE; ++PI) {
    typename InvBlockTraits::NodeType *N = *PI;
    if (contains(N)) {
      if (Latch) return nullptr;
      Latch = N;
    }
  }

  return Latch;
}

//===----------------------------------------------------------------------===//
// APIs for updating loop information after changing the CFG
//

/// addBasicBlockToLoop - This method is used by other analyses to update loop
/// information.  NewBB is set to be a new member of the current loop.
/// Because of this, it is added as a member of all parent loops, and is added
/// to the specified LoopInfo object as being in the current basic block.  It
/// is not valid to replace the loop header with this method.
///
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
  assert((Blocks.empty() || LIB[getHeader()] == this) &&
         "Incorrect LI specified for this loop!");
  assert(NewBB && "Cannot add a null basic block to the loop!");
  assert(!LIB[NewBB] && "BasicBlock already in the loop!");

  LoopT *L = static_cast<LoopT *>(this);

  // Add the loop mapping to the LoopInfo object...
  LIB.BBMap[NewBB] = L;

  // Add the basic block to this loop and all parent loops...
  while (L) {
    L->addBlockEntry(NewBB);
    L = L->getParentLoop();
  }
}

/// replaceChildLoopWith - This is used when splitting loops up.  It replaces
/// the OldChild entry in our children list with NewChild, and updates the
/// parent pointer of OldChild to be null and the NewChild to be this loop.
/// This updates the loop depth of the new child.
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
  assert(OldChild->ParentLoop == this && "This loop is already broken!");
  assert(!NewChild->ParentLoop && "NewChild already has a parent!");
  typename std::vector<LoopT *>::iterator I =
    std::find(SubLoops.begin(), SubLoops.end(), OldChild);
  assert(I != SubLoops.end() && "OldChild not in loop!");
  *I = NewChild;
  OldChild->ParentLoop = nullptr;
  NewChild->ParentLoop = static_cast<LoopT *>(this);
}

/// verifyLoop - Verify loop structure
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::verifyLoop() const {
#ifndef NDEBUG
  assert(!Blocks.empty() && "Loop header is missing");

  // Setup for using a depth-first iterator to visit every block in the loop.
  SmallVector<BlockT*, 8> ExitBBs;
  getExitBlocks(ExitBBs);
  llvm::SmallPtrSet<BlockT*, 8> VisitSet;
  VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
  df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
    BI = df_ext_begin(getHeader(), VisitSet),
    BE = df_ext_end(getHeader(), VisitSet);

  // Keep track of the number of BBs visited.
  unsigned NumVisited = 0;

  // Check the individual blocks.
  for ( ; BI != BE; ++BI) {
    BlockT *BB = *BI;
    bool HasInsideLoopSuccs = false;
    bool HasInsideLoopPreds = false;
    SmallVector<BlockT *, 2> OutsideLoopPreds;

    typedef GraphTraits<BlockT*> BlockTraits;
    for (typename BlockTraits::ChildIteratorType SI =
           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
         SI != SE; ++SI)
      if (contains(*SI)) {
        HasInsideLoopSuccs = true;
        break;
      }
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    for (typename InvBlockTraits::ChildIteratorType PI =
           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
         PI != PE; ++PI) {
      BlockT *N = *PI;
      if (contains(N))
        HasInsideLoopPreds = true;
      else
        OutsideLoopPreds.push_back(N);
    }

    if (BB == getHeader()) {
        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
    } else if (!OutsideLoopPreds.empty()) {
      // A non-header loop shouldn't be reachable from outside the loop,
      // though it is permitted if the predecessor is not itself actually
      // reachable.
      BlockT *EntryBB = BB->getParent()->begin();
      for (BlockT *CB : depth_first(EntryBB))
        for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
          assert(CB != OutsideLoopPreds[i] &&
                 "Loop has multiple entry points!");
    }
    assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
    assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
    assert(BB != getHeader()->getParent()->begin() &&
           "Loop contains function entry block!");

    NumVisited++;
  }

  assert(NumVisited == getNumBlocks() && "Unreachable block in loop");

  // Check the subloops.
  for (iterator I = begin(), E = end(); I != E; ++I)
    // Each block in each subloop should be contained within this loop.
    for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
         BI != BE; ++BI) {
        assert(contains(*BI) &&
               "Loop does not contain all the blocks of a subloop!");
    }

  // Check the parent loop pointer.
  if (ParentLoop) {
    assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
           ParentLoop->end() &&
           "Loop is not a subloop of its parent!");
  }
#endif
}

/// verifyLoop - Verify loop structure of this loop and all nested loops.
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::verifyLoopNest(
  DenseSet<const LoopT*> *Loops) const {
  Loops->insert(static_cast<const LoopT *>(this));
  // Verify this loop.
  verifyLoop();
  // Verify the subloops.
  for (iterator I = begin(), E = end(); I != E; ++I)
    (*I)->verifyLoopNest(Loops);
}

template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
  OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
       << " containing: ";

  for (unsigned i = 0; i < getBlocks().size(); ++i) {
    if (i) OS << ",";
    BlockT *BB = getBlocks()[i];
    BB->printAsOperand(OS, false);
    if (BB == getHeader())    OS << "<header>";
    if (BB == getLoopLatch()) OS << "<latch>";
    if (isLoopExiting(BB))    OS << "<exiting>";
  }
  OS << "\n";

  for (iterator I = begin(), E = end(); I != E; ++I)
    (*I)->print(OS, Depth+2);
}

//===----------------------------------------------------------------------===//
/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
/// result does / not depend on use list (block predecessor) order.
///

/// Discover a subloop with the specified backedges such that: All blocks within
/// this loop are mapped to this loop or a subloop. And all subloops within this
/// loop have their parent loop set to this loop or a subloop.
template<class BlockT, class LoopT>
static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
                                  LoopInfoBase<BlockT, LoopT> *LI,
                                  DominatorTreeBase<BlockT> &DomTree) {
  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;

  unsigned NumBlocks = 0;
  unsigned NumSubloops = 0;

  // Perform a backward CFG traversal using a worklist.
  std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
  while (!ReverseCFGWorklist.empty()) {
    BlockT *PredBB = ReverseCFGWorklist.back();
    ReverseCFGWorklist.pop_back();

    LoopT *Subloop = LI->getLoopFor(PredBB);
    if (!Subloop) {
      if (!DomTree.isReachableFromEntry(PredBB))
        continue;

      // This is an undiscovered block. Map it to the current loop.
      LI->changeLoopFor(PredBB, L);
      ++NumBlocks;
      if (PredBB == L->getHeader())
          continue;
      // Push all block predecessors on the worklist.
      ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
                                InvBlockTraits::child_begin(PredBB),
                                InvBlockTraits::child_end(PredBB));
    }
    else {
      // This is a discovered block. Find its outermost discovered loop.
      while (LoopT *Parent = Subloop->getParentLoop())
        Subloop = Parent;

      // If it is already discovered to be a subloop of this loop, continue.
      if (Subloop == L)
        continue;

      // Discover a subloop of this loop.
      Subloop->setParentLoop(L);
      ++NumSubloops;
      NumBlocks += Subloop->getBlocks().capacity();
      PredBB = Subloop->getHeader();
      // Continue traversal along predecessors that are not loop-back edges from
      // within this subloop tree itself. Note that a predecessor may directly
      // reach another subloop that is not yet discovered to be a subloop of
      // this loop, which we must traverse.
      for (typename InvBlockTraits::ChildIteratorType PI =
             InvBlockTraits::child_begin(PredBB),
             PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
        if (LI->getLoopFor(*PI) != Subloop)
          ReverseCFGWorklist.push_back(*PI);
      }
    }
  }
  L->getSubLoopsVector().reserve(NumSubloops);
  L->reserveBlocks(NumBlocks);
}

namespace {
/// Populate all loop data in a stable order during a single forward DFS.
template<class BlockT, class LoopT>
class PopulateLoopsDFS {
  typedef GraphTraits<BlockT*> BlockTraits;
  typedef typename BlockTraits::ChildIteratorType SuccIterTy;

  LoopInfoBase<BlockT, LoopT> *LI;
  DenseSet<const BlockT *> VisitedBlocks;
  std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;

public:
  PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
    LI(li) {}

  void traverse(BlockT *EntryBlock);

protected:
  void insertIntoLoop(BlockT *Block);

  BlockT *dfsSource() { return DFSStack.back().first; }
  SuccIterTy &dfsSucc() { return DFSStack.back().second; }
  SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }

  void pushBlock(BlockT *Block) {
    DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
  }
};
} // anonymous

/// Top-level driver for the forward DFS within the loop.
template<class BlockT, class LoopT>
void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
  pushBlock(EntryBlock);
  VisitedBlocks.insert(EntryBlock);
  while (!DFSStack.empty()) {
    // Traverse the leftmost path as far as possible.
    while (dfsSucc() != dfsSuccEnd()) {
      BlockT *BB = *dfsSucc();
      ++dfsSucc();
      if (!VisitedBlocks.insert(BB).second)
        continue;

      // Push the next DFS successor onto the stack.
      pushBlock(BB);
    }
    // Visit the top of the stack in postorder and backtrack.
    insertIntoLoop(dfsSource());
    DFSStack.pop_back();
  }
}

/// Add a single Block to its ancestor loops in PostOrder. If the block is a
/// subloop header, add the subloop to its parent in PostOrder, then reverse the
/// Block and Subloop vectors of the now complete subloop to achieve RPO.
template<class BlockT, class LoopT>
void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
  LoopT *Subloop = LI->getLoopFor(Block);
  if (Subloop && Block == Subloop->getHeader()) {
    // We reach this point once per subloop after processing all the blocks in
    // the subloop.
    if (Subloop->getParentLoop())
      Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
    else
      LI->addTopLevelLoop(Subloop);

    // For convenience, Blocks and Subloops are inserted in postorder. Reverse
    // the lists, except for the loop header, which is always at the beginning.
    Subloop->reverseBlock(1);
    std::reverse(Subloop->getSubLoopsVector().begin(),
                 Subloop->getSubLoopsVector().end());

    Subloop = Subloop->getParentLoop();
  }
  for (; Subloop; Subloop = Subloop->getParentLoop())
    Subloop->addBlockEntry(Block);
}

/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
/// interleaved with backward CFG traversals within each subloop
/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
/// this part of the algorithm is linear in the number of CFG edges. Subloop and
/// Block vectors are then populated during a single forward CFG traversal
/// (PopulateLoopDFS).
///
/// During the two CFG traversals each block is seen three times:
/// 1) Discovered and mapped by a reverse CFG traversal.
/// 2) Visited during a forward DFS CFG traversal.
/// 3) Reverse-inserted in the loop in postorder following forward DFS.
///
/// The Block vectors are inclusive, so step 3 requires loop-depth number of
/// insertions per block.
template<class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::
Analyze(DominatorTreeBase<BlockT> &DomTree) {

  // Postorder traversal of the dominator tree.
  DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
  for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
         DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {

    BlockT *Header = DomIter->getBlock();
    SmallVector<BlockT *, 4> Backedges;

    // Check each predecessor of the potential loop header.
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    for (typename InvBlockTraits::ChildIteratorType PI =
           InvBlockTraits::child_begin(Header),
           PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {

      BlockT *Backedge = *PI;

      // If Header dominates predBB, this is a new loop. Collect the backedges.
      if (DomTree.dominates(Header, Backedge)
          && DomTree.isReachableFromEntry(Backedge)) {
        Backedges.push_back(Backedge);
      }
    }
    // Perform a backward CFG traversal to discover and map blocks in this loop.
    if (!Backedges.empty()) {
      LoopT *L = new LoopT(Header);
      discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
    }
  }
  // Perform a single forward CFG traversal to populate block and subloop
  // vectors for all loops.
  PopulateLoopsDFS<BlockT, LoopT> DFS(this);
  DFS.traverse(DomRoot->getBlock());
}

// Debugging
template<class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
  for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
    TopLevelLoops[i]->print(OS);
#if 0
  for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
         E = BBMap.end(); I != E; ++I)
    OS << "BB '" << I->first->getName() << "' level = "
       << I->second->getLoopDepth() << "\n";
#endif
}

} // End llvm namespace

#endif