/usr/lib/python3.4/concurrent/futures/process.py is in libpython3.4-stdlib 3.4.3-1ubuntu1~14.04.7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | # Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Implements ProcessPoolExecutor.
The follow diagram and text describe the data-flow through the system:
|======================= In-process =====================|== Out-of-process ==|
+----------+ +----------+ +--------+ +-----------+ +---------+
| | => | Work Ids | => | | => | Call Q | => | |
| | +----------+ | | +-----------+ | |
| | | ... | | | | ... | | |
| | | 6 | | | | 5, call() | | |
| | | 7 | | | | ... | | |
| Process | | ... | | Local | +-----------+ | Process |
| Pool | +----------+ | Worker | | #1..n |
| Executor | | Thread | | |
| | +----------- + | | +-----------+ | |
| | <=> | Work Items | <=> | | <= | Result Q | <= | |
| | +------------+ | | +-----------+ | |
| | | 6: call() | | | | ... | | |
| | | future | | | | 4, result | | |
| | | ... | | | | 3, except | | |
+----------+ +------------+ +--------+ +-----------+ +---------+
Executor.submit() called:
- creates a uniquely numbered _WorkItem and adds it to the "Work Items" dict
- adds the id of the _WorkItem to the "Work Ids" queue
Local worker thread:
- reads work ids from the "Work Ids" queue and looks up the corresponding
WorkItem from the "Work Items" dict: if the work item has been cancelled then
it is simply removed from the dict, otherwise it is repackaged as a
_CallItem and put in the "Call Q". New _CallItems are put in the "Call Q"
until "Call Q" is full. NOTE: the size of the "Call Q" is kept small because
calls placed in the "Call Q" can no longer be cancelled with Future.cancel().
- reads _ResultItems from "Result Q", updates the future stored in the
"Work Items" dict and deletes the dict entry
Process #1..n:
- reads _CallItems from "Call Q", executes the calls, and puts the resulting
_ResultItems in "Result Q"
"""
__author__ = 'Brian Quinlan (brian@sweetapp.com)'
import atexit
import os
from concurrent.futures import _base
import queue
from queue import Full
import multiprocessing
from multiprocessing import SimpleQueue
from multiprocessing.connection import wait
import threading
import weakref
# Workers are created as daemon threads and processes. This is done to allow the
# interpreter to exit when there are still idle processes in a
# ProcessPoolExecutor's process pool (i.e. shutdown() was not called). However,
# allowing workers to die with the interpreter has two undesirable properties:
# - The workers would still be running during interpretor shutdown,
# meaning that they would fail in unpredictable ways.
# - The workers could be killed while evaluating a work item, which could
# be bad if the callable being evaluated has external side-effects e.g.
# writing to a file.
#
# To work around this problem, an exit handler is installed which tells the
# workers to exit when their work queues are empty and then waits until the
# threads/processes finish.
_threads_queues = weakref.WeakKeyDictionary()
_shutdown = False
def _python_exit():
global _shutdown
_shutdown = True
items = list(_threads_queues.items())
for t, q in items:
q.put(None)
for t, q in items:
t.join()
# Controls how many more calls than processes will be queued in the call queue.
# A smaller number will mean that processes spend more time idle waiting for
# work while a larger number will make Future.cancel() succeed less frequently
# (Futures in the call queue cannot be cancelled).
EXTRA_QUEUED_CALLS = 1
class _WorkItem(object):
def __init__(self, future, fn, args, kwargs):
self.future = future
self.fn = fn
self.args = args
self.kwargs = kwargs
class _ResultItem(object):
def __init__(self, work_id, exception=None, result=None):
self.work_id = work_id
self.exception = exception
self.result = result
class _CallItem(object):
def __init__(self, work_id, fn, args, kwargs):
self.work_id = work_id
self.fn = fn
self.args = args
self.kwargs = kwargs
def _process_worker(call_queue, result_queue):
"""Evaluates calls from call_queue and places the results in result_queue.
This worker is run in a separate process.
Args:
call_queue: A multiprocessing.Queue of _CallItems that will be read and
evaluated by the worker.
result_queue: A multiprocessing.Queue of _ResultItems that will written
to by the worker.
shutdown: A multiprocessing.Event that will be set as a signal to the
worker that it should exit when call_queue is empty.
"""
while True:
call_item = call_queue.get(block=True)
if call_item is None:
# Wake up queue management thread
result_queue.put(os.getpid())
return
try:
r = call_item.fn(*call_item.args, **call_item.kwargs)
except BaseException as e:
result_queue.put(_ResultItem(call_item.work_id,
exception=e))
else:
result_queue.put(_ResultItem(call_item.work_id,
result=r))
def _add_call_item_to_queue(pending_work_items,
work_ids,
call_queue):
"""Fills call_queue with _WorkItems from pending_work_items.
This function never blocks.
Args:
pending_work_items: A dict mapping work ids to _WorkItems e.g.
{5: <_WorkItem...>, 6: <_WorkItem...>, ...}
work_ids: A queue.Queue of work ids e.g. Queue([5, 6, ...]). Work ids
are consumed and the corresponding _WorkItems from
pending_work_items are transformed into _CallItems and put in
call_queue.
call_queue: A multiprocessing.Queue that will be filled with _CallItems
derived from _WorkItems.
"""
while True:
if call_queue.full():
return
try:
work_id = work_ids.get(block=False)
except queue.Empty:
return
else:
work_item = pending_work_items[work_id]
if work_item.future.set_running_or_notify_cancel():
call_queue.put(_CallItem(work_id,
work_item.fn,
work_item.args,
work_item.kwargs),
block=True)
else:
del pending_work_items[work_id]
continue
def _queue_management_worker(executor_reference,
processes,
pending_work_items,
work_ids_queue,
call_queue,
result_queue):
"""Manages the communication between this process and the worker processes.
This function is run in a local thread.
Args:
executor_reference: A weakref.ref to the ProcessPoolExecutor that owns
this thread. Used to determine if the ProcessPoolExecutor has been
garbage collected and that this function can exit.
process: A list of the multiprocessing.Process instances used as
workers.
pending_work_items: A dict mapping work ids to _WorkItems e.g.
{5: <_WorkItem...>, 6: <_WorkItem...>, ...}
work_ids_queue: A queue.Queue of work ids e.g. Queue([5, 6, ...]).
call_queue: A multiprocessing.Queue that will be filled with _CallItems
derived from _WorkItems for processing by the process workers.
result_queue: A multiprocessing.Queue of _ResultItems generated by the
process workers.
"""
executor = None
def shutting_down():
return _shutdown or executor is None or executor._shutdown_thread
def shutdown_worker():
# This is an upper bound
nb_children_alive = sum(p.is_alive() for p in processes.values())
for i in range(0, nb_children_alive):
call_queue.put_nowait(None)
# Release the queue's resources as soon as possible.
call_queue.close()
# If .join() is not called on the created processes then
# some multiprocessing.Queue methods may deadlock on Mac OS X.
for p in processes.values():
p.join()
reader = result_queue._reader
while True:
_add_call_item_to_queue(pending_work_items,
work_ids_queue,
call_queue)
sentinels = [p.sentinel for p in processes.values()]
assert sentinels
ready = wait([reader] + sentinels)
if reader in ready:
result_item = reader.recv()
else:
# Mark the process pool broken so that submits fail right now.
executor = executor_reference()
if executor is not None:
executor._broken = True
executor._shutdown_thread = True
executor = None
# All futures in flight must be marked failed
for work_id, work_item in pending_work_items.items():
work_item.future.set_exception(
BrokenProcessPool(
"A process in the process pool was "
"terminated abruptly while the future was "
"running or pending."
))
# Delete references to object. See issue16284
del work_item
pending_work_items.clear()
# Terminate remaining workers forcibly: the queues or their
# locks may be in a dirty state and block forever.
for p in processes.values():
p.terminate()
shutdown_worker()
return
if isinstance(result_item, int):
# Clean shutdown of a worker using its PID
# (avoids marking the executor broken)
assert shutting_down()
p = processes.pop(result_item)
p.join()
if not processes:
shutdown_worker()
return
elif result_item is not None:
work_item = pending_work_items.pop(result_item.work_id, None)
# work_item can be None if another process terminated (see above)
if work_item is not None:
if result_item.exception:
work_item.future.set_exception(result_item.exception)
else:
work_item.future.set_result(result_item.result)
# Delete references to object. See issue16284
del work_item
# Check whether we should start shutting down.
executor = executor_reference()
# No more work items can be added if:
# - The interpreter is shutting down OR
# - The executor that owns this worker has been collected OR
# - The executor that owns this worker has been shutdown.
if shutting_down():
try:
# Since no new work items can be added, it is safe to shutdown
# this thread if there are no pending work items.
if not pending_work_items:
shutdown_worker()
return
except Full:
# This is not a problem: we will eventually be woken up (in
# result_queue.get()) and be able to send a sentinel again.
pass
executor = None
_system_limits_checked = False
_system_limited = None
def _check_system_limits():
global _system_limits_checked, _system_limited
if _system_limits_checked:
if _system_limited:
raise NotImplementedError(_system_limited)
_system_limits_checked = True
try:
nsems_max = os.sysconf("SC_SEM_NSEMS_MAX")
except (AttributeError, ValueError):
# sysconf not available or setting not available
return
if nsems_max == -1:
# indetermined limit, assume that limit is determined
# by available memory only
return
if nsems_max >= 256:
# minimum number of semaphores available
# according to POSIX
return
_system_limited = "system provides too few semaphores (%d available, 256 necessary)" % nsems_max
raise NotImplementedError(_system_limited)
class BrokenProcessPool(RuntimeError):
"""
Raised when a process in a ProcessPoolExecutor terminated abruptly
while a future was in the running state.
"""
class ProcessPoolExecutor(_base.Executor):
def __init__(self, max_workers=None):
"""Initializes a new ProcessPoolExecutor instance.
Args:
max_workers: The maximum number of processes that can be used to
execute the given calls. If None or not given then as many
worker processes will be created as the machine has processors.
"""
_check_system_limits()
if max_workers is None:
self._max_workers = os.cpu_count() or 1
else:
self._max_workers = max_workers
# Make the call queue slightly larger than the number of processes to
# prevent the worker processes from idling. But don't make it too big
# because futures in the call queue cannot be cancelled.
self._call_queue = multiprocessing.Queue(self._max_workers +
EXTRA_QUEUED_CALLS)
# Killed worker processes can produce spurious "broken pipe"
# tracebacks in the queue's own worker thread. But we detect killed
# processes anyway, so silence the tracebacks.
self._call_queue._ignore_epipe = True
self._result_queue = SimpleQueue()
self._work_ids = queue.Queue()
self._queue_management_thread = None
# Map of pids to processes
self._processes = {}
# Shutdown is a two-step process.
self._shutdown_thread = False
self._shutdown_lock = threading.Lock()
self._broken = False
self._queue_count = 0
self._pending_work_items = {}
def _start_queue_management_thread(self):
# When the executor gets lost, the weakref callback will wake up
# the queue management thread.
def weakref_cb(_, q=self._result_queue):
q.put(None)
if self._queue_management_thread is None:
# Start the processes so that their sentinels are known.
self._adjust_process_count()
self._queue_management_thread = threading.Thread(
target=_queue_management_worker,
args=(weakref.ref(self, weakref_cb),
self._processes,
self._pending_work_items,
self._work_ids,
self._call_queue,
self._result_queue))
self._queue_management_thread.daemon = True
self._queue_management_thread.start()
_threads_queues[self._queue_management_thread] = self._result_queue
def _adjust_process_count(self):
for _ in range(len(self._processes), self._max_workers):
p = multiprocessing.Process(
target=_process_worker,
args=(self._call_queue,
self._result_queue))
p.start()
self._processes[p.pid] = p
def submit(self, fn, *args, **kwargs):
with self._shutdown_lock:
if self._broken:
raise BrokenProcessPool('A child process terminated '
'abruptly, the process pool is not usable anymore')
if self._shutdown_thread:
raise RuntimeError('cannot schedule new futures after shutdown')
f = _base.Future()
w = _WorkItem(f, fn, args, kwargs)
self._pending_work_items[self._queue_count] = w
self._work_ids.put(self._queue_count)
self._queue_count += 1
# Wake up queue management thread
self._result_queue.put(None)
self._start_queue_management_thread()
return f
submit.__doc__ = _base.Executor.submit.__doc__
def shutdown(self, wait=True):
with self._shutdown_lock:
self._shutdown_thread = True
if self._queue_management_thread:
# Wake up queue management thread
self._result_queue.put(None)
if wait:
self._queue_management_thread.join()
# To reduce the risk of opening too many files, remove references to
# objects that use file descriptors.
self._queue_management_thread = None
self._call_queue = None
self._result_queue = None
self._processes = None
shutdown.__doc__ = _base.Executor.shutdown.__doc__
atexit.register(_python_exit)
|