/usr/include/llvm-3.5/llvm/ADT/STLExtras.h is in llvm-3.5-dev 1:3.5-4ubuntu2~trusty2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H
#include "llvm/Support/Compiler.h"
#include <cstddef> // for std::size_t
#include <cstdlib> // for qsort
#include <functional>
#include <iterator>
#include <memory>
#include <utility> // for std::pair
namespace llvm {
//===----------------------------------------------------------------------===//
// Extra additions to <functional>
//===----------------------------------------------------------------------===//
template<class Ty>
struct identity : public std::unary_function<Ty, Ty> {
Ty &operator()(Ty &self) const {
return self;
}
const Ty &operator()(const Ty &self) const {
return self;
}
};
template<class Ty>
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
bool operator()(const Ty* left, const Ty* right) const {
return *left < *right;
}
};
template<class Ty>
struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
bool operator()(const Ty* left, const Ty* right) const {
return *right < *left;
}
};
/// An efficient, type-erasing, non-owning reference to a callable. This is
/// intended for use as the type of a function parameter that is not used
/// after the function in question returns.
///
/// This class does not own the callable, so it is not in general safe to store
/// a function_ref.
template<typename Fn> class function_ref;
#if LLVM_HAS_VARIADIC_TEMPLATES
template<typename Ret, typename ...Params>
class function_ref<Ret(Params...)> {
Ret (*callback)(intptr_t callable, Params ...params);
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Params ...params) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Params>(params)...);
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Params ...params) const {
return callback(callable, std::forward<Params>(params)...);
}
};
#else
template<typename Ret>
class function_ref<Ret()> {
Ret (*callback)(intptr_t callable);
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable) {
return (*reinterpret_cast<Callable*>(callable))();
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()() const { return callback(callable); }
};
template<typename Ret, typename Param1>
class function_ref<Ret(Param1)> {
Ret (*callback)(intptr_t callable, Param1 param1);
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Param1 param1) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Param1>(param1));
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Param1 param1) {
return callback(callable, std::forward<Param1>(param1));
}
};
template<typename Ret, typename Param1, typename Param2>
class function_ref<Ret(Param1, Param2)> {
Ret (*callback)(intptr_t callable, Param1 param1, Param2 param2);
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Param1 param1, Param2 param2) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Param1>(param1),
std::forward<Param2>(param2));
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Param1 param1, Param2 param2) {
return callback(callable,
std::forward<Param1>(param1),
std::forward<Param2>(param2));
}
};
template<typename Ret, typename Param1, typename Param2, typename Param3>
class function_ref<Ret(Param1, Param2, Param3)> {
Ret (*callback)(intptr_t callable, Param1 param1, Param2 param2, Param3 param3);
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Param1 param1, Param2 param2,
Param3 param3) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Param1>(param1),
std::forward<Param2>(param2),
std::forward<Param3>(param3));
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Param1 param1, Param2 param2, Param3 param3) {
return callback(callable,
std::forward<Param1>(param1),
std::forward<Param2>(param2),
std::forward<Param3>(param3));
}
};
#endif
// deleter - Very very very simple method that is used to invoke operator
// delete on something. It is used like this:
//
// for_each(V.begin(), B.end(), deleter<Interval>);
//
template <class T>
inline void deleter(T *Ptr) {
delete Ptr;
}
//===----------------------------------------------------------------------===//
// Extra additions to <iterator>
//===----------------------------------------------------------------------===//
// mapped_iterator - This is a simple iterator adapter that causes a function to
// be dereferenced whenever operator* is invoked on the iterator.
//
template <class RootIt, class UnaryFunc>
class mapped_iterator {
RootIt current;
UnaryFunc Fn;
public:
typedef typename std::iterator_traits<RootIt>::iterator_category
iterator_category;
typedef typename std::iterator_traits<RootIt>::difference_type
difference_type;
typedef typename UnaryFunc::result_type value_type;
typedef void pointer;
//typedef typename UnaryFunc::result_type *pointer;
typedef void reference; // Can't modify value returned by fn
typedef RootIt iterator_type;
typedef mapped_iterator<RootIt, UnaryFunc> _Self;
inline const RootIt &getCurrent() const { return current; }
inline const UnaryFunc &getFunc() const { return Fn; }
inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
: current(I), Fn(F) {}
inline value_type operator*() const { // All this work to do this
return Fn(*current); // little change
}
_Self& operator++() { ++current; return *this; }
_Self& operator--() { --current; return *this; }
_Self operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
_Self operator--(int) { _Self __tmp = *this; --current; return __tmp; }
_Self operator+ (difference_type n) const {
return _Self(current + n, Fn);
}
_Self& operator+= (difference_type n) { current += n; return *this; }
_Self operator- (difference_type n) const {
return _Self(current - n, Fn);
}
_Self& operator-= (difference_type n) { current -= n; return *this; }
reference operator[](difference_type n) const { return *(*this + n); }
inline bool operator!=(const _Self &X) const { return !operator==(X); }
inline bool operator==(const _Self &X) const { return current == X.current; }
inline bool operator< (const _Self &X) const { return current < X.current; }
inline difference_type operator-(const _Self &X) const {
return current - X.current;
}
};
template <class _Iterator, class Func>
inline mapped_iterator<_Iterator, Func>
operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
const mapped_iterator<_Iterator, Func>& X) {
return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
}
// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
//
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
return mapped_iterator<ItTy, FuncTy>(I, F);
}
//===----------------------------------------------------------------------===//
// Extra additions to <utility>
//===----------------------------------------------------------------------===//
/// \brief Function object to check whether the first component of a std::pair
/// compares less than the first component of another std::pair.
struct less_first {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.first < rhs.first;
}
};
/// \brief Function object to check whether the second component of a std::pair
/// compares less than the second component of another std::pair.
struct less_second {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.second < rhs.second;
}
};
//===----------------------------------------------------------------------===//
// Extra additions for arrays
//===----------------------------------------------------------------------===//
/// Find the length of an array.
template <class T, std::size_t N>
LLVM_CONSTEXPR inline size_t array_lengthof(T (&)[N]) {
return N;
}
/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
if (std::less<T>()(*reinterpret_cast<const T*>(P1),
*reinterpret_cast<const T*>(P2)))
return -1;
if (std::less<T>()(*reinterpret_cast<const T*>(P2),
*reinterpret_cast<const T*>(P1)))
return 1;
return 0;
}
/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
(const void*, const void*) {
return array_pod_sort_comparator<T>;
}
/// array_pod_sort - This sorts an array with the specified start and end
/// extent. This is just like std::sort, except that it calls qsort instead of
/// using an inlined template. qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat. This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy. If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
// Don't dereference start iterator of empty sequence.
if (Start == End) return;
qsort(&*Start, End-Start, sizeof(*Start),
get_array_pod_sort_comparator(*Start));
}
template <class IteratorTy>
inline void array_pod_sort(
IteratorTy Start, IteratorTy End,
int (*Compare)(
const typename std::iterator_traits<IteratorTy>::value_type *,
const typename std::iterator_traits<IteratorTy>::value_type *)) {
// Don't dereference start iterator of empty sequence.
if (Start == End) return;
qsort(&*Start, End - Start, sizeof(*Start),
reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}
//===----------------------------------------------------------------------===//
// Extra additions to <algorithm>
//===----------------------------------------------------------------------===//
/// For a container of pointers, deletes the pointers and then clears the
/// container.
template<typename Container>
void DeleteContainerPointers(Container &C) {
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
delete *I;
C.clear();
}
/// In a container of pairs (usually a map) whose second element is a pointer,
/// deletes the second elements and then clears the container.
template<typename Container>
void DeleteContainerSeconds(Container &C) {
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
delete I->second;
C.clear();
}
//===----------------------------------------------------------------------===//
// Extra additions to <memory>
//===----------------------------------------------------------------------===//
#if LLVM_HAS_VARIADIC_TEMPLATES
// Implement make_unique according to N3656.
/// \brief Constructs a `new T()` with the given args and returns a
/// `unique_ptr<T>` which owns the object.
///
/// Example:
///
/// auto p = make_unique<int>();
/// auto p = make_unique<std::tuple<int, int>>(0, 1);
template <class T, class... Args>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args &&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
/// \brief Constructs a `new T[n]` with the given args and returns a
/// `unique_ptr<T[]>` which owns the object.
///
/// \param n size of the new array.
///
/// Example:
///
/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
template <class T>
typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
std::unique_ptr<T>>::type
make_unique(size_t n) {
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}
/// This function isn't used and is only here to provide better compile errors.
template <class T, class... Args>
typename std::enable_if<std::extent<T>::value != 0>::type
make_unique(Args &&...) LLVM_DELETED_FUNCTION;
#else
template <class T>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique() {
return std::unique_ptr<T>(new T());
}
template <class T, class Arg1>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1) {
return std::unique_ptr<T>(new T(std::forward<Arg1>(arg1)));
}
template <class T, class Arg1, class Arg2>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2)));
}
template <class T, class Arg1, class Arg2, class Arg3>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3) {
return std::unique_ptr<T>(new T(std::forward<Arg1>(arg1),
std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7, class Arg8>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7, class Arg8, class Arg9>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8, Arg9 &&arg9) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8),
std::forward<Arg9>(arg9)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7, class Arg8, class Arg9, class Arg10>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8, Arg9 &&arg9, Arg10 &&arg10) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8),
std::forward<Arg9>(arg9), std::forward<Arg10>(arg10)));
}
template <class T>
typename std::enable_if<std::is_array<T>::value &&std::extent<T>::value == 0,
std::unique_ptr<T>>::type
make_unique(size_t n) {
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}
#endif
template<typename First, typename Second>
struct pair_hash {
size_t operator()(const std::pair<First, Second> &P) const {
return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
}
};
} // End llvm namespace
#endif
|