/usr/include/llvm-3.5/llvm/ADT/IntervalMap.h is in llvm-3.5-dev 1:3.5-4ubuntu2~trusty2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 | //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a coalescing interval map for small objects.
//
// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
// same value are represented in a compressed form.
//
// Iterators provide ordered access to the compressed intervals rather than the
// individual keys, and insert and erase operations use key intervals as well.
//
// Like SmallVector, IntervalMap will store the first N intervals in the map
// object itself without any allocations. When space is exhausted it switches to
// a B+-tree representation with very small overhead for small key and value
// objects.
//
// A Traits class specifies how keys are compared. It also allows IntervalMap to
// work with both closed and half-open intervals.
//
// Keys and values are not stored next to each other in a std::pair, so we don't
// provide such a value_type. Dereferencing iterators only returns the mapped
// value. The interval bounds are accessible through the start() and stop()
// iterator methods.
//
// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
// is the optimal size. For large objects use std::map instead.
//
//===----------------------------------------------------------------------===//
//
// Synopsis:
//
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
// class IntervalMap {
// public:
// typedef KeyT key_type;
// typedef ValT mapped_type;
// typedef RecyclingAllocator<...> Allocator;
// class iterator;
// class const_iterator;
//
// explicit IntervalMap(Allocator&);
// ~IntervalMap():
//
// bool empty() const;
// KeyT start() const;
// KeyT stop() const;
// ValT lookup(KeyT x, Value NotFound = Value()) const;
//
// const_iterator begin() const;
// const_iterator end() const;
// iterator begin();
// iterator end();
// const_iterator find(KeyT x) const;
// iterator find(KeyT x);
//
// void insert(KeyT a, KeyT b, ValT y);
// void clear();
// };
//
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
// class IntervalMap::const_iterator :
// public std::iterator<std::bidirectional_iterator_tag, ValT> {
// public:
// bool operator==(const const_iterator &) const;
// bool operator!=(const const_iterator &) const;
// bool valid() const;
//
// const KeyT &start() const;
// const KeyT &stop() const;
// const ValT &value() const;
// const ValT &operator*() const;
// const ValT *operator->() const;
//
// const_iterator &operator++();
// const_iterator &operator++(int);
// const_iterator &operator--();
// const_iterator &operator--(int);
// void goToBegin();
// void goToEnd();
// void find(KeyT x);
// void advanceTo(KeyT x);
// };
//
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
// class IntervalMap::iterator : public const_iterator {
// public:
// void insert(KeyT a, KeyT b, Value y);
// void erase();
// };
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INTERVALMAP_H
#define LLVM_ADT_INTERVALMAP_H
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/RecyclingAllocator.h"
#include <iterator>
namespace llvm {
//===----------------------------------------------------------------------===//
//--- Key traits ---//
//===----------------------------------------------------------------------===//
//
// The IntervalMap works with closed or half-open intervals.
// Adjacent intervals that map to the same value are coalesced.
//
// The IntervalMapInfo traits class is used to determine if a key is contained
// in an interval, and if two intervals are adjacent so they can be coalesced.
// The provided implementation works for closed integer intervals, other keys
// probably need a specialized version.
//
// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
//
// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
// allowed. This is so that stopLess(a, b) can be used to determine if two
// intervals overlap.
//
//===----------------------------------------------------------------------===//
template <typename T>
struct IntervalMapInfo {
/// startLess - Return true if x is not in [a;b].
/// This is x < a both for closed intervals and for [a;b) half-open intervals.
static inline bool startLess(const T &x, const T &a) {
return x < a;
}
/// stopLess - Return true if x is not in [a;b].
/// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
static inline bool stopLess(const T &b, const T &x) {
return b < x;
}
/// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
/// This is a+1 == b for closed intervals, a == b for half-open intervals.
static inline bool adjacent(const T &a, const T &b) {
return a+1 == b;
}
};
template <typename T>
struct IntervalMapHalfOpenInfo {
/// startLess - Return true if x is not in [a;b).
static inline bool startLess(const T &x, const T &a) {
return x < a;
}
/// stopLess - Return true if x is not in [a;b).
static inline bool stopLess(const T &b, const T &x) {
return b <= x;
}
/// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
static inline bool adjacent(const T &a, const T &b) {
return a == b;
}
};
/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
/// It should be considered private to the implementation.
namespace IntervalMapImpl {
// Forward declarations.
template <typename, typename, unsigned, typename> class LeafNode;
template <typename, typename, unsigned, typename> class BranchNode;
typedef std::pair<unsigned,unsigned> IdxPair;
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::NodeBase ---//
//===----------------------------------------------------------------------===//
//
// Both leaf and branch nodes store vectors of pairs.
// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
//
// Keys and values are stored in separate arrays to avoid padding caused by
// different object alignments. This also helps improve locality of reference
// when searching the keys.
//
// The nodes don't know how many elements they contain - that information is
// stored elsewhere. Omitting the size field prevents padding and allows a node
// to fill the allocated cache lines completely.
//
// These are typical key and value sizes, the node branching factor (N), and
// wasted space when nodes are sized to fit in three cache lines (192 bytes):
//
// T1 T2 N Waste Used by
// 4 4 24 0 Branch<4> (32-bit pointers)
// 8 4 16 0 Leaf<4,4>, Branch<4>
// 8 8 12 0 Leaf<4,8>, Branch<8>
// 16 4 9 12 Leaf<8,4>
// 16 8 8 0 Leaf<8,8>
//
//===----------------------------------------------------------------------===//
template <typename T1, typename T2, unsigned N>
class NodeBase {
public:
enum { Capacity = N };
T1 first[N];
T2 second[N];
/// copy - Copy elements from another node.
/// @param Other Node elements are copied from.
/// @param i Beginning of the source range in other.
/// @param j Beginning of the destination range in this.
/// @param Count Number of elements to copy.
template <unsigned M>
void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
unsigned j, unsigned Count) {
assert(i + Count <= M && "Invalid source range");
assert(j + Count <= N && "Invalid dest range");
for (unsigned e = i + Count; i != e; ++i, ++j) {
first[j] = Other.first[i];
second[j] = Other.second[i];
}
}
/// moveLeft - Move elements to the left.
/// @param i Beginning of the source range.
/// @param j Beginning of the destination range.
/// @param Count Number of elements to copy.
void moveLeft(unsigned i, unsigned j, unsigned Count) {
assert(j <= i && "Use moveRight shift elements right");
copy(*this, i, j, Count);
}
/// moveRight - Move elements to the right.
/// @param i Beginning of the source range.
/// @param j Beginning of the destination range.
/// @param Count Number of elements to copy.
void moveRight(unsigned i, unsigned j, unsigned Count) {
assert(i <= j && "Use moveLeft shift elements left");
assert(j + Count <= N && "Invalid range");
while (Count--) {
first[j + Count] = first[i + Count];
second[j + Count] = second[i + Count];
}
}
/// erase - Erase elements [i;j).
/// @param i Beginning of the range to erase.
/// @param j End of the range. (Exclusive).
/// @param Size Number of elements in node.
void erase(unsigned i, unsigned j, unsigned Size) {
moveLeft(j, i, Size - j);
}
/// erase - Erase element at i.
/// @param i Index of element to erase.
/// @param Size Number of elements in node.
void erase(unsigned i, unsigned Size) {
erase(i, i+1, Size);
}
/// shift - Shift elements [i;size) 1 position to the right.
/// @param i Beginning of the range to move.
/// @param Size Number of elements in node.
void shift(unsigned i, unsigned Size) {
moveRight(i, i + 1, Size - i);
}
/// transferToLeftSib - Transfer elements to a left sibling node.
/// @param Size Number of elements in this.
/// @param Sib Left sibling node.
/// @param SSize Number of elements in sib.
/// @param Count Number of elements to transfer.
void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
unsigned Count) {
Sib.copy(*this, 0, SSize, Count);
erase(0, Count, Size);
}
/// transferToRightSib - Transfer elements to a right sibling node.
/// @param Size Number of elements in this.
/// @param Sib Right sibling node.
/// @param SSize Number of elements in sib.
/// @param Count Number of elements to transfer.
void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
unsigned Count) {
Sib.moveRight(0, Count, SSize);
Sib.copy(*this, Size-Count, 0, Count);
}
/// adjustFromLeftSib - Adjust the number if elements in this node by moving
/// elements to or from a left sibling node.
/// @param Size Number of elements in this.
/// @param Sib Right sibling node.
/// @param SSize Number of elements in sib.
/// @param Add The number of elements to add to this node, possibly < 0.
/// @return Number of elements added to this node, possibly negative.
int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
if (Add > 0) {
// We want to grow, copy from sib.
unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
Sib.transferToRightSib(SSize, *this, Size, Count);
return Count;
} else {
// We want to shrink, copy to sib.
unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
transferToLeftSib(Size, Sib, SSize, Count);
return -Count;
}
}
};
/// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
/// @param Node Array of pointers to sibling nodes.
/// @param Nodes Number of nodes.
/// @param CurSize Array of current node sizes, will be overwritten.
/// @param NewSize Array of desired node sizes.
template <typename NodeT>
void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
unsigned CurSize[], const unsigned NewSize[]) {
// Move elements right.
for (int n = Nodes - 1; n; --n) {
if (CurSize[n] == NewSize[n])
continue;
for (int m = n - 1; m != -1; --m) {
int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
NewSize[n] - CurSize[n]);
CurSize[m] -= d;
CurSize[n] += d;
// Keep going if the current node was exhausted.
if (CurSize[n] >= NewSize[n])
break;
}
}
if (Nodes == 0)
return;
// Move elements left.
for (unsigned n = 0; n != Nodes - 1; ++n) {
if (CurSize[n] == NewSize[n])
continue;
for (unsigned m = n + 1; m != Nodes; ++m) {
int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
CurSize[n] - NewSize[n]);
CurSize[m] += d;
CurSize[n] -= d;
// Keep going if the current node was exhausted.
if (CurSize[n] >= NewSize[n])
break;
}
}
#ifndef NDEBUG
for (unsigned n = 0; n != Nodes; n++)
assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
#endif
}
/// IntervalMapImpl::distribute - Compute a new distribution of node elements
/// after an overflow or underflow. Reserve space for a new element at Position,
/// and compute the node that will hold Position after redistributing node
/// elements.
///
/// It is required that
///
/// Elements == sum(CurSize), and
/// Elements + Grow <= Nodes * Capacity.
///
/// NewSize[] will be filled in such that:
///
/// sum(NewSize) == Elements, and
/// NewSize[i] <= Capacity.
///
/// The returned index is the node where Position will go, so:
///
/// sum(NewSize[0..idx-1]) <= Position
/// sum(NewSize[0..idx]) >= Position
///
/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
/// before the one holding the Position'th element where there is room for an
/// insertion.
///
/// @param Nodes The number of nodes.
/// @param Elements Total elements in all nodes.
/// @param Capacity The capacity of each node.
/// @param CurSize Array[Nodes] of current node sizes, or NULL.
/// @param NewSize Array[Nodes] to receive the new node sizes.
/// @param Position Insert position.
/// @param Grow Reserve space for a new element at Position.
/// @return (node, offset) for Position.
IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
const unsigned *CurSize, unsigned NewSize[],
unsigned Position, bool Grow);
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::NodeSizer ---//
//===----------------------------------------------------------------------===//
//
// Compute node sizes from key and value types.
//
// The branching factors are chosen to make nodes fit in three cache lines.
// This may not be possible if keys or values are very large. Such large objects
// are handled correctly, but a std::map would probably give better performance.
//
//===----------------------------------------------------------------------===//
enum {
// Cache line size. Most architectures have 32 or 64 byte cache lines.
// We use 64 bytes here because it provides good branching factors.
Log2CacheLine = 6,
CacheLineBytes = 1 << Log2CacheLine,
DesiredNodeBytes = 3 * CacheLineBytes
};
template <typename KeyT, typename ValT>
struct NodeSizer {
enum {
// Compute the leaf node branching factor that makes a node fit in three
// cache lines. The branching factor must be at least 3, or some B+-tree
// balancing algorithms won't work.
// LeafSize can't be larger than CacheLineBytes. This is required by the
// PointerIntPair used by NodeRef.
DesiredLeafSize = DesiredNodeBytes /
static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
MinLeafSize = 3,
LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
};
typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
enum {
// Now that we have the leaf branching factor, compute the actual allocation
// unit size by rounding up to a whole number of cache lines.
AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
// Determine the branching factor for branch nodes.
BranchSize = AllocBytes /
static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
};
/// Allocator - The recycling allocator used for both branch and leaf nodes.
/// This typedef is very likely to be identical for all IntervalMaps with
/// reasonably sized entries, so the same allocator can be shared among
/// different kinds of maps.
typedef RecyclingAllocator<BumpPtrAllocator, char,
AllocBytes, CacheLineBytes> Allocator;
};
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::NodeRef ---//
//===----------------------------------------------------------------------===//
//
// B+-tree nodes can be leaves or branches, so we need a polymorphic node
// pointer that can point to both kinds.
//
// All nodes are cache line aligned and the low 6 bits of a node pointer are
// always 0. These bits are used to store the number of elements in the
// referenced node. Besides saving space, placing node sizes in the parents
// allow tree balancing algorithms to run without faulting cache lines for nodes
// that may not need to be modified.
//
// A NodeRef doesn't know whether it references a leaf node or a branch node.
// It is the responsibility of the caller to use the correct types.
//
// Nodes are never supposed to be empty, and it is invalid to store a node size
// of 0 in a NodeRef. The valid range of sizes is 1-64.
//
//===----------------------------------------------------------------------===//
class NodeRef {
struct CacheAlignedPointerTraits {
static inline void *getAsVoidPointer(void *P) { return P; }
static inline void *getFromVoidPointer(void *P) { return P; }
enum { NumLowBitsAvailable = Log2CacheLine };
};
PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
public:
/// NodeRef - Create a null ref.
NodeRef() {}
/// operator bool - Detect a null ref.
LLVM_EXPLICIT operator bool() const { return pip.getOpaqueValue(); }
/// NodeRef - Create a reference to the node p with n elements.
template <typename NodeT>
NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
assert(n <= NodeT::Capacity && "Size too big for node");
}
/// size - Return the number of elements in the referenced node.
unsigned size() const { return pip.getInt() + 1; }
/// setSize - Update the node size.
void setSize(unsigned n) { pip.setInt(n - 1); }
/// subtree - Access the i'th subtree reference in a branch node.
/// This depends on branch nodes storing the NodeRef array as their first
/// member.
NodeRef &subtree(unsigned i) const {
return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
}
/// get - Dereference as a NodeT reference.
template <typename NodeT>
NodeT &get() const {
return *reinterpret_cast<NodeT*>(pip.getPointer());
}
bool operator==(const NodeRef &RHS) const {
if (pip == RHS.pip)
return true;
assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
return false;
}
bool operator!=(const NodeRef &RHS) const {
return !operator==(RHS);
}
};
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::LeafNode ---//
//===----------------------------------------------------------------------===//
//
// Leaf nodes store up to N disjoint intervals with corresponding values.
//
// The intervals are kept sorted and fully coalesced so there are no adjacent
// intervals mapping to the same value.
//
// These constraints are always satisfied:
//
// - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
//
// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
//
// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
// - Fully coalesced.
//
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT, unsigned N, typename Traits>
class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
public:
const KeyT &start(unsigned i) const { return this->first[i].first; }
const KeyT &stop(unsigned i) const { return this->first[i].second; }
const ValT &value(unsigned i) const { return this->second[i]; }
KeyT &start(unsigned i) { return this->first[i].first; }
KeyT &stop(unsigned i) { return this->first[i].second; }
ValT &value(unsigned i) { return this->second[i]; }
/// findFrom - Find the first interval after i that may contain x.
/// @param i Starting index for the search.
/// @param Size Number of elements in node.
/// @param x Key to search for.
/// @return First index with !stopLess(key[i].stop, x), or size.
/// This is the first interval that can possibly contain x.
unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
assert(i <= Size && Size <= N && "Bad indices");
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
"Index is past the needed point");
while (i != Size && Traits::stopLess(stop(i), x)) ++i;
return i;
}
/// safeFind - Find an interval that is known to exist. This is the same as
/// findFrom except is it assumed that x is at least within range of the last
/// interval.
/// @param i Starting index for the search.
/// @param x Key to search for.
/// @return First index with !stopLess(key[i].stop, x), never size.
/// This is the first interval that can possibly contain x.
unsigned safeFind(unsigned i, KeyT x) const {
assert(i < N && "Bad index");
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
"Index is past the needed point");
while (Traits::stopLess(stop(i), x)) ++i;
assert(i < N && "Unsafe intervals");
return i;
}
/// safeLookup - Lookup mapped value for a safe key.
/// It is assumed that x is within range of the last entry.
/// @param x Key to search for.
/// @param NotFound Value to return if x is not in any interval.
/// @return The mapped value at x or NotFound.
ValT safeLookup(KeyT x, ValT NotFound) const {
unsigned i = safeFind(0, x);
return Traits::startLess(x, start(i)) ? NotFound : value(i);
}
unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
};
/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
/// possible. This may cause the node to grow by 1, or it may cause the node
/// to shrink because of coalescing.
/// @param Pos Starting index = insertFrom(0, size, a)
/// @param Size Number of elements in node.
/// @param a Interval start.
/// @param b Interval stop.
/// @param y Value be mapped.
/// @return (insert position, new size), or (i, Capacity+1) on overflow.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
unsigned LeafNode<KeyT, ValT, N, Traits>::
insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
unsigned i = Pos;
assert(i <= Size && Size <= N && "Invalid index");
assert(!Traits::stopLess(b, a) && "Invalid interval");
// Verify the findFrom invariant.
assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
assert((i == Size || !Traits::stopLess(stop(i), a)));
assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
// Coalesce with previous interval.
if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
Pos = i - 1;
// Also coalesce with next interval?
if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
stop(i - 1) = stop(i);
this->erase(i, Size);
return Size - 1;
}
stop(i - 1) = b;
return Size;
}
// Detect overflow.
if (i == N)
return N + 1;
// Add new interval at end.
if (i == Size) {
start(i) = a;
stop(i) = b;
value(i) = y;
return Size + 1;
}
// Try to coalesce with following interval.
if (value(i) == y && Traits::adjacent(b, start(i))) {
start(i) = a;
return Size;
}
// We must insert before i. Detect overflow.
if (Size == N)
return N + 1;
// Insert before i.
this->shift(i, Size);
start(i) = a;
stop(i) = b;
value(i) = y;
return Size + 1;
}
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::BranchNode ---//
//===----------------------------------------------------------------------===//
//
// A branch node stores references to 1--N subtrees all of the same height.
//
// The key array in a branch node holds the rightmost stop key of each subtree.
// It is redundant to store the last stop key since it can be found in the
// parent node, but doing so makes tree balancing a lot simpler.
//
// It is unusual for a branch node to only have one subtree, but it can happen
// in the root node if it is smaller than the normal nodes.
//
// When all of the leaf nodes from all the subtrees are concatenated, they must
// satisfy the same constraints as a single leaf node. They must be sorted,
// sane, and fully coalesced.
//
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT, unsigned N, typename Traits>
class BranchNode : public NodeBase<NodeRef, KeyT, N> {
public:
const KeyT &stop(unsigned i) const { return this->second[i]; }
const NodeRef &subtree(unsigned i) const { return this->first[i]; }
KeyT &stop(unsigned i) { return this->second[i]; }
NodeRef &subtree(unsigned i) { return this->first[i]; }
/// findFrom - Find the first subtree after i that may contain x.
/// @param i Starting index for the search.
/// @param Size Number of elements in node.
/// @param x Key to search for.
/// @return First index with !stopLess(key[i], x), or size.
/// This is the first subtree that can possibly contain x.
unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
assert(i <= Size && Size <= N && "Bad indices");
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
"Index to findFrom is past the needed point");
while (i != Size && Traits::stopLess(stop(i), x)) ++i;
return i;
}
/// safeFind - Find a subtree that is known to exist. This is the same as
/// findFrom except is it assumed that x is in range.
/// @param i Starting index for the search.
/// @param x Key to search for.
/// @return First index with !stopLess(key[i], x), never size.
/// This is the first subtree that can possibly contain x.
unsigned safeFind(unsigned i, KeyT x) const {
assert(i < N && "Bad index");
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
"Index is past the needed point");
while (Traits::stopLess(stop(i), x)) ++i;
assert(i < N && "Unsafe intervals");
return i;
}
/// safeLookup - Get the subtree containing x, Assuming that x is in range.
/// @param x Key to search for.
/// @return Subtree containing x
NodeRef safeLookup(KeyT x) const {
return subtree(safeFind(0, x));
}
/// insert - Insert a new (subtree, stop) pair.
/// @param i Insert position, following entries will be shifted.
/// @param Size Number of elements in node.
/// @param Node Subtree to insert.
/// @param Stop Last key in subtree.
void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
assert(Size < N && "branch node overflow");
assert(i <= Size && "Bad insert position");
this->shift(i, Size);
subtree(i) = Node;
stop(i) = Stop;
}
};
//===----------------------------------------------------------------------===//
//--- IntervalMapImpl::Path ---//
//===----------------------------------------------------------------------===//
//
// A Path is used by iterators to represent a position in a B+-tree, and the
// path to get there from the root.
//
// The Path class also contains the tree navigation code that doesn't have to
// be templatized.
//
//===----------------------------------------------------------------------===//
class Path {
/// Entry - Each step in the path is a node pointer and an offset into that
/// node.
struct Entry {
void *node;
unsigned size;
unsigned offset;
Entry(void *Node, unsigned Size, unsigned Offset)
: node(Node), size(Size), offset(Offset) {}
Entry(NodeRef Node, unsigned Offset)
: node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
NodeRef &subtree(unsigned i) const {
return reinterpret_cast<NodeRef*>(node)[i];
}
};
/// path - The path entries, path[0] is the root node, path.back() is a leaf.
SmallVector<Entry, 4> path;
public:
// Node accessors.
template <typename NodeT> NodeT &node(unsigned Level) const {
return *reinterpret_cast<NodeT*>(path[Level].node);
}
unsigned size(unsigned Level) const { return path[Level].size; }
unsigned offset(unsigned Level) const { return path[Level].offset; }
unsigned &offset(unsigned Level) { return path[Level].offset; }
// Leaf accessors.
template <typename NodeT> NodeT &leaf() const {
return *reinterpret_cast<NodeT*>(path.back().node);
}
unsigned leafSize() const { return path.back().size; }
unsigned leafOffset() const { return path.back().offset; }
unsigned &leafOffset() { return path.back().offset; }
/// valid - Return true if path is at a valid node, not at end().
bool valid() const {
return !path.empty() && path.front().offset < path.front().size;
}
/// height - Return the height of the tree corresponding to this path.
/// This matches map->height in a full path.
unsigned height() const { return path.size() - 1; }
/// subtree - Get the subtree referenced from Level. When the path is
/// consistent, node(Level + 1) == subtree(Level).
/// @param Level 0..height-1. The leaves have no subtrees.
NodeRef &subtree(unsigned Level) const {
return path[Level].subtree(path[Level].offset);
}
/// reset - Reset cached information about node(Level) from subtree(Level -1).
/// @param Level 1..height. THe node to update after parent node changed.
void reset(unsigned Level) {
path[Level] = Entry(subtree(Level - 1), offset(Level));
}
/// push - Add entry to path.
/// @param Node Node to add, should be subtree(path.size()-1).
/// @param Offset Offset into Node.
void push(NodeRef Node, unsigned Offset) {
path.push_back(Entry(Node, Offset));
}
/// pop - Remove the last path entry.
void pop() {
path.pop_back();
}
/// setSize - Set the size of a node both in the path and in the tree.
/// @param Level 0..height. Note that setting the root size won't change
/// map->rootSize.
/// @param Size New node size.
void setSize(unsigned Level, unsigned Size) {
path[Level].size = Size;
if (Level)
subtree(Level - 1).setSize(Size);
}
/// setRoot - Clear the path and set a new root node.
/// @param Node New root node.
/// @param Size New root size.
/// @param Offset Offset into root node.
void setRoot(void *Node, unsigned Size, unsigned Offset) {
path.clear();
path.push_back(Entry(Node, Size, Offset));
}
/// replaceRoot - Replace the current root node with two new entries after the
/// tree height has increased.
/// @param Root The new root node.
/// @param Size Number of entries in the new root.
/// @param Offsets Offsets into the root and first branch nodes.
void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
/// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
/// @param Level Get the sibling to node(Level).
/// @return Left sibling, or NodeRef().
NodeRef getLeftSibling(unsigned Level) const;
/// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
/// unaltered.
/// @param Level Move node(Level).
void moveLeft(unsigned Level);
/// fillLeft - Grow path to Height by taking leftmost branches.
/// @param Height The target height.
void fillLeft(unsigned Height) {
while (height() < Height)
push(subtree(height()), 0);
}
/// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
/// @param Level Get the sinbling to node(Level).
/// @return Left sibling, or NodeRef().
NodeRef getRightSibling(unsigned Level) const;
/// moveRight - Move path to the left sibling at Level. Leave nodes below
/// Level unaltered.
/// @param Level Move node(Level).
void moveRight(unsigned Level);
/// atBegin - Return true if path is at begin().
bool atBegin() const {
for (unsigned i = 0, e = path.size(); i != e; ++i)
if (path[i].offset != 0)
return false;
return true;
}
/// atLastEntry - Return true if the path is at the last entry of the node at
/// Level.
/// @param Level Node to examine.
bool atLastEntry(unsigned Level) const {
return path[Level].offset == path[Level].size - 1;
}
/// legalizeForInsert - Prepare the path for an insertion at Level. When the
/// path is at end(), node(Level) may not be a legal node. legalizeForInsert
/// ensures that node(Level) is real by moving back to the last node at Level,
/// and setting offset(Level) to size(Level) if required.
/// @param Level The level where an insertion is about to take place.
void legalizeForInsert(unsigned Level) {
if (valid())
return;
moveLeft(Level);
++path[Level].offset;
}
};
} // namespace IntervalMapImpl
//===----------------------------------------------------------------------===//
//--- IntervalMap ----//
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT,
unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
typename Traits = IntervalMapInfo<KeyT> >
class IntervalMap {
typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
Branch;
typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
typedef IntervalMapImpl::IdxPair IdxPair;
// The RootLeaf capacity is given as a template parameter. We must compute the
// corresponding RootBranch capacity.
enum {
DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
(sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
};
typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
RootBranch;
// When branched, we store a global start key as well as the branch node.
struct RootBranchData {
KeyT start;
RootBranch node;
};
enum {
RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
sizeof(RootBranchData) : sizeof(RootLeaf)
};
public:
typedef typename Sizer::Allocator Allocator;
typedef KeyT KeyType;
typedef ValT ValueType;
typedef Traits KeyTraits;
private:
// The root data is either a RootLeaf or a RootBranchData instance.
// We can't put them in a union since C++03 doesn't allow non-trivial
// constructors in unions.
// Instead, we use a char array with pointer alignment. The alignment is
// ensured by the allocator member in the class, but still verified in the
// constructor. We don't support keys or values that are more aligned than a
// pointer.
char data[RootDataSize];
// Tree height.
// 0: Leaves in root.
// 1: Root points to leaf.
// 2: root->branch->leaf ...
unsigned height;
// Number of entries in the root node.
unsigned rootSize;
// Allocator used for creating external nodes.
Allocator &allocator;
/// dataAs - Represent data as a node type without breaking aliasing rules.
template <typename T>
T &dataAs() const {
union {
const char *d;
T *t;
} u;
u.d = data;
return *u.t;
}
const RootLeaf &rootLeaf() const {
assert(!branched() && "Cannot acces leaf data in branched root");
return dataAs<RootLeaf>();
}
RootLeaf &rootLeaf() {
assert(!branched() && "Cannot acces leaf data in branched root");
return dataAs<RootLeaf>();
}
RootBranchData &rootBranchData() const {
assert(branched() && "Cannot access branch data in non-branched root");
return dataAs<RootBranchData>();
}
RootBranchData &rootBranchData() {
assert(branched() && "Cannot access branch data in non-branched root");
return dataAs<RootBranchData>();
}
const RootBranch &rootBranch() const { return rootBranchData().node; }
RootBranch &rootBranch() { return rootBranchData().node; }
KeyT rootBranchStart() const { return rootBranchData().start; }
KeyT &rootBranchStart() { return rootBranchData().start; }
template <typename NodeT> NodeT *newNode() {
return new(allocator.template Allocate<NodeT>()) NodeT();
}
template <typename NodeT> void deleteNode(NodeT *P) {
P->~NodeT();
allocator.Deallocate(P);
}
IdxPair branchRoot(unsigned Position);
IdxPair splitRoot(unsigned Position);
void switchRootToBranch() {
rootLeaf().~RootLeaf();
height = 1;
new (&rootBranchData()) RootBranchData();
}
void switchRootToLeaf() {
rootBranchData().~RootBranchData();
height = 0;
new(&rootLeaf()) RootLeaf();
}
bool branched() const { return height > 0; }
ValT treeSafeLookup(KeyT x, ValT NotFound) const;
void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
unsigned Level));
void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
public:
explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
"Insufficient alignment");
new(&rootLeaf()) RootLeaf();
}
~IntervalMap() {
clear();
rootLeaf().~RootLeaf();
}
/// empty - Return true when no intervals are mapped.
bool empty() const {
return rootSize == 0;
}
/// start - Return the smallest mapped key in a non-empty map.
KeyT start() const {
assert(!empty() && "Empty IntervalMap has no start");
return !branched() ? rootLeaf().start(0) : rootBranchStart();
}
/// stop - Return the largest mapped key in a non-empty map.
KeyT stop() const {
assert(!empty() && "Empty IntervalMap has no stop");
return !branched() ? rootLeaf().stop(rootSize - 1) :
rootBranch().stop(rootSize - 1);
}
/// lookup - Return the mapped value at x or NotFound.
ValT lookup(KeyT x, ValT NotFound = ValT()) const {
if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
return NotFound;
return branched() ? treeSafeLookup(x, NotFound) :
rootLeaf().safeLookup(x, NotFound);
}
/// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
/// It is assumed that no key in the interval is mapped to another value, but
/// overlapping intervals already mapped to y will be coalesced.
void insert(KeyT a, KeyT b, ValT y) {
if (branched() || rootSize == RootLeaf::Capacity)
return find(a).insert(a, b, y);
// Easy insert into root leaf.
unsigned p = rootLeaf().findFrom(0, rootSize, a);
rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
}
/// clear - Remove all entries.
void clear();
class const_iterator;
class iterator;
friend class const_iterator;
friend class iterator;
const_iterator begin() const {
const_iterator I(*this);
I.goToBegin();
return I;
}
iterator begin() {
iterator I(*this);
I.goToBegin();
return I;
}
const_iterator end() const {
const_iterator I(*this);
I.goToEnd();
return I;
}
iterator end() {
iterator I(*this);
I.goToEnd();
return I;
}
/// find - Return an iterator pointing to the first interval ending at or
/// after x, or end().
const_iterator find(KeyT x) const {
const_iterator I(*this);
I.find(x);
return I;
}
iterator find(KeyT x) {
iterator I(*this);
I.find(x);
return I;
}
};
/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
/// branched root.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
ValT IntervalMap<KeyT, ValT, N, Traits>::
treeSafeLookup(KeyT x, ValT NotFound) const {
assert(branched() && "treeLookup assumes a branched root");
IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
for (unsigned h = height-1; h; --h)
NR = NR.get<Branch>().safeLookup(x);
return NR.get<Leaf>().safeLookup(x, NotFound);
}
// branchRoot - Switch from a leaf root to a branched root.
// Return the new (root offset, node offset) corresponding to Position.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
branchRoot(unsigned Position) {
using namespace IntervalMapImpl;
// How many external leaf nodes to hold RootLeaf+1?
const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
// Compute element distribution among new nodes.
unsigned size[Nodes];
IdxPair NewOffset(0, Position);
// Is is very common for the root node to be smaller than external nodes.
if (Nodes == 1)
size[0] = rootSize;
else
NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, size,
Position, true);
// Allocate new nodes.
unsigned pos = 0;
NodeRef node[Nodes];
for (unsigned n = 0; n != Nodes; ++n) {
Leaf *L = newNode<Leaf>();
L->copy(rootLeaf(), pos, 0, size[n]);
node[n] = NodeRef(L, size[n]);
pos += size[n];
}
// Destroy the old leaf node, construct branch node instead.
switchRootToBranch();
for (unsigned n = 0; n != Nodes; ++n) {
rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
rootBranch().subtree(n) = node[n];
}
rootBranchStart() = node[0].template get<Leaf>().start(0);
rootSize = Nodes;
return NewOffset;
}
// splitRoot - Split the current BranchRoot into multiple Branch nodes.
// Return the new (root offset, node offset) corresponding to Position.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
splitRoot(unsigned Position) {
using namespace IntervalMapImpl;
// How many external leaf nodes to hold RootBranch+1?
const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
// Compute element distribution among new nodes.
unsigned Size[Nodes];
IdxPair NewOffset(0, Position);
// Is is very common for the root node to be smaller than external nodes.
if (Nodes == 1)
Size[0] = rootSize;
else
NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, Size,
Position, true);
// Allocate new nodes.
unsigned Pos = 0;
NodeRef Node[Nodes];
for (unsigned n = 0; n != Nodes; ++n) {
Branch *B = newNode<Branch>();
B->copy(rootBranch(), Pos, 0, Size[n]);
Node[n] = NodeRef(B, Size[n]);
Pos += Size[n];
}
for (unsigned n = 0; n != Nodes; ++n) {
rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
rootBranch().subtree(n) = Node[n];
}
rootSize = Nodes;
++height;
return NewOffset;
}
/// visitNodes - Visit each external node.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
if (!branched())
return;
SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
// Collect level 0 nodes from the root.
for (unsigned i = 0; i != rootSize; ++i)
Refs.push_back(rootBranch().subtree(i));
// Visit all branch nodes.
for (unsigned h = height - 1; h; --h) {
for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
NextRefs.push_back(Refs[i].subtree(j));
(this->*f)(Refs[i], h);
}
Refs.clear();
Refs.swap(NextRefs);
}
// Visit all leaf nodes.
for (unsigned i = 0, e = Refs.size(); i != e; ++i)
(this->*f)(Refs[i], 0);
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
if (Level)
deleteNode(&Node.get<Branch>());
else
deleteNode(&Node.get<Leaf>());
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
clear() {
if (branched()) {
visitNodes(&IntervalMap::deleteNode);
switchRootToLeaf();
}
rootSize = 0;
}
//===----------------------------------------------------------------------===//
//--- IntervalMap::const_iterator ----//
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT, unsigned N, typename Traits>
class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
public std::iterator<std::bidirectional_iterator_tag, ValT> {
protected:
friend class IntervalMap;
// The map referred to.
IntervalMap *map;
// We store a full path from the root to the current position.
// The path may be partially filled, but never between iterator calls.
IntervalMapImpl::Path path;
explicit const_iterator(const IntervalMap &map) :
map(const_cast<IntervalMap*>(&map)) {}
bool branched() const {
assert(map && "Invalid iterator");
return map->branched();
}
void setRoot(unsigned Offset) {
if (branched())
path.setRoot(&map->rootBranch(), map->rootSize, Offset);
else
path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
}
void pathFillFind(KeyT x);
void treeFind(KeyT x);
void treeAdvanceTo(KeyT x);
/// unsafeStart - Writable access to start() for iterator.
KeyT &unsafeStart() const {
assert(valid() && "Cannot access invalid iterator");
return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
path.leaf<RootLeaf>().start(path.leafOffset());
}
/// unsafeStop - Writable access to stop() for iterator.
KeyT &unsafeStop() const {
assert(valid() && "Cannot access invalid iterator");
return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
path.leaf<RootLeaf>().stop(path.leafOffset());
}
/// unsafeValue - Writable access to value() for iterator.
ValT &unsafeValue() const {
assert(valid() && "Cannot access invalid iterator");
return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
path.leaf<RootLeaf>().value(path.leafOffset());
}
public:
/// const_iterator - Create an iterator that isn't pointing anywhere.
const_iterator() : map(nullptr) {}
/// setMap - Change the map iterated over. This call must be followed by a
/// call to goToBegin(), goToEnd(), or find()
void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
/// valid - Return true if the current position is valid, false for end().
bool valid() const { return path.valid(); }
/// atBegin - Return true if the current position is the first map entry.
bool atBegin() const { return path.atBegin(); }
/// start - Return the beginning of the current interval.
const KeyT &start() const { return unsafeStart(); }
/// stop - Return the end of the current interval.
const KeyT &stop() const { return unsafeStop(); }
/// value - Return the mapped value at the current interval.
const ValT &value() const { return unsafeValue(); }
const ValT &operator*() const { return value(); }
bool operator==(const const_iterator &RHS) const {
assert(map == RHS.map && "Cannot compare iterators from different maps");
if (!valid())
return !RHS.valid();
if (path.leafOffset() != RHS.path.leafOffset())
return false;
return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
}
bool operator!=(const const_iterator &RHS) const {
return !operator==(RHS);
}
/// goToBegin - Move to the first interval in map.
void goToBegin() {
setRoot(0);
if (branched())
path.fillLeft(map->height);
}
/// goToEnd - Move beyond the last interval in map.
void goToEnd() {
setRoot(map->rootSize);
}
/// preincrement - move to the next interval.
const_iterator &operator++() {
assert(valid() && "Cannot increment end()");
if (++path.leafOffset() == path.leafSize() && branched())
path.moveRight(map->height);
return *this;
}
/// postincrement - Dont do that!
const_iterator operator++(int) {
const_iterator tmp = *this;
operator++();
return tmp;
}
/// predecrement - move to the previous interval.
const_iterator &operator--() {
if (path.leafOffset() && (valid() || !branched()))
--path.leafOffset();
else
path.moveLeft(map->height);
return *this;
}
/// postdecrement - Dont do that!
const_iterator operator--(int) {
const_iterator tmp = *this;
operator--();
return tmp;
}
/// find - Move to the first interval with stop >= x, or end().
/// This is a full search from the root, the current position is ignored.
void find(KeyT x) {
if (branched())
treeFind(x);
else
setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
}
/// advanceTo - Move to the first interval with stop >= x, or end().
/// The search is started from the current position, and no earlier positions
/// can be found. This is much faster than find() for small moves.
void advanceTo(KeyT x) {
if (!valid())
return;
if (branched())
treeAdvanceTo(x);
else
path.leafOffset() =
map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
}
};
/// pathFillFind - Complete path by searching for x.
/// @param x Key to search for.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::pathFillFind(KeyT x) {
IntervalMapImpl::NodeRef NR = path.subtree(path.height());
for (unsigned i = map->height - path.height() - 1; i; --i) {
unsigned p = NR.get<Branch>().safeFind(0, x);
path.push(NR, p);
NR = NR.subtree(p);
}
path.push(NR, NR.get<Leaf>().safeFind(0, x));
}
/// treeFind - Find in a branched tree.
/// @param x Key to search for.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::treeFind(KeyT x) {
setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
if (valid())
pathFillFind(x);
}
/// treeAdvanceTo - Find position after the current one.
/// @param x Key to search for.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::treeAdvanceTo(KeyT x) {
// Can we stay on the same leaf node?
if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
return;
}
// Drop the current leaf.
path.pop();
// Search towards the root for a usable subtree.
if (path.height()) {
for (unsigned l = path.height() - 1; l; --l) {
if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
// The branch node at l+1 is usable
path.offset(l + 1) =
path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
return pathFillFind(x);
}
path.pop();
}
// Is the level-1 Branch usable?
if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
return pathFillFind(x);
}
}
// We reached the root.
setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
if (valid())
pathFillFind(x);
}
//===----------------------------------------------------------------------===//
//--- IntervalMap::iterator ----//
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT, unsigned N, typename Traits>
class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
friend class IntervalMap;
typedef IntervalMapImpl::IdxPair IdxPair;
explicit iterator(IntervalMap &map) : const_iterator(map) {}
void setNodeStop(unsigned Level, KeyT Stop);
bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
template <typename NodeT> bool overflow(unsigned Level);
void treeInsert(KeyT a, KeyT b, ValT y);
void eraseNode(unsigned Level);
void treeErase(bool UpdateRoot = true);
bool canCoalesceLeft(KeyT Start, ValT x);
bool canCoalesceRight(KeyT Stop, ValT x);
public:
/// iterator - Create null iterator.
iterator() {}
/// setStart - Move the start of the current interval.
/// This may cause coalescing with the previous interval.
/// @param a New start key, must not overlap the previous interval.
void setStart(KeyT a);
/// setStop - Move the end of the current interval.
/// This may cause coalescing with the following interval.
/// @param b New stop key, must not overlap the following interval.
void setStop(KeyT b);
/// setValue - Change the mapped value of the current interval.
/// This may cause coalescing with the previous and following intervals.
/// @param x New value.
void setValue(ValT x);
/// setStartUnchecked - Move the start of the current interval without
/// checking for coalescing or overlaps.
/// This should only be used when it is known that coalescing is not required.
/// @param a New start key.
void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
/// setStopUnchecked - Move the end of the current interval without checking
/// for coalescing or overlaps.
/// This should only be used when it is known that coalescing is not required.
/// @param b New stop key.
void setStopUnchecked(KeyT b) {
this->unsafeStop() = b;
// Update keys in branch nodes as well.
if (this->path.atLastEntry(this->path.height()))
setNodeStop(this->path.height(), b);
}
/// setValueUnchecked - Change the mapped value of the current interval
/// without checking for coalescing.
/// @param x New value.
void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
/// insert - Insert mapping [a;b] -> y before the current position.
void insert(KeyT a, KeyT b, ValT y);
/// erase - Erase the current interval.
void erase();
iterator &operator++() {
const_iterator::operator++();
return *this;
}
iterator operator++(int) {
iterator tmp = *this;
operator++();
return tmp;
}
iterator &operator--() {
const_iterator::operator--();
return *this;
}
iterator operator--(int) {
iterator tmp = *this;
operator--();
return tmp;
}
};
/// canCoalesceLeft - Can the current interval coalesce to the left after
/// changing start or value?
/// @param Start New start of current interval.
/// @param Value New value for current interval.
/// @return True when updating the current interval would enable coalescing.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
bool IntervalMap<KeyT, ValT, N, Traits>::
iterator::canCoalesceLeft(KeyT Start, ValT Value) {
using namespace IntervalMapImpl;
Path &P = this->path;
if (!this->branched()) {
unsigned i = P.leafOffset();
RootLeaf &Node = P.leaf<RootLeaf>();
return i && Node.value(i-1) == Value &&
Traits::adjacent(Node.stop(i-1), Start);
}
// Branched.
if (unsigned i = P.leafOffset()) {
Leaf &Node = P.leaf<Leaf>();
return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
} else if (NodeRef NR = P.getLeftSibling(P.height())) {
unsigned i = NR.size() - 1;
Leaf &Node = NR.get<Leaf>();
return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
}
return false;
}
/// canCoalesceRight - Can the current interval coalesce to the right after
/// changing stop or value?
/// @param Stop New stop of current interval.
/// @param Value New value for current interval.
/// @return True when updating the current interval would enable coalescing.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
bool IntervalMap<KeyT, ValT, N, Traits>::
iterator::canCoalesceRight(KeyT Stop, ValT Value) {
using namespace IntervalMapImpl;
Path &P = this->path;
unsigned i = P.leafOffset() + 1;
if (!this->branched()) {
if (i >= P.leafSize())
return false;
RootLeaf &Node = P.leaf<RootLeaf>();
return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
}
// Branched.
if (i < P.leafSize()) {
Leaf &Node = P.leaf<Leaf>();
return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
} else if (NodeRef NR = P.getRightSibling(P.height())) {
Leaf &Node = NR.get<Leaf>();
return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
}
return false;
}
/// setNodeStop - Update the stop key of the current node at level and above.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::setNodeStop(unsigned Level, KeyT Stop) {
// There are no references to the root node, so nothing to update.
if (!Level)
return;
IntervalMapImpl::Path &P = this->path;
// Update nodes pointing to the current node.
while (--Level) {
P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
if (!P.atLastEntry(Level))
return;
}
// Update root separately since it has a different layout.
P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::setStart(KeyT a) {
assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
KeyT &CurStart = this->unsafeStart();
if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
CurStart = a;
return;
}
// Coalesce with the interval to the left.
--*this;
a = this->start();
erase();
setStartUnchecked(a);
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::setStop(KeyT b) {
assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
if (Traits::startLess(b, this->stop()) ||
!canCoalesceRight(b, this->value())) {
setStopUnchecked(b);
return;
}
// Coalesce with interval to the right.
KeyT a = this->start();
erase();
setStartUnchecked(a);
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::setValue(ValT x) {
setValueUnchecked(x);
if (canCoalesceRight(this->stop(), x)) {
KeyT a = this->start();
erase();
setStartUnchecked(a);
}
if (canCoalesceLeft(this->start(), x)) {
--*this;
KeyT a = this->start();
erase();
setStartUnchecked(a);
}
}
/// insertNode - insert a node before the current path at level.
/// Leave the current path pointing at the new node.
/// @param Level path index of the node to be inserted.
/// @param Node The node to be inserted.
/// @param Stop The last index in the new node.
/// @return True if the tree height was increased.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
bool IntervalMap<KeyT, ValT, N, Traits>::
iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
assert(Level && "Cannot insert next to the root");
bool SplitRoot = false;
IntervalMap &IM = *this->map;
IntervalMapImpl::Path &P = this->path;
if (Level == 1) {
// Insert into the root branch node.
if (IM.rootSize < RootBranch::Capacity) {
IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
P.setSize(0, ++IM.rootSize);
P.reset(Level);
return SplitRoot;
}
// We need to split the root while keeping our position.
SplitRoot = true;
IdxPair Offset = IM.splitRoot(P.offset(0));
P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
// Fall through to insert at the new higher level.
++Level;
}
// When inserting before end(), make sure we have a valid path.
P.legalizeForInsert(--Level);
// Insert into the branch node at Level-1.
if (P.size(Level) == Branch::Capacity) {
// Branch node is full, handle handle the overflow.
assert(!SplitRoot && "Cannot overflow after splitting the root");
SplitRoot = overflow<Branch>(Level);
Level += SplitRoot;
}
P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
P.setSize(Level, P.size(Level) + 1);
if (P.atLastEntry(Level))
setNodeStop(Level, Stop);
P.reset(Level + 1);
return SplitRoot;
}
// insert
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::insert(KeyT a, KeyT b, ValT y) {
if (this->branched())
return treeInsert(a, b, y);
IntervalMap &IM = *this->map;
IntervalMapImpl::Path &P = this->path;
// Try simple root leaf insert.
unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
// Was the root node insert successful?
if (Size <= RootLeaf::Capacity) {
P.setSize(0, IM.rootSize = Size);
return;
}
// Root leaf node is full, we must branch.
IdxPair Offset = IM.branchRoot(P.leafOffset());
P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
// Now it fits in the new leaf.
treeInsert(a, b, y);
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::treeInsert(KeyT a, KeyT b, ValT y) {
using namespace IntervalMapImpl;
Path &P = this->path;
if (!P.valid())
P.legalizeForInsert(this->map->height);
// Check if this insertion will extend the node to the left.
if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
// Node is growing to the left, will it affect a left sibling node?
if (NodeRef Sib = P.getLeftSibling(P.height())) {
Leaf &SibLeaf = Sib.get<Leaf>();
unsigned SibOfs = Sib.size() - 1;
if (SibLeaf.value(SibOfs) == y &&
Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
// This insertion will coalesce with the last entry in SibLeaf. We can
// handle it in two ways:
// 1. Extend SibLeaf.stop to b and be done, or
// 2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
// We prefer 1., but need 2 when coalescing to the right as well.
Leaf &CurLeaf = P.leaf<Leaf>();
P.moveLeft(P.height());
if (Traits::stopLess(b, CurLeaf.start(0)) &&
(y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
// Easy, just extend SibLeaf and we're done.
setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
return;
} else {
// We have both left and right coalescing. Erase the old SibLeaf entry
// and continue inserting the larger interval.
a = SibLeaf.start(SibOfs);
treeErase(/* UpdateRoot= */false);
}
}
} else {
// No left sibling means we are at begin(). Update cached bound.
this->map->rootBranchStart() = a;
}
}
// When we are inserting at the end of a leaf node, we must update stops.
unsigned Size = P.leafSize();
bool Grow = P.leafOffset() == Size;
Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
// Leaf insertion unsuccessful? Overflow and try again.
if (Size > Leaf::Capacity) {
overflow<Leaf>(P.height());
Grow = P.leafOffset() == P.leafSize();
Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
assert(Size <= Leaf::Capacity && "overflow() didn't make room");
}
// Inserted, update offset and leaf size.
P.setSize(P.height(), Size);
// Insert was the last node entry, update stops.
if (Grow)
setNodeStop(P.height(), b);
}
/// erase - erase the current interval and move to the next position.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::erase() {
IntervalMap &IM = *this->map;
IntervalMapImpl::Path &P = this->path;
assert(P.valid() && "Cannot erase end()");
if (this->branched())
return treeErase();
IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
P.setSize(0, --IM.rootSize);
}
/// treeErase - erase() for a branched tree.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::treeErase(bool UpdateRoot) {
IntervalMap &IM = *this->map;
IntervalMapImpl::Path &P = this->path;
Leaf &Node = P.leaf<Leaf>();
// Nodes are not allowed to become empty.
if (P.leafSize() == 1) {
IM.deleteNode(&Node);
eraseNode(IM.height);
// Update rootBranchStart if we erased begin().
if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
IM.rootBranchStart() = P.leaf<Leaf>().start(0);
return;
}
// Erase current entry.
Node.erase(P.leafOffset(), P.leafSize());
unsigned NewSize = P.leafSize() - 1;
P.setSize(IM.height, NewSize);
// When we erase the last entry, update stop and move to a legal position.
if (P.leafOffset() == NewSize) {
setNodeStop(IM.height, Node.stop(NewSize - 1));
P.moveRight(IM.height);
} else if (UpdateRoot && P.atBegin())
IM.rootBranchStart() = P.leaf<Leaf>().start(0);
}
/// eraseNode - Erase the current node at Level from its parent and move path to
/// the first entry of the next sibling node.
/// The node must be deallocated by the caller.
/// @param Level 1..height, the root node cannot be erased.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::eraseNode(unsigned Level) {
assert(Level && "Cannot erase root node");
IntervalMap &IM = *this->map;
IntervalMapImpl::Path &P = this->path;
if (--Level == 0) {
IM.rootBranch().erase(P.offset(0), IM.rootSize);
P.setSize(0, --IM.rootSize);
// If this cleared the root, switch to height=0.
if (IM.empty()) {
IM.switchRootToLeaf();
this->setRoot(0);
return;
}
} else {
// Remove node ref from branch node at Level.
Branch &Parent = P.node<Branch>(Level);
if (P.size(Level) == 1) {
// Branch node became empty, remove it recursively.
IM.deleteNode(&Parent);
eraseNode(Level);
} else {
// Branch node won't become empty.
Parent.erase(P.offset(Level), P.size(Level));
unsigned NewSize = P.size(Level) - 1;
P.setSize(Level, NewSize);
// If we removed the last branch, update stop and move to a legal pos.
if (P.offset(Level) == NewSize) {
setNodeStop(Level, Parent.stop(NewSize - 1));
P.moveRight(Level);
}
}
}
// Update path cache for the new right sibling position.
if (P.valid()) {
P.reset(Level + 1);
P.offset(Level + 1) = 0;
}
}
/// overflow - Distribute entries of the current node evenly among
/// its siblings and ensure that the current node is not full.
/// This may require allocating a new node.
/// @tparam NodeT The type of node at Level (Leaf or Branch).
/// @param Level path index of the overflowing node.
/// @return True when the tree height was changed.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
template <typename NodeT>
bool IntervalMap<KeyT, ValT, N, Traits>::
iterator::overflow(unsigned Level) {
using namespace IntervalMapImpl;
Path &P = this->path;
unsigned CurSize[4];
NodeT *Node[4];
unsigned Nodes = 0;
unsigned Elements = 0;
unsigned Offset = P.offset(Level);
// Do we have a left sibling?
NodeRef LeftSib = P.getLeftSibling(Level);
if (LeftSib) {
Offset += Elements = CurSize[Nodes] = LeftSib.size();
Node[Nodes++] = &LeftSib.get<NodeT>();
}
// Current node.
Elements += CurSize[Nodes] = P.size(Level);
Node[Nodes++] = &P.node<NodeT>(Level);
// Do we have a right sibling?
NodeRef RightSib = P.getRightSibling(Level);
if (RightSib) {
Elements += CurSize[Nodes] = RightSib.size();
Node[Nodes++] = &RightSib.get<NodeT>();
}
// Do we need to allocate a new node?
unsigned NewNode = 0;
if (Elements + 1 > Nodes * NodeT::Capacity) {
// Insert NewNode at the penultimate position, or after a single node.
NewNode = Nodes == 1 ? 1 : Nodes - 1;
CurSize[Nodes] = CurSize[NewNode];
Node[Nodes] = Node[NewNode];
CurSize[NewNode] = 0;
Node[NewNode] = this->map->template newNode<NodeT>();
++Nodes;
}
// Compute the new element distribution.
unsigned NewSize[4];
IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
CurSize, NewSize, Offset, true);
adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
// Move current location to the leftmost node.
if (LeftSib)
P.moveLeft(Level);
// Elements have been rearranged, now update node sizes and stops.
bool SplitRoot = false;
unsigned Pos = 0;
for (;;) {
KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
if (NewNode && Pos == NewNode) {
SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
Level += SplitRoot;
} else {
P.setSize(Level, NewSize[Pos]);
setNodeStop(Level, Stop);
}
if (Pos + 1 == Nodes)
break;
P.moveRight(Level);
++Pos;
}
// Where was I? Find NewOffset.
while(Pos != NewOffset.first) {
P.moveLeft(Level);
--Pos;
}
P.offset(Level) = NewOffset.second;
return SplitRoot;
}
//===----------------------------------------------------------------------===//
//--- IntervalMapOverlaps ----//
//===----------------------------------------------------------------------===//
/// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
/// IntervalMaps. The maps may be different, but the KeyT and Traits types
/// should be the same.
///
/// Typical uses:
///
/// 1. Test for overlap:
/// bool overlap = IntervalMapOverlaps(a, b).valid();
///
/// 2. Enumerate overlaps:
/// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
///
template <typename MapA, typename MapB>
class IntervalMapOverlaps {
typedef typename MapA::KeyType KeyType;
typedef typename MapA::KeyTraits Traits;
typename MapA::const_iterator posA;
typename MapB::const_iterator posB;
/// advance - Move posA and posB forward until reaching an overlap, or until
/// either meets end.
/// Don't move the iterators if they are already overlapping.
void advance() {
if (!valid())
return;
if (Traits::stopLess(posA.stop(), posB.start())) {
// A ends before B begins. Catch up.
posA.advanceTo(posB.start());
if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
return;
} else if (Traits::stopLess(posB.stop(), posA.start())) {
// B ends before A begins. Catch up.
posB.advanceTo(posA.start());
if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
return;
} else
// Already overlapping.
return;
for (;;) {
// Make a.end > b.start.
posA.advanceTo(posB.start());
if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
return;
// Make b.end > a.start.
posB.advanceTo(posA.start());
if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
return;
}
}
public:
/// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
IntervalMapOverlaps(const MapA &a, const MapB &b)
: posA(b.empty() ? a.end() : a.find(b.start())),
posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
/// valid - Return true if iterator is at an overlap.
bool valid() const {
return posA.valid() && posB.valid();
}
/// a - access the left hand side in the overlap.
const typename MapA::const_iterator &a() const { return posA; }
/// b - access the right hand side in the overlap.
const typename MapB::const_iterator &b() const { return posB; }
/// start - Beginning of the overlapping interval.
KeyType start() const {
KeyType ak = a().start();
KeyType bk = b().start();
return Traits::startLess(ak, bk) ? bk : ak;
}
/// stop - End of the overlapping interval.
KeyType stop() const {
KeyType ak = a().stop();
KeyType bk = b().stop();
return Traits::startLess(ak, bk) ? ak : bk;
}
/// skipA - Move to the next overlap that doesn't involve a().
void skipA() {
++posA;
advance();
}
/// skipB - Move to the next overlap that doesn't involve b().
void skipB() {
++posB;
advance();
}
/// Preincrement - Move to the next overlap.
IntervalMapOverlaps &operator++() {
// Bump the iterator that ends first. The other one may have more overlaps.
if (Traits::startLess(posB.stop(), posA.stop()))
skipB();
else
skipA();
return *this;
}
/// advanceTo - Move to the first overlapping interval with
/// stopLess(x, stop()).
void advanceTo(KeyType x) {
if (!valid())
return;
// Make sure advanceTo sees monotonic keys.
if (Traits::stopLess(posA.stop(), x))
posA.advanceTo(x);
if (Traits::stopLess(posB.stop(), x))
posB.advanceTo(x);
advance();
}
};
} // namespace llvm
#endif
|