/usr/include/d/4.8/std/uni.d is in libphobos-4.8-dev 4.8.4-2ubuntu1~14.04.4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 | // Written in the D programming language.
/++
$(SECTION Overview)
$(P The $(D std.uni) module provides an implementation
of fundamental Unicode algorithms and data structures.
This doesn't include UTF encoding and decoding primitives,
see $(XREF _utf, decode) and $(XREF _utf, encode) in std.utf
for this functionality. )
$(P All primitives listed operate on Unicode characters and
sets of characters. For functions which operate on ASCII characters
and ignore Unicode $(CHARACTERS), see $(LINK2 std_ascii.html, std.ascii).
For definitions of Unicode $(CHARACTER), $(CODEPOINT) and other terms
used throughout this module see the $(S_LINK Terminology, terminology) section
below.
)
$(P The focus of this module is the core needs of developing Unicode-aware
applications. To that effect it provides the following optimized primitives:
)
$(UL
$(LI Character classification by category and common properties:
$(LREF isAlpha), $(LREF isWhite) and others.
)
$(LI
Case-insensitive string comparison ($(LREF sicmp), $(LREF icmp)).
)
$(LI
Converting text to any of the four normalization forms via $(LREF normalize).
)
$(LI
Decoding ($(LREF decodeGrapheme)) and iteration ($(LREF graphemeStride))
by user-perceived characters, that is by $(LREF Grapheme) clusters.
)
$(LI
Decomposing and composing of individual character(s) according to canonical
or compatibility rules, see $(LREF compose) and $(LREF decompose),
including the specific version for Hangul syllables $(LREF composeJamo)
and $(LREF decomposeHangul).
)
)
$(P It's recognized that an application may need further enhancements
and extensions, such as less commonly known algorithms,
or tailoring existing ones for region specific needs. To help users
with building any extra functionality beyond the core primitives,
the module provides:
)
$(UL
$(LI
$(LREF CodepointSet), a type for easy manipulation of sets of characters.
Besides the typical set algebra it provides an unusual feature:
a D source code generator for detection of $(CODEPOINTS) in this set.
This is a boon for meta-programming parser frameworks,
and is used internally to power classification in small
sets like $(LREF isWhite).
)
$(LI
A way to construct optimal packed multi-stage tables also known as a
special case of $(LUCKY Trie).
The functions $(LREF codepointTrie), $(LREF codepointSetTrie)
construct custom tries that map dchar to value.
The end result is a fast and predictable $(BIGOH 1) lookup that powers
functions like $(LREF isAlpha) and $(LREF combiningClass),
but for user-defined data sets.
)
$(LI
Generally useful building blocks for customized normalization:
$(LREF combiningClass) for querying combining class
and $(LREF allowedIn) for testing the Quick_Check
property of a given normalization form.
)
$(LI
Access to a large selection of commonly used sets of $(CODEPOINTS).
$(S_LINK Unicode properties, Supported sets) include Script,
Block and General Category. The exact contents of a set can be
observed in the CLDR utility, on the
$(WEB www.unicode.org/cldr/utility/properties.jsp, property index) page
of the Unicode website.
See $(LREF unicode) for easy and (optionally) compile-time checked set
queries.
)
)
$(SECTION Synopsis)
---
import std.uni;
void main()
{
// initialize code point sets using script/block or property name
// now 'set' contains code points from both scripts.
auto set = unicode("Cyrillic") | unicode("Armenian");
// same thing but simpler and checked at compile-time
auto ascii = unicode.ASCII;
auto currency = unicode.Currency_Symbol;
// easy set ops
auto a = set & ascii;
assert(a.empty); // as it has no intersection with ascii
a = set | ascii;
auto b = currency - a; // subtract all ASCII, Cyrillic and Armenian
// some properties of code point sets
assert(b.length > 45); // 46 items in Unicode 6.1, even more in 6.2
// testing presence of a code point in a set
// is just fine, it is O(logN)
assert(!b['$']);
assert(!b['\u058F']); // Armenian dram sign
assert(b['¥']);
// building fast lookup tables, these guarantee O(1) complexity
// 1-level Trie lookup table essentially a huge bit-set ~262Kb
auto oneTrie = toTrie!1(b);
// 2-level far more compact but typically slightly slower
auto twoTrie = toTrie!2(b);
// 3-level even smaller, and a bit slower yet
auto threeTrie = toTrie!3(b);
assert(oneTrie['£']);
assert(twoTrie['£']);
assert(threeTrie['£']);
// build the trie with the most sensible trie level
// and bind it as a functor
auto cyrilicOrArmenian = toDelegate(set);
auto balance = find!(cyrilicOrArmenian)("Hello ընկեր!");
assert(balance == "ընկեր!");
// compatible with bool delegate(dchar)
bool delegate(dchar) bindIt = cyrilicOrArmenian;
// Normalization
string s = "Plain ascii (and not only), is always normalized!";
assert(s is normalize(s));// is the same string
string nonS = "A\u0308ffin"; // A ligature
auto nS = normalize(nonS); // to NFC, the W3C endorsed standard
assert(nS == "Äffin");
assert(nS != nonS);
string composed = "Äffin";
assert(normalize!NFD(composed) == "A\u0308ffin");
// to NFKD, compatibility decomposition useful for fuzzy matching/searching
assert(normalize!NFKD("2¹⁰") == "210");
}
---
$(SECTION Terminology)
$(P The following is a list of important Unicode notions
and definitions. Any conventions used specifically in this
module alone are marked as such. The descriptions are based on the formal
definition as found in ($WEB http://www.unicode.org/versions/Unicode6.2.0/ch03.pdf,
chapter three of The Unicode Standard Core Specification.)
)
$(P $(DEF Abstract character) A unit of information used for the organization,
control, or representation of textual data.
Note that:
$(UL
$(LI When representing data, the nature of that data
is generally symbolic as opposed to some other
kind of data (for example, visual).)
$(LI An abstract character has no concrete form
and should not be confused with a $(S_LINK Glyph, glyph).)
$(LI An abstract character does not necessarily
correspond to what a user thinks of as a “character”
and should not be confused with a $(LREF Grapheme).)
$(LI The abstract characters encoded (see Encoded character)
are known as Unicode abstract characters.)
$(LI Abstract characters not directly
encoded by the Unicode Standard can often be
represented by the use of combining character sequences.)
)
)
$(P $(DEF Canonical decomposition)
The decomposition of a character or character sequence
that results from recursively applying the canonical
mappings found in the Unicode Character Database
and these described in Conjoining Jamo Behavior
(section 12 of
$(WEB www.unicode.org/uni2book/ch03.pdf, Unicode Conformance)).
)
$(P $(DEF Canonical composition)
The precise definition of the Canonical composition
is the algorithm as specified in $(WEB www.unicode.org/uni2book/ch03.pdf,
Unicode Conformance) section 11.
Informally it's the process that does the reverse of the canonical
decomposition with the addition of certain rules
that e.g. prevent legacy characters from appearing in the composed result.
)
$(P $(DEF Canonical equivalent)
Two character sequences are said to be canonical equivalents if
their full canonical decompositions are identical.
)
$(P $(DEF Character) Typically differs by context.
For the purpose of this documentation the term $(I character)
implies $(I encoded character), that is, a code point having
an assigned abstract character (a symbolic meaning).
)
$(P $(DEF Code point) Any value in the Unicode codespace;
that is, the range of integers from 0 to 10FFFF (hex).
Not all code points are assigned to encoded characters.
)
$(P $(DEF Code unit) The minimal bit combination that can represent
a unit of encoded text for processing or interchange.
Depending on the encoding this could be:
8-bit code units in the UTF-8 ($(D char)),
16-bit code units in the UTF-16 ($(D wchar)),
and 32-bit code units in the UTF-32 ($(D dchar)).
$(I Note that in UTF-32, a code unit is a code point
and is represented by the D $(D dchar) type.)
)
$(P $(DEF Combining character) A character with the General Category
of Combining Mark(M).
$(UL
$(LI All characters with non-zero canonical combining class
are combining characters, but the reverse is not the case:
there are combining characters with a zero combining class.
)
$(LI These characters are not normally used in isolation
unless they are being described. They include such characters
as accents, diacritics, Hebrew points, Arabic vowel signs,
and Indic matras.
)
)
)
$(P $(DEF Combining class)
A numerical value used by the Unicode Canonical Ordering Algorithm
to determine which sequences of combining marks are to be
considered canonically equivalent and which are not.
)
$(P $(DEF Compatibility decomposition)
The decomposition of a character or character sequence that results
from recursively applying both the compatibility mappings and
the canonical mappings found in the Unicode Character Database, and those
described in Conjoining Jamo Behavior no characters
can be further decomposed.
)
$(P $(DEF Compatibility equivalent)
Two character sequences are said to be compatibility
equivalents if their full compatibility decompositions are identical.
)
$(P $(DEF Encoded character) An association (or mapping)
between an abstract character and a code point.
)
$(P $(DEF Glyph) The actual, concrete image of a glyph representation
having been rasterized or otherwise imaged onto some display surface.
)
$(P $(DEF Grapheme base) A character with the property
Grapheme_Base, or any standard Korean syllable block.
)
$(P $(DEF Grapheme cluster) Defined as the text between
grapheme boundaries as specified by Unicode Standard Annex #29,
$(WEB www.unicode.org/reports/tr29/, Unicode text segmentation).
Important general properties of a grapheme:
$(UL
$(LI The grapheme cluster represents a horizontally segmentable
unit of text, consisting of some grapheme base (which may
consist of a Korean syllable) together with any number of
nonspacing marks applied to it.
)
$(LI A grapheme cluster typically starts with a grapheme base
and then extends across any subsequent sequence of nonspacing marks.
A grapheme cluster is most directly relevant to text rendering and
processes such as cursor placement and text selection in editing,
but may also be relevant to comparison and searching.
)
$(LI For many processes, a grapheme cluster behaves as if it was a
single character with the same properties as its grapheme base.
Effectively, nonspacing marks apply $(I graphically) to the base,
but do not change its properties.
)
)
$(P This module defines a number of primitives that work with graphemes:
$(LREF Grapheme), $(LREF decodeGrapheme) and $(LREF graphemeStride).
All of them are using $(I extended grapheme) boundaries
as defined in the aforementioned standard annex.
)
)
$(P $(DEF Nonspacing mark) A combining character with the
General Category of Nonspacing Mark (Mn) or Enclosing Mark (Me).
)
$(P $(DEF Spacing mark) A combining character that is not a nonspacing mark.)
$(SECTION Normalization)
$(P The concepts of $(S_LINK Canonical equivalent, canonical equivalent)
or $(S_LINK Compatibility equivalent, compatibility equivalent)
characters in the Unicode Standard make it necessary to have a full, formal
definition of equivalence for Unicode strings.
String equivalence is determined by a process called normalization,
whereby strings are converted into forms which are compared
directly for identity. This is the primary goal of the normalization process,
see the function $(LREF normalize) to convert into any of
the four defined forms.
)
$(P A very important attribute of the Unicode Normalization Forms
is that they must remain stable between versions of the Unicode Standard.
A Unicode string normalized to a particular Unicode Normalization Form
in one version of the standard is guaranteed to remain in that Normalization
Form for implementations of future versions of the standard.
)
$(P The Unicode Standard specifies four normalization forms.
Informally, two of these forms are defined by maximal decomposition
of equivalent sequences, and two of these forms are defined
by maximal $(I composition) of equivalent sequences.
$(UL
$(LI Normalization Form D (NFD): The $(S_LINK Canonical decomposition,
canonical decomposition) of a character sequence.)
$(LI Normalization Form KD (NFKD): The $(S_LINK Compatibility decomposition,
compatibility decomposition) of a character sequence.)
$(LI Normalization Form C (NFC): The canonical composition of the
$(S_LINK Canonical decomposition, canonical decomposition)
of a coded character sequence.)
$(LI Normalization Form KC (NFKC): The canonical composition
of the $(S_LINK Compatibility decomposition,
compatibility decomposition) of a character sequence)
)
)
$(P The choice of the normalization form depends on the particular use case.
NFC is the best form for general text, since it's more compatible with
strings converted from legacy encodings. NFKC is the preferred form for
identifiers, especially where there are security concerns. NFD and NFKD
are the most useful for internal processing.
)
$(SECTION Construction of lookup tables)
$(P The Unicode standard describes a set of algorithms that
depend on having the ability to quickly look up various properties
of a code point. Given the the codespace of about 1 million $(CODEPOINTS),
it is not a trivial task to provide a space-efficient solution for
the multitude of properties.)
$(P Common approaches such as hash-tables or binary search over
sorted code point intervals (as in $(LREF InversionList)) are insufficient.
Hash-tables have enormous memory footprint and binary search
over intervals is not fast enough for some heavy-duty algorithms.
)
$(P The recommended solution (see Unicode Implementation Guidelines)
is using multi-stage tables that are an implementation of the
$(WEB http://en.wikipedia.org/wiki/Trie, Trie) data structure with integer
keys and a fixed number of stages. For the remainder of the section
this will be called a fixed trie. The following describes a particular
implementation that is aimed for the speed of access at the expense
of ideal size savings.
)
$(P Taking a 2-level Trie as an example the principle of operation is as follows.
Split the number of bits in a key (code point, 21 bits) into 2 components
(e.g. 15 and 8). The first is the number of bits in the index of the trie
and the other is number of bits in each page of the trie.
The layout of the trie is then an array of size 2^^bits-of-index followed
an array of memory chunks of size 2^^bits-of-page/bits-per-element.
)
$(P The number of pages is variable (but not less then 1)
unlike the number of entries in the index. The slots of the index
all have to contain a number of a page that is present. The lookup is then
just a couple of operations - slice the upper bits,
lookup an index for these, take a page at this index and use
the lower bits as an offset within this page.
Assuming that pages are laid out consequently
in one array at $(D pages), the pseudo-code is:
)
---
auto elemsPerPage = (2 ^^ bits_per_page) / Value.sizeOfInBits;
pages[index[n >> bits_per_page]][n & (elemsPerPage - 1)];
---
$(P Where if $(D elemsPerPage) is a power of 2 the whole process is
a handful of simple instructions and 2 array reads. Subsequent levels
of the trie are introduced by recursing on this notion - the index array
is treated as values. The number of bits in index is then again
split into 2 parts, with pages over 'current-index' and the new 'upper-index'.
)
$(P For completeness a level 1 trie is simply an array.
The current implementation takes advantage of bit-packing values
when the range is known to be limited in advance (such as $(D bool)).
See also $(LREF BitPacked) for enforcing it manually.
The major size advantage however comes from the fact
that multiple $(B identical pages on every level are merged) by construction.
)
$(P The process of constructing a trie is more involved and is hidden from
the user in a form of the convenience functions $(LREF codepointTrie),
$(LREF codepointSetTrie) and the even more convenient $(LREF toTrie).
In general a set or built-in AA with $(D dchar) type
can be turned into a trie. The trie object in this module
is read-only (immutable); it's effectively frozen after construction.
)
$(SECTION Unicode properties)
$(P This is a full list of Unicode properties accessible through $(LREF unicode)
with specific helpers per category nested within. Consult the
$(WEB www.unicode.org/cldr/utility/properties.jsp, CLDR utility)
when in doubt about the contents of a particular set.)
$(P General category sets listed below are only accessible with the
$(LREF unicode) shorthand accessor.)
$(BOOKTABLE $(B General category ),
$(TR $(TH Abb.) $(TH Long form)
$(TH Abb.) $(TH Long form)$(TH Abb.) $(TH Long form))
$(TR $(TD L) $(TD Letter)
$(TD Cn) $(TD Unassigned) $(TD Po) $(TD Other_Punctuation))
$(TR $(TD Ll) $(TD Lowercase_Letter)
$(TD Co) $(TD Private_Use) $(TD Ps) $(TD Open_Punctuation))
$(TR $(TD Lm) $(TD Modifier_Letter)
$(TD Cs) $(TD Surrogate) $(TD S) $(TD Symbol))
$(TR $(TD Lo) $(TD Other_Letter)
$(TD N) $(TD Number) $(TD Sc) $(TD Currency_Symbol))
$(TR $(TD Lt) $(TD Titlecase_Letter)
$(TD Nd) $(TD Decimal_Number) $(TD Sk) $(TD Modifier_Symbol))
$(TR $(TD Lu) $(TD Uppercase_Letter)
$(TD Nl) $(TD Letter_Number) $(TD Sm) $(TD Math_Symbol))
$(TR $(TD M) $(TD Mark)
$(TD No) $(TD Other_Number) $(TD So) $(TD Other_Symbol))
$(TR $(TD Mc) $(TD Spacing_Mark)
$(TD P) $(TD Punctuation) $(TD Z) $(TD Separator))
$(TR $(TD Me) $(TD Enclosing_Mark)
$(TD Pc) $(TD Connector_Punctuation) $(TD Zl) $(TD Line_Separator))
$(TR $(TD Mn) $(TD Nonspacing_Mark)
$(TD Pd) $(TD Dash_Punctuation) $(TD Zp) $(TD Paragraph_Separator))
$(TR $(TD C) $(TD Other)
$(TD Pe) $(TD Close_Punctuation) $(TD Zs) $(TD Space_Separator))
$(TR $(TD Cc) $(TD Control) $(TD Pf)
$(TD Final_Punctuation) $(TD -) $(TD Any))
$(TR $(TD Cf) $(TD Format)
$(TD Pi) $(TD Initial_Punctuation) $(TD -) $(TD ASCII))
)
$(P Sets for other commonly useful properties that are
accessible with $(LREF unicode):)
$(BOOKTABLE $(B Common binary properties),
$(TR $(TH Name) $(TH Name) $(TH Name))
$(TR $(TD Alphabetic) $(TD Ideographic) $(TD Other_Uppercase))
$(TR $(TD ASCII_Hex_Digit) $(TD IDS_Binary_Operator) $(TD Pattern_Syntax))
$(TR $(TD Bidi_Control) $(TD ID_Start) $(TD Pattern_White_Space))
$(TR $(TD Cased) $(TD IDS_Trinary_Operator) $(TD Quotation_Mark))
$(TR $(TD Case_Ignorable) $(TD Join_Control) $(TD Radical))
$(TR $(TD Dash) $(TD Logical_Order_Exception) $(TD Soft_Dotted))
$(TR $(TD Default_Ignorable_Code_Point) $(TD Lowercase) $(TD STerm))
$(TR $(TD Deprecated) $(TD Math) $(TD Terminal_Punctuation))
$(TR $(TD Diacritic) $(TD Noncharacter_Code_Point) $(TD Unified_Ideograph))
$(TR $(TD Extender) $(TD Other_Alphabetic) $(TD Uppercase))
$(TR $(TD Grapheme_Base) $(TD Other_Default_Ignorable_Code_Point) $(TD Variation_Selector))
$(TR $(TD Grapheme_Extend) $(TD Other_Grapheme_Extend) $(TD White_Space))
$(TR $(TD Grapheme_Link) $(TD Other_ID_Continue) $(TD XID_Continue))
$(TR $(TD Hex_Digit) $(TD Other_ID_Start) $(TD XID_Start))
$(TR $(TD Hyphen) $(TD Other_Lowercase) )
$(TR $(TD ID_Continue) $(TD Other_Math) )
)
$(P Bellow is the table with block names accepted by $(LREF unicode.block).
Note that the shorthand version $(LREF unicode) requires "In"
to be prepended to the names of blocks so as to disambiguate
scripts and blocks.)
$(BOOKTABLE $(B Blocks),
$(TR $(TD Aegean Numbers) $(TD Ethiopic Extended) $(TD Mongolian))
$(TR $(TD Alchemical Symbols) $(TD Ethiopic Extended-A) $(TD Musical Symbols))
$(TR $(TD Alphabetic Presentation Forms) $(TD Ethiopic Supplement) $(TD Myanmar))
$(TR $(TD Ancient Greek Musical Notation) $(TD General Punctuation) $(TD Myanmar Extended-A))
$(TR $(TD Ancient Greek Numbers) $(TD Geometric Shapes) $(TD New Tai Lue))
$(TR $(TD Ancient Symbols) $(TD Georgian) $(TD NKo))
$(TR $(TD Arabic) $(TD Georgian Supplement) $(TD Number Forms))
$(TR $(TD Arabic Extended-A) $(TD Glagolitic) $(TD Ogham))
$(TR $(TD Arabic Mathematical Alphabetic Symbols) $(TD Gothic) $(TD Ol Chiki))
$(TR $(TD Arabic Presentation Forms-A) $(TD Greek and Coptic) $(TD Old Italic))
$(TR $(TD Arabic Presentation Forms-B) $(TD Greek Extended) $(TD Old Persian))
$(TR $(TD Arabic Supplement) $(TD Gujarati) $(TD Old South Arabian))
$(TR $(TD Armenian) $(TD Gurmukhi) $(TD Old Turkic))
$(TR $(TD Arrows) $(TD Halfwidth and Fullwidth Forms) $(TD Optical Character Recognition))
$(TR $(TD Avestan) $(TD Hangul Compatibility Jamo) $(TD Oriya))
$(TR $(TD Balinese) $(TD Hangul Jamo) $(TD Osmanya))
$(TR $(TD Bamum) $(TD Hangul Jamo Extended-A) $(TD Phags-pa))
$(TR $(TD Bamum Supplement) $(TD Hangul Jamo Extended-B) $(TD Phaistos Disc))
$(TR $(TD Basic Latin) $(TD Hangul Syllables) $(TD Phoenician))
$(TR $(TD Batak) $(TD Hanunoo) $(TD Phonetic Extensions))
$(TR $(TD Bengali) $(TD Hebrew) $(TD Phonetic Extensions Supplement))
$(TR $(TD Block Elements) $(TD High Private Use Surrogates) $(TD Playing Cards))
$(TR $(TD Bopomofo) $(TD High Surrogates) $(TD Private Use Area))
$(TR $(TD Bopomofo Extended) $(TD Hiragana) $(TD Rejang))
$(TR $(TD Box Drawing) $(TD Ideographic Description Characters) $(TD Rumi Numeral Symbols))
$(TR $(TD Brahmi) $(TD Imperial Aramaic) $(TD Runic))
$(TR $(TD Braille Patterns) $(TD Inscriptional Pahlavi) $(TD Samaritan))
$(TR $(TD Buginese) $(TD Inscriptional Parthian) $(TD Saurashtra))
$(TR $(TD Buhid) $(TD IPA Extensions) $(TD Sharada))
$(TR $(TD Byzantine Musical Symbols) $(TD Javanese) $(TD Shavian))
$(TR $(TD Carian) $(TD Kaithi) $(TD Sinhala))
$(TR $(TD Chakma) $(TD Kana Supplement) $(TD Small Form Variants))
$(TR $(TD Cham) $(TD Kanbun) $(TD Sora Sompeng))
$(TR $(TD Cherokee) $(TD Kangxi Radicals) $(TD Spacing Modifier Letters))
$(TR $(TD CJK Compatibility) $(TD Kannada) $(TD Specials))
$(TR $(TD CJK Compatibility Forms) $(TD Katakana) $(TD Sundanese))
$(TR $(TD CJK Compatibility Ideographs) $(TD Katakana Phonetic Extensions) $(TD Sundanese Supplement))
$(TR $(TD CJK Compatibility Ideographs Supplement) $(TD Kayah Li) $(TD Superscripts and Subscripts))
$(TR $(TD CJK Radicals Supplement) $(TD Kharoshthi) $(TD Supplemental Arrows-A))
$(TR $(TD CJK Strokes) $(TD Khmer) $(TD Supplemental Arrows-B))
$(TR $(TD CJK Symbols and Punctuation) $(TD Khmer Symbols) $(TD Supplemental Mathematical Operators))
$(TR $(TD CJK Unified Ideographs) $(TD Lao) $(TD Supplemental Punctuation))
$(TR $(TD CJK Unified Ideographs Extension A) $(TD Latin-1 Supplement) $(TD Supplementary Private Use Area-A))
$(TR $(TD CJK Unified Ideographs Extension B) $(TD Latin Extended-A) $(TD Supplementary Private Use Area-B))
$(TR $(TD CJK Unified Ideographs Extension C) $(TD Latin Extended Additional) $(TD Syloti Nagri))
$(TR $(TD CJK Unified Ideographs Extension D) $(TD Latin Extended-B) $(TD Syriac))
$(TR $(TD Combining Diacritical Marks) $(TD Latin Extended-C) $(TD Tagalog))
$(TR $(TD Combining Diacritical Marks for Symbols) $(TD Latin Extended-D) $(TD Tagbanwa))
$(TR $(TD Combining Diacritical Marks Supplement) $(TD Lepcha) $(TD Tags))
$(TR $(TD Combining Half Marks) $(TD Letterlike Symbols) $(TD Tai Le))
$(TR $(TD Common Indic Number Forms) $(TD Limbu) $(TD Tai Tham))
$(TR $(TD Control Pictures) $(TD Linear B Ideograms) $(TD Tai Viet))
$(TR $(TD Coptic) $(TD Linear B Syllabary) $(TD Tai Xuan Jing Symbols))
$(TR $(TD Counting Rod Numerals) $(TD Lisu) $(TD Takri))
$(TR $(TD Cuneiform) $(TD Low Surrogates) $(TD Tamil))
$(TR $(TD Cuneiform Numbers and Punctuation) $(TD Lycian) $(TD Telugu))
$(TR $(TD Currency Symbols) $(TD Lydian) $(TD Thaana))
$(TR $(TD Cypriot Syllabary) $(TD Mahjong Tiles) $(TD Thai))
$(TR $(TD Cyrillic) $(TD Malayalam) $(TD Tibetan))
$(TR $(TD Cyrillic Extended-A) $(TD Mandaic) $(TD Tifinagh))
$(TR $(TD Cyrillic Extended-B) $(TD Mathematical Alphanumeric Symbols) $(TD Transport And Map Symbols))
$(TR $(TD Cyrillic Supplement) $(TD Mathematical Operators) $(TD Ugaritic))
$(TR $(TD Deseret) $(TD Meetei Mayek) $(TD Unified Canadian Aboriginal Syllabics))
$(TR $(TD Devanagari) $(TD Meetei Mayek Extensions) $(TD Unified Canadian Aboriginal Syllabics Extended))
$(TR $(TD Devanagari Extended) $(TD Meroitic Cursive) $(TD Vai))
$(TR $(TD Dingbats) $(TD Meroitic Hieroglyphs) $(TD Variation Selectors))
$(TR $(TD Domino Tiles) $(TD Miao) $(TD Variation Selectors Supplement))
$(TR $(TD Egyptian Hieroglyphs) $(TD Miscellaneous Mathematical Symbols-A) $(TD Vedic Extensions))
$(TR $(TD Emoticons) $(TD Miscellaneous Mathematical Symbols-B) $(TD Vertical Forms))
$(TR $(TD Enclosed Alphanumerics) $(TD Miscellaneous Symbols) $(TD Yijing Hexagram Symbols))
$(TR $(TD Enclosed Alphanumeric Supplement) $(TD Miscellaneous Symbols and Arrows) $(TD Yi Radicals))
$(TR $(TD Enclosed CJK Letters and Months) $(TD Miscellaneous Symbols And Pictographs) $(TD Yi Syllables))
$(TR $(TD Enclosed Ideographic Supplement) $(TD Miscellaneous Technical) )
$(TR $(TD Ethiopic) $(TD Modifier Tone Letters) )
)
$(P Bellow is the table with script names accepted by $(LREF unicode.script)
and by the shorthand version $(LREF unicode):)
$(BOOKTABLE $(B Scripts),
$(TR $(TD Arabic) $(TD Hanunoo) $(TD Old_Italic))
$(TR $(TD Armenian) $(TD Hebrew) $(TD Old_Persian))
$(TR $(TD Avestan) $(TD Hiragana) $(TD Old_South_Arabian))
$(TR $(TD Balinese) $(TD Imperial_Aramaic) $(TD Old_Turkic))
$(TR $(TD Bamum) $(TD Inherited) $(TD Oriya))
$(TR $(TD Batak) $(TD Inscriptional_Pahlavi) $(TD Osmanya))
$(TR $(TD Bengali) $(TD Inscriptional_Parthian) $(TD Phags_Pa))
$(TR $(TD Bopomofo) $(TD Javanese) $(TD Phoenician))
$(TR $(TD Brahmi) $(TD Kaithi) $(TD Rejang))
$(TR $(TD Braille) $(TD Kannada) $(TD Runic))
$(TR $(TD Buginese) $(TD Katakana) $(TD Samaritan))
$(TR $(TD Buhid) $(TD Kayah_Li) $(TD Saurashtra))
$(TR $(TD Canadian_Aboriginal) $(TD Kharoshthi) $(TD Sharada))
$(TR $(TD Carian) $(TD Khmer) $(TD Shavian))
$(TR $(TD Chakma) $(TD Lao) $(TD Sinhala))
$(TR $(TD Cham) $(TD Latin) $(TD Sora_Sompeng))
$(TR $(TD Cherokee) $(TD Lepcha) $(TD Sundanese))
$(TR $(TD Common) $(TD Limbu) $(TD Syloti_Nagri))
$(TR $(TD Coptic) $(TD Linear_B) $(TD Syriac))
$(TR $(TD Cuneiform) $(TD Lisu) $(TD Tagalog))
$(TR $(TD Cypriot) $(TD Lycian) $(TD Tagbanwa))
$(TR $(TD Cyrillic) $(TD Lydian) $(TD Tai_Le))
$(TR $(TD Deseret) $(TD Malayalam) $(TD Tai_Tham))
$(TR $(TD Devanagari) $(TD Mandaic) $(TD Tai_Viet))
$(TR $(TD Egyptian_Hieroglyphs) $(TD Meetei_Mayek) $(TD Takri))
$(TR $(TD Ethiopic) $(TD Meroitic_Cursive) $(TD Tamil))
$(TR $(TD Georgian) $(TD Meroitic_Hieroglyphs) $(TD Telugu))
$(TR $(TD Glagolitic) $(TD Miao) $(TD Thaana))
$(TR $(TD Gothic) $(TD Mongolian) $(TD Thai))
$(TR $(TD Greek) $(TD Myanmar) $(TD Tibetan))
$(TR $(TD Gujarati) $(TD New_Tai_Lue) $(TD Tifinagh))
$(TR $(TD Gurmukhi) $(TD Nko) $(TD Ugaritic))
$(TR $(TD Han) $(TD Ogham) $(TD Vai))
$(TR $(TD Hangul) $(TD Ol_Chiki) $(TD Yi))
)
$(P Bellow is the table of names accepted by $(LREF unicode.hangulSyllableType).)
$(BOOKTABLE $(B Hangul syllable type),
$(TR $(TH Abb.) $(TH Long form))
$(TR $(TD L) $(TD Leading_Jamo))
$(TR $(TD LV) $(TD LV_Syllable))
$(TR $(TD LVT) $(TD LVT_Syllable) )
$(TR $(TD T) $(TD Trailing_Jamo))
$(TR $(TD V) $(TD Vowel_Jamo))
)
References:
$(WEB www.digitalmars.com/d/ascii-table.html, ASCII Table),
$(WEB en.wikipedia.org/wiki/Unicode, Wikipedia),
$(WEB www.unicode.org, The Unicode Consortium),
$(WEB www.unicode.org/reports/tr15/, Unicode normalization forms),
$(WEB www.unicode.org/reports/tr29/, Unicode text segmentation)
$(WEB www.unicode.org/uni2book/ch05.pdf,
Unicode Implementation Guidelines)
$(WEB www.unicode.org/uni2book/ch03.pdf,
Unicode Conformance)
Trademarks:
Unicode(tm) is a trademark of Unicode, Inc.
Macros:
WIKI=Phobos/StdUni
Copyright: Copyright 2013 -
License: $(WEB www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: Dmitry Olshansky
Source: $(PHOBOSSRC std/_uni.d)
Standards: $(WEB www.unicode.org/versions/Unicode6.2.0/, Unicode v6.2)
Macros:
SECTION = <h3><a id="$1">$0</a></h3>
DEF = <div><a id="$1"><i>$0</i></a></div>
S_LINK = <a href="#$1">$+</a>
CODEPOINT = $(S_LINK Code point, code point)
CODEPOINTS = $(S_LINK Code point, code points)
CHARACTER = $(S_LINK Character, character)
CHARACTERS = $(S_LINK Character, characters)
CLUSTER = $(S_LINK Grapheme cluster, grapheme cluster)
+/
module std.uni;
static import std.ascii;
import std.traits, std.range, std.algorithm, std.conv,
std.typetuple, std.exception, core.stdc.stdlib;
import std.array; //@@BUG UFCS doesn't work with 'local' imports
import core.bitop;
version(unittest) import std.typecons;
// debug = std_uni;
debug(std_uni) import std.stdio;
private:
version(std_uni_bootstrap){}
else
{
import std.internal.unicode_tables; // generated file
}
void copyBackwards(T)(T[] src, T[] dest)
{
assert(src.length == dest.length);
for(size_t i=src.length; i-- > 0; )
dest[i] = src[i];
}
void copyForward(T)(T[] src, T[] dest)
{
assert(src.length == dest.length);
for(size_t i=0; i<src.length; i++)
dest[i] = src[i];
}
// TODO: update to reflect all major CPUs supporting unaligned reads
version(X86)
enum hasUnalignedReads = true;
else version(X86_64)
enum hasUnalignedReads = true;
else
enum hasUnalignedReads = false; // better be safe then sorry
public enum dchar lineSep = '\u2028'; /// Constant $(CODEPOINT) (0x2028) - line separator.
public enum dchar paraSep = '\u2029'; /// Constant $(CODEPOINT) (0x2029) - paragraph separator.
// test the intro example
unittest
{
// initialize code point sets using script/block or property name
// set contains code points from both scripts.
auto set = unicode("Cyrillic") | unicode("Armenian");
// or simpler and statically-checked look
auto ascii = unicode.ASCII;
auto currency = unicode.Currency_Symbol;
// easy set ops
auto a = set & ascii;
assert(a.empty); // as it has no intersection with ascii
a = set | ascii;
auto b = currency - a; // subtract all ASCII, Cyrillic and Armenian
// some properties of code point sets
assert(b.length > 45); // 46 items in Unicode 6.1, even more in 6.2
// testing presence of a code point in a set
// is just fine, it is O(logN)
assert(!b['$']);
assert(!b['\u058F']); // Armenian dram sign
assert(b['¥']);
// building fast lookup tables, these guarantee O(1) complexity
// 1-level Trie lookup table essentially a huge bit-set ~262Kb
auto oneTrie = toTrie!1(b);
// 2-level far more compact but typically slightly slower
auto twoTrie = toTrie!2(b);
// 3-level even smaller, and a bit slower yet
auto threeTrie = toTrie!3(b);
assert(oneTrie['£']);
assert(twoTrie['£']);
assert(threeTrie['£']);
// build the trie with the most sensible trie level
// and bind it as a functor
auto cyrilicOrArmenian = toDelegate(set);
auto balance = find!(cyrilicOrArmenian)("Hello ընկեր!");
assert(balance == "ընկեր!");
// compatible with bool delegate(dchar)
bool delegate(dchar) bindIt = cyrilicOrArmenian;
// Normalization
string s = "Plain ascii (and not only), is always normalized!";
assert(s is normalize(s));// is the same string
string nonS = "A\u0308ffin"; // A ligature
auto nS = normalize(nonS); // to NFC, the W3C endorsed standard
assert(nS == "Äffin");
assert(nS != nonS);
string composed = "Äffin";
assert(normalize!NFD(composed) == "A\u0308ffin");
// to NFKD, compatibility decomposition useful for fuzzy matching/searching
assert(normalize!NFKD("2¹⁰") == "210");
}
enum lastDchar = 0x10FFFF;
auto force(T, F)(F from)
if(isIntegral!T && !is(T == F))
{
assert(from <= T.max && from >= T.min);
return cast(T)from;
}
auto force(T, F)(F from)
if(isBitPacked!T && !is(T == F))
{
assert(from <= 2^^bitSizeOf!T-1);
return T(cast(TypeOfBitPacked!T)from);
}
auto force(T, F)(F from)
if(is(T == F))
{
return from;
}
// cheap algorithm grease ;)
auto adaptIntRange(T, F)(F[] src)
{
//@@@BUG when in the 9 hells will map be copyable again?!
static struct ConvertIntegers
{
private F[] data;
@property T front()
{
return force!T(data.front);
}
void popFront(){ data.popFront(); }
@property bool empty()const { return data.empty; }
@property size_t length()const { return data.length; }
auto opSlice(size_t s, size_t e)
{
return ConvertIntegers(data[s..e]);
}
@property size_t opDollar(){ return data.length; }
}
return ConvertIntegers(src);
}
// repeat X times the bit-pattern in val assuming it's length is 'bits'
size_t replicateBits(size_t times, size_t bits)(size_t val)
{
static if(times == 1)
return val;
else static if(times % 2)
return (replicateBits!(times-1, bits)(val)<<bits) | val;
else
return replicateBits!(times/2, bits*2)((val<<bits) | val);
}
unittest // for replicate
{
size_t m = 0b111;
size_t m2 = 0b01;
foreach(i; TypeTuple!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
{
assert(replicateBits!(i, 3)(m)+1 == (1<<(3*i)));
assert(replicateBits!(i, 2)(m2) == iota(0, i).map!"2^^(2*a)"().reduce!"a+b"());
}
}
// multiple arrays squashed into one memory block
struct MultiArray(Types...)
{
this(size_t[] sizes...)
{
size_t full_size;
foreach(i, v; Types)
{
full_size += spaceFor!(bitSizeOf!v)(sizes[i]);
sz[i] = sizes[i];
static if(i >= 1)
offsets[i] = offsets[i-1] +
spaceFor!(bitSizeOf!(Types[i-1]))(sizes[i-1]);
}
storage = new size_t[full_size];
}
this(const(size_t)[] raw_offsets,
const(size_t)[] raw_sizes, const(size_t)[] data)const
{
offsets[] = raw_offsets[];
sz[] = raw_sizes[];
storage = data;
}
@property auto slice(size_t n)()inout pure nothrow
{
auto ptr = raw_ptr!n;
return packedArrayView!(Types[n])(ptr, sz[n]);
}
@property auto ptr(size_t n)()inout pure nothrow
{
auto ptr = raw_ptr!n;
return inout(PackedPtr!(Types[n]))(ptr);
}
template length(size_t n)
{
@property size_t length()const{ return sz[n]; }
@property void length(size_t new_size)
{
if(new_size > sz[n])
{// extend
size_t delta = (new_size - sz[n]);
sz[n] += delta;
delta = spaceFor!(bitSizeOf!(Types[n]))(delta);
storage.length += delta;// extend space at end
// raw_slice!x must follow resize as it could be moved!
// next stmts move all data past this array, last-one-goes-first
static if(n != dim-1)
{
auto start = raw_ptr!(n+1);
// len includes delta
size_t len = (storage.ptr+storage.length-start);
copyBackwards(start[0..len-delta], start[delta..len]);
start[0..delta] = 0;
// offsets are used for raw_slice, ptr etc.
foreach(i; n+1..dim)
offsets[i] += delta;
}
}
else if(new_size < sz[n])
{// shrink
size_t delta = (sz[n] - new_size);
sz[n] -= delta;
delta = spaceFor!(bitSizeOf!(Types[n]))(delta);
// move all data past this array, forward direction
static if(n != dim-1)
{
auto start = raw_ptr!(n+1);
size_t len = storage.length;
copyForward(start[0..len-delta], start[delta..len]);
// adjust offsets last, they affect raw_slice
foreach(i; n+1..dim)
offsets[i] -= delta;
}
storage.length -= delta;
}
// else - NOP
}
}
@property size_t bytes(size_t n=size_t.max)() const
{
static if(n == size_t.max)
return storage.length*size_t.sizeof;
else static if(n != Types.length-1)
return (raw_ptr!(n+1)-raw_ptr!n)*size_t.sizeof;
else
return (storage.ptr+storage.length - raw_ptr!n)*size_t.sizeof;
}
void store(OutRange)(scope OutRange sink) const
if(isOutputRange!(OutRange, char))
{
formattedWrite(sink, "[%( 0x%x, %)]", offsets[]);
formattedWrite(sink, ", [%( 0x%x, %)]", sz[]);
formattedWrite(sink, ", [%( 0x%x, %)]", storage);
}
private:
@property auto raw_ptr(size_t n)()inout
{
static if(n == 0)
return storage.ptr;
else
{
return storage.ptr+offsets[n];
}
}
enum dim = Types.length;
size_t[dim] offsets;// offset for level x
size_t[dim] sz;// size of level x
alias staticMap!(bitSizeOf, Types) bitWidth;
size_t[] storage;
}
unittest
{
// sizes are:
// lvl0: 3, lvl1 : 2, lvl2: 1
auto m = MultiArray!(int, ubyte, int)(3,2,1);
static void check(size_t k, T)(ref T m, int n)
{
foreach(i; 0..n)
assert(m.slice!(k)[i] == i+1, text("level:",i," : ",m.slice!(k)[0..n]));
}
static void checkB(size_t k, T)(ref T m, int n)
{
foreach(i; 0..n)
assert(m.slice!(k)[i] == n-i, text("level:",i," : ",m.slice!(k)[0..n]));
}
static void fill(size_t k, T)(ref T m, int n)
{
foreach(i; 0..n)
m.slice!(k)[i] = force!ubyte(i+1);
}
static void fillB(size_t k, T)(ref T m, int n)
{
foreach(i; 0..n)
m.slice!(k)[i] = force!ubyte(n-i);
}
m.length!1 = 100;
fill!1(m, 100);
check!1(m, 100);
m.length!0 = 220;
fill!0(m, 220);
check!1(m, 100);
check!0(m, 220);
m.length!2 = 17;
fillB!2(m, 17);
checkB!2(m, 17);
check!0(m, 220);
check!1(m, 100);
m.length!2 = 33;
checkB!2(m, 17);
fillB!2(m, 33);
checkB!2(m, 33);
check!0(m, 220);
check!1(m, 100);
m.length!1 = 195;
fillB!1(m, 195);
checkB!1(m, 195);
checkB!2(m, 33);
check!0(m, 220);
auto marr = MultiArray!(BitPacked!(uint, 4), BitPacked!(uint, 6))(20, 10);
marr.length!0 = 15;
marr.length!1 = 30;
fill!1(marr, 30);
fill!0(marr, 15);
check!1(marr, 30);
check!0(marr, 15);
}
unittest
{// more bitpacking tests
alias MultiArray!(BitPacked!(size_t, 3)
, BitPacked!(size_t, 4)
, BitPacked!(size_t, 3)
, BitPacked!(size_t, 6)
, bool) Bitty;
alias sliceBits!(13, 16) fn1;
alias sliceBits!( 9, 13) fn2;
alias sliceBits!( 6, 9) fn3;
alias sliceBits!( 0, 6) fn4;
static void check(size_t lvl, MA)(ref MA arr){
for(size_t i = 0; i< arr.length!lvl; i++)
assert(arr.slice!(lvl)[i] == i, text("Mismatch on lvl ", lvl, " idx ", i, " value: ", arr.slice!(lvl)[i]));
}
static void fillIdx(size_t lvl, MA)(ref MA arr){
for(size_t i = 0; i< arr.length!lvl; i++)
arr.slice!(lvl)[i] = i;
}
Bitty m1;
m1.length!4 = 10;
m1.length!3 = 2^^6;
m1.length!2 = 2^^3;
m1.length!1 = 2^^4;
m1.length!0 = 2^^3;
m1.length!4 = 2^^16;
for(size_t i = 0; i< m1.length!4; i++)
m1.slice!(4)[i] = i % 2;
fillIdx!1(m1);
check!1(m1);
fillIdx!2(m1);
check!2(m1);
fillIdx!3(m1);
check!3(m1);
fillIdx!0(m1);
check!0(m1);
check!3(m1);
check!2(m1);
check!1(m1);
for(size_t i=0; i < 2^^16; i++)
{
m1.slice!(4)[i] = i % 2;
m1.slice!(0)[fn1(i)] = fn1(i);
m1.slice!(1)[fn2(i)] = fn2(i);
m1.slice!(2)[fn3(i)] = fn3(i);
m1.slice!(3)[fn4(i)] = fn4(i);
}
for(size_t i=0; i < 2^^16; i++)
{
assert(m1.slice!(4)[i] == i % 2);
assert(m1.slice!(0)[fn1(i)] == fn1(i));
assert(m1.slice!(1)[fn2(i)] == fn2(i));
assert(m1.slice!(2)[fn3(i)] == fn3(i));
assert(m1.slice!(3)[fn4(i)] == fn4(i));
}
}
size_t spaceFor(size_t _bits)(size_t new_len) pure nothrow
{
enum bits = _bits == 1 ? 1 : ceilPowerOf2(_bits);// see PackedArrayView
static if(bits > 8*size_t.sizeof)
{
static assert(bits % (size_t.sizeof*8) == 0);
return new_len * bits/(8*size_t.sizeof);
}
else
{
enum factor = size_t.sizeof*8/bits;
return (new_len+factor-1)/factor; // rounded up
}
}
template isBitPackableType(T)
{
enum isBitPackableType = isBitPacked!T
|| isIntegral!T || is(T == bool) || isSomeChar!T;
}
//============================================================================
template PackedArrayView(T)
if((is(T dummy == BitPacked!(U, sz), U, size_t sz)
&& isBitPackableType!U) || isBitPackableType!T)
{
private enum bits = bitSizeOf!T;
alias PackedArrayView = PackedArrayViewImpl!(T, bits > 1 ? ceilPowerOf2(bits) : 1);
}
//unsafe and fast access to a chunk of RAM as if it contains packed values
template PackedPtr(T)
if((is(T dummy == BitPacked!(U, sz), U, size_t sz)
&& isBitPackableType!U) || isBitPackableType!T)
{
private enum bits = bitSizeOf!T;
alias PackedPtr = PackedPtrImpl!(T, bits > 1 ? ceilPowerOf2(bits) : 1);
}
@trusted struct PackedPtrImpl(T, size_t bits)
{
pure nothrow:
static assert(isPowerOf2(bits));
this(inout(size_t)* ptr)inout
{
origin = ptr;
}
private T simpleIndex(size_t n) inout
{
static if(factor == bytesPerWord*8)
{
// a re-write with less data dependency
auto q = n / factor;
auto r = n % factor;
return cast(T)(origin[q] & (mask<<r) ? 1 : 0);
}
else
{
auto q = n / factor;
auto r = n % factor;
return cast(T)((origin[q] >> bits*r) & mask);
}
}
static if(factor == bytesPerWord// can safely pack by byte
|| factor == 1 // a whole word at a time
|| ((factor == bytesPerWord/2 || factor == bytesPerWord/4)
&& hasUnalignedReads)) // this needs unaligned reads
{
static if(factor == bytesPerWord)
alias U = ubyte;
else static if(factor == bytesPerWord/2)
alias U = ushort;
else static if(factor == bytesPerWord/4)
alias U = uint;
else static if(size_t.sizeof == 8 && factor == bytesPerWord/8)
alias U = ulong;
T opIndex(size_t idx) inout
{
return __ctfe ? simpleIndex(idx) :
cast(inout(T))(cast(U*)origin)[idx];
}
static if(isBitPacked!T) // lack of user-defined implicit conversion
{
void opIndexAssign(T val, size_t idx)
{
return opIndexAssign(cast(TypeOfBitPacked!T)val, idx);
}
}
void opIndexAssign(TypeOfBitPacked!T val, size_t idx)
{
(cast(U*)origin)[idx] = cast(U)val;
}
}
else
{
T opIndex(size_t n) inout
{
return simpleIndex(n);
}
static if(isBitPacked!T) // lack of user-defined implicit conversion
{
void opIndexAssign(T val, size_t idx)
{
return opIndexAssign(cast(TypeOfBitPacked!T)val, idx);
}
}
void opIndexAssign(TypeOfBitPacked!T val, size_t n)
in
{
static if(isIntegral!T)
assert(val <= mask);
}
body
{
auto q = n / factor;
auto r = n % factor;
size_t tgt_shift = bits*r;
size_t word = origin[q];
origin[q] = (word & ~(mask<<tgt_shift))
| (cast(size_t)val << tgt_shift);
}
}
private:
// factor - number of elements in one machine word
enum factor = size_t.sizeof*8/bits, mask = 2^^bits-1;
enum bytesPerWord = size_t.sizeof;
size_t* origin;
}
// data is packed only by power of two sized packs per word,
// thus avoiding mul/div overhead at the cost of ultimate packing
// this construct doesn't own memory, only provides access, see MultiArray for usage
@trusted struct PackedArrayViewImpl(T, size_t bits)
{
pure nothrow:
this(inout(size_t)* origin, size_t items)inout
{
ptr = inout(PackedPtr!(T))(origin);
limit = items;
}
T opIndex(size_t idx) inout
in
{
assert(idx < limit);
}
body
{
return ptr[idx];
}
static if(isBitPacked!T) // lack of user-defined implicit conversion
{
void opIndexAssign(T val, size_t idx)
{
return opIndexAssign(cast(TypeOfBitPacked!T)val, idx);
}
}
void opIndexAssign(TypeOfBitPacked!T val, size_t idx)
in
{
assert(idx < limit);
}
body
{
ptr[idx] = val;
}
static if(isBitPacked!T) // lack of user-defined implicit conversions
{
void opSliceAssign(T val, size_t start, size_t end)
{
opSliceAssign(cast(TypeOfBitPacked!T)val, start, end);
}
}
void opSliceAssign(TypeOfBitPacked!T val, size_t start, size_t end)
in
{
assert(start <= end);
assert(end <= limit);
}
body
{
// rounded to factor granularity
size_t pad_start = (start+factor-1)/factor*factor;// rounded up
if(pad_start >= end) //rounded up >= then end of slice
{
//nothing to gain, use per element assignment
foreach(i; start..end)
ptr[i] = val;
return;
}
size_t pad_end = end/factor*factor; // rounded down
size_t i;
for(i=start; i<pad_start; i++)
ptr[i] = val;
// all in between is x*factor elements
if(pad_start != pad_end)
{
size_t repval = replicateBits!(factor, bits)(val);
for(size_t j=i/factor; i<pad_end; i+=factor, j++)
ptr.origin[j] = repval;// so speed it up by factor
}
for(; i<end; i++)
ptr[i] = val;
}
auto opSlice(size_t from, size_t to)
{
return sliceOverIndexed(from, to, &this);
}
auto opSlice(){ return opSlice(0, length); }
bool opEquals(T)(auto ref T arr) const
{
if(length != arr.length)
return false;
for(size_t i=0;i<length; i++)
if(this[i] != arr[i])
return false;
return true;
}
@property size_t length()const{ return limit; }
private:
// factor - number of elements in one machine word
enum factor = size_t.sizeof*8/bits;
PackedPtr!(T) ptr;
size_t limit;
}
private struct SliceOverIndexed(T)
{
enum assignableIndex = is(typeof((){ T.init[0] = Item.init; }));
enum assignableSlice = is(typeof((){ T.init[0..0] = Item.init; }));
auto opIndex(size_t idx)const
in
{
assert(idx < to - from);
}
body
{
return (*arr)[from+idx];
}
static if(assignableIndex)
void opIndexAssign(Item val, size_t idx)
in
{
assert(idx < to - from);
}
body
{
(*arr)[from+idx] = val;
}
auto opSlice(size_t a, size_t b)
{
return typeof(this)(from+a, from+b, arr);
}
// static if(assignableSlice)
void opSliceAssign(T)(T val, size_t start, size_t end)
{
(*arr)[start+from .. end+from] = val;
}
auto opSlice()
{
return typeof(this)(from, to, arr);
}
@property size_t length()const { return to-from;}
auto opDollar()const { return length; }
@property bool empty()const { return from == to; }
@property auto front()const { return (*arr)[from]; }
static if(assignableIndex)
@property void front(Item val) { (*arr)[from] = val; }
@property auto back()const { return (*arr)[to-1]; }
static if(assignableIndex)
@property void back(Item val) { (*arr)[to-1] = val; }
@property auto save() inout { return this; }
void popFront() { from++; }
void popBack() { to--; }
bool opEquals(T)(auto ref T arr) const
{
if(arr.length != length)
return false;
for(size_t i=0; i <length; i++)
if(this[i] != arr[i])
return false;
return true;
}
private:
alias typeof(T.init[0]) Item;
size_t from, to;
T* arr;
}
static assert(isRandomAccessRange!(SliceOverIndexed!(int[])));
// BUG? forward reference to return type of sliceOverIndexed!Grapheme
SliceOverIndexed!(const(T)) sliceOverIndexed(T)(size_t a, size_t b, const(T)* x)
if(is(Unqual!T == T))
{
return SliceOverIndexed!(const(T))(a, b, x);
}
// BUG? inout is out of reach
//...SliceOverIndexed.arr only parameters or stack based variables can be inout
SliceOverIndexed!T sliceOverIndexed(T)(size_t a, size_t b, T* x)
if(is(Unqual!T == T))
{
return SliceOverIndexed!T(a, b, x);
}
unittest
{
int[] idxArray = [2, 3, 5, 8, 13];
auto sliced = sliceOverIndexed(0, idxArray.length, &idxArray);
assert(!sliced.empty);
assert(sliced.front == 2);
sliced.front = 1;
assert(sliced.front == 1);
assert(sliced.back == 13);
sliced.popFront();
assert(sliced.front == 3);
assert(sliced.back == 13);
sliced.back = 11;
assert(sliced.back == 11);
sliced.popBack();
assert(sliced.front == 3);
assert(sliced[$-1] == 8);
sliced = sliced[];
assert(sliced[0] == 3);
assert(sliced.back == 8);
sliced = sliced[1..$];
assert(sliced.front == 5);
sliced = sliced[0..$-1];
assert(sliced[$-1] == 5);
int[] other = [2, 5];
assert(sliced[] == sliceOverIndexed(1, 2, &other));
sliceOverIndexed(0, 2, &idxArray)[0..2] = -1;
assert(idxArray[0..2] == [-1, -1]);
uint[] nullArr = null;
auto nullSlice = sliceOverIndexed(0, 0, &idxArray);
assert(nullSlice.empty);
}
private auto packedArrayView(T)(inout(size_t)* ptr, size_t items) @trusted pure nothrow
{
return inout(PackedArrayView!T)(ptr, items);
}
//============================================================================
// Partially unrolled binary search using Shar's method
//============================================================================
string genUnrolledSwitchSearch(size_t size)
{
assert(isPowerOf2(size));
string code = `auto power = bsr(m)+1;
switch(power){`;
size_t i = bsr(size);
foreach_reverse(val; 0..bsr(size))
{
auto v = 2^^val;
code ~= `
case pow:
if(pred(range[idx+m], needle))
idx += m;
goto case;
`.replace("m", to!string(v))
.replace("pow", to!string(i));
i--;
}
code ~= `
case 0:
if(pred(range[idx], needle))
idx += 1;
goto default;
`;
code ~= `
default:
}`;
return code;
}
bool isPowerOf2(size_t sz) @safe pure nothrow
{
return (sz & (sz-1)) == 0;
}
size_t uniformLowerBound(alias pred, Range, T)(Range range, T needle)
if(is(T : ElementType!Range))
{
assert(isPowerOf2(range.length));
size_t idx = 0, m = range.length/2;
while(m != 0)
{
if(pred(range[idx+m], needle))
idx += m;
m /= 2;
}
if(pred(range[idx], needle))
idx += 1;
return idx;
}
size_t switchUniformLowerBound(alias pred, Range, T)(Range range, T needle)
if(is(T : ElementType!Range))
{
assert(isPowerOf2(range.length));
size_t idx = 0, m = range.length/2;
enum max = 1<<10;
while(m >= max)
{
if(pred(range[idx+m], needle))
idx += m;
m /= 2;
}
mixin(genUnrolledSwitchSearch(max));
return idx;
}
//
size_t floorPowerOf2(size_t arg) @safe pure nothrow
{
assert(arg > 1); // else bsr is undefined
return 1<<bsr(arg-1);
}
size_t ceilPowerOf2(size_t arg) @safe pure nothrow
{
assert(arg > 1); // else bsr is undefined
return 1<<bsr(arg-1)+1;
}
template sharMethod(alias uniLowerBound)
{
size_t sharMethod(alias _pred="a<b", Range, T)(Range range, T needle)
if(is(T : ElementType!Range))
{
import std.functional;
alias binaryFun!_pred pred;
if(range.length == 0)
return 0;
if(isPowerOf2(range.length))
return uniLowerBound!pred(range, needle);
size_t n = floorPowerOf2(range.length);
if(pred(range[n-1], needle))
{// search in another 2^^k area that fully covers the tail of range
size_t k = ceilPowerOf2(range.length - n + 1);
return range.length - k + uniLowerBound!pred(range[$-k..$], needle);
}
else
return uniLowerBound!pred(range[0..n], needle);
}
}
alias sharMethod!uniformLowerBound sharLowerBound;
alias sharMethod!switchUniformLowerBound sharSwitchLowerBound;
unittest
{
auto stdLowerBound(T)(T[] range, T needle)
{
return assumeSorted(range).lowerBound(needle).length;
}
immutable MAX = 5*1173;
auto arr = array(iota(5, MAX, 5));
assert(arr.length == MAX/5-1);
foreach(i; 0..MAX+5)
{
auto std = stdLowerBound(arr, i);
assert(std == sharLowerBound(arr, i));
assert(std == sharSwitchLowerBound(arr, i));
}
arr = [];
auto std = stdLowerBound(arr, 33);
assert(std == sharLowerBound(arr, 33));
assert(std == sharSwitchLowerBound(arr, 33));
}
//============================================================================
@safe:
// hope to see simillar stuff in public interface... once Allocators are out
//@@@BUG moveFront and friends? dunno, for now it's POD-only
@trusted size_t genericReplace(Policy=void, T, Range)
(ref T dest, size_t from, size_t to, Range stuff)
{
size_t delta = to - from;
size_t stuff_end = from+stuff.length;
if(stuff.length > delta)
{// replace increases length
delta = stuff.length - delta;// now, new is > old by delta
static if(is(Policy == void))
dest.length = dest.length+delta;//@@@BUG lame @property
else
dest = Policy.realloc(dest, dest.length+delta);
auto rem = copy(retro(dest[to..dest.length-delta])
, retro(dest[to+delta..dest.length]));
assert(rem.empty);
copy(stuff, dest[from..stuff_end]);
}
else if(stuff.length == delta)
{
copy(stuff, dest[from..to]);
}
else
{// replace decreases length by delta
delta = delta - stuff.length;
copy(stuff, dest[from..stuff_end]);
auto rem = copy(dest[to..dest.length]
, dest[stuff_end..dest.length-delta]);
static if(is(Policy == void))
dest.length = dest.length - delta;//@@@BUG lame @property
else
dest = Policy.realloc(dest, dest.length-delta);
assert(rem.empty);
}
return stuff_end;
}
// Simple storage manipulation policy
@trusted public struct GcPolicy
{
static T[] dup(T)(const T[] arr)
{
return arr.dup;
}
static T[] alloc(T)(size_t size)
{
return new T[size];
}
static T[] realloc(T)(T[] arr, size_t sz)
{
arr.length = sz;
return arr;
}
static void replaceImpl(T, Range)(ref T[] dest, size_t from, size_t to, Range stuff)
{
replaceInPlace(dest, from, to, stuff);
}
static void append(T, V)(ref T[] arr, V value)
if(!isInputRange!V)
{
arr ~= force!T(value);
}
static void append(T, V)(ref T[] arr, V value)
if(isInputRange!V)
{
insertInPlace(arr, arr.length, value);
}
static void destroy(T)(ref T arr)
if(isDynamicArray!T && is(Unqual!T == T))
{
debug
{
arr[] = cast(typeof(T.init[0]))(0xdead_beef);
}
arr = null;
}
static void destroy(T)(ref T arr)
if(isDynamicArray!T && !is(Unqual!T == T))
{
arr = null;
}
}
// ditto
@trusted struct ReallocPolicy
{
static T[] dup(T)(const T[] arr)
{
auto result = alloc!T(arr.length);
result[] = arr[];
return result;
}
static T[] alloc(T)(size_t size)
{
auto ptr = cast(T*)enforce(malloc(T.sizeof*size), "out of memory on C heap");
return ptr[0..size];
}
static T[] realloc(T)(T[] arr, size_t size)
{
if(!size)
{
destroy(arr);
return null;
}
auto ptr = cast(T*)enforce(core.stdc.stdlib.realloc(
arr.ptr, T.sizeof*size), "out of memory on C heap");
return ptr[0..size];
}
static void replaceImpl(T, Range)(ref T[] dest, size_t from, size_t to, Range stuff)
{
genericReplace!(ReallocPolicy)(dest, from, to, stuff);
}
static void append(T, V)(ref T[] arr, V value)
if(!isInputRange!V)
{
arr = realloc(arr, arr.length+1);
arr[$-1] = force!T(value);
}
static void append(T, V)(ref T[] arr, V value)
if(isInputRange!V && hasLength!V)
{
arr = realloc(arr, arr.length+value.length);
copy(value, arr[$-value.length..$]);
}
static void destroy(T)(ref T[] arr)
{
if(arr.ptr)
free(arr.ptr);
arr = null;
}
}
//build hack
alias Uint24Array!ReallocPolicy _RealArray;
unittest
{
with(ReallocPolicy)
{
bool test(T, U, V)(T orig, size_t from, size_t to, U toReplace, V result,
string file = __FILE__, size_t line = __LINE__)
{
{
replaceImpl(orig, from, to, toReplace);
scope(exit) destroy(orig);
if(!equalS(orig, result))
return false;
}
return true;
}
static T[] arr(T)(T[] args... )
{
return dup(args);
}
assert(test(arr([1, 2, 3, 4]), 0, 0, [5, 6, 7], [5, 6, 7, 1, 2, 3, 4]));
assert(test(arr([1, 2, 3, 4]), 0, 2, cast(int[])[], [3, 4]));
assert(test(arr([1, 2, 3, 4]), 0, 4, [5, 6, 7], [5, 6, 7]));
assert(test(arr([1, 2, 3, 4]), 0, 2, [5, 6, 7], [5, 6, 7, 3, 4]));
assert(test(arr([1, 2, 3, 4]), 2, 3, [5, 6, 7], [1, 2, 5, 6, 7, 4]));
}
}
/**
Tests if T is some kind a set of code points. Intended for template constraints.
*/
public template isCodepointSet(T)
{
static if(is(T dummy == InversionList!(Args), Args...))
enum isCodepointSet = true;
else
enum isCodepointSet = false;
}
/**
Tests if $(D T) is a pair of integers that implicitly convert to $(D V).
The following code must compile for any pair $(D T):
---
(T x){ V a = x[0]; V b = x[1];}
---
The following must not compile:
---
(T x){ V c = x[2];}
---
*/
public template isIntegralPair(T, V=uint)
{
enum isIntegralPair = is(typeof((T x){ V a = x[0]; V b = x[1];}))
&& !is(typeof((T x){ V c = x[2]; }));
}
/**
The recommended default type for set of $(CODEPOINTS).
For details, see the current implementation: $(LREF InversionList).
*/
public alias InversionList!GcPolicy CodepointSet;
//@@@BUG: std.typecons tuples depend on std.format to produce fields mixin
// which relies on std.uni.isGraphical and this chain blows up with Forward reference error
// hence below doesn't seem to work
// public alias Tuple!(uint, "a", uint, "b") CodepointInterval;
/**
The recommended type of $(XREF _typecons, Tuple)
to represent [a, b$(RPAREN) intervals of $(CODEPOINTS). As used in $(LREF InversionList).
Any interval type should pass $(LREF isIntegralPair) trait.
*/
public struct CodepointInterval
{
uint[2] _tuple;
alias _tuple this;
this(uint low, uint high)
{
_tuple[0] = low;
_tuple[1] = high;
}
bool opEquals(T)(T val) const
{
return this[0] == val[0] && this[1] == val[1];
}
@property ref uint a(){ return _tuple[0]; }
@property ref uint b(){ return _tuple[1]; }
}
//@@@BUG another forward reference workaround
@trusted bool equalS(R1, R2)(R1 lhs, R2 rhs)
{
for(;;){
if(lhs.empty)
return rhs.empty;
if(rhs.empty)
return false;
if(lhs.front != rhs.front)
return false;
lhs.popFront();
rhs.popFront();
}
}
/**
$(P
$(D InversionList) is a set of $(CODEPOINTS)
represented as an array of open-right [a, b$(RPAREN)
intervals (see $(LREF CodepointInterval) above).
The name comes from the way the representation reads left to right.
For instance a set of all values [10, 50$(RPAREN), [80, 90$(RPAREN),
plus a singular value 60 looks like this:
)
---
10, 50, 60, 61, 80, 90
---
$(P
The way to read this is: start with negative meaning that all numbers
smaller then the next one are not present in this set (and positive
- the contrary). Then switch positive/negative after each
number passed from left to right.
)
$(P This way negative spans until 10, then positive until 50,
then negative until 60, then positive until 61, and so on.
As seen this provides a space-efficient storage of highly redundant data
that comes in long runs. A description which Unicode $(CHARACTER)
properties fit nicely. The technique itself could be seen as a variation
on $(LUCKY RLE encoding).
)
$(P Sets are value types (just like $(D int) is) thus they
are never aliased.
)
Example:
---
auto a = CodepointSet('a', 'z'+1);
auto b = CodepointSet('A', 'Z'+1);
auto c = a;
a = a | b;
assert(a == CodepointSet('A', 'Z'+1, 'a', 'z'+1));
assert(a != c);
---
$(P See also $(LREF unicode) for simpler construction of sets
from predefined ones.
)
$(P Memory usage is 6 bytes per each contiguous interval in a set.
The value semantics are achieved by using the
($WEB http://en.wikipedia.org/wiki/Copy-on-write, COW) technique
and thus it's $(RED not) safe to cast this type to $(D_KEYWORD shared).
)
Note:
$(P It's not recommended to rely on the template parameters
or the exact type of a current $(CODEPOINT) set in $(D std.uni).
The type and parameters may change when the standard
allocators design is finalized.
Use $(LREF isCodepointSet) with templates or just stick with the default
alias $(LREF CodepointSet) throughout the whole code base.
)
*/
@trusted public struct InversionList(SP=GcPolicy)
{
public:
/**
Construct from another code point set of any type.
*/
this(Set)(Set set)
if(isCodepointSet!Set)
{
uint[] arr;
foreach(v; set.byInterval)
{
arr ~= v.a;
arr ~= v.b;
}
data = Uint24Array!(SP)(arr);
}
/**
Construct a set from a range of sorted code point intervals.
*/
this(Range)(Range intervals)
if(isForwardRange!Range && isIntegralPair!(ElementType!Range))
{
auto flattened = roundRobin(intervals.save.map!"a[0]"(),
intervals.save.map!"a[1]"());
data = Uint24Array!(SP)(flattened);
}
/**
Construct a set from plain values of sorted code point intervals.
Example:
---
auto set = CodepointSet('a', 'z'+1, 'а', 'я'+1);
foreach(v; 'a'..'z'+1)
assert(set[v]);
// Cyrillic lowercase interval
foreach(v; 'а'..'я'+1)
assert(set[v]);
---
*/
this()(uint[] intervals...)
in
{
assert(intervals.length % 2 == 0, "Odd number of interval bounds [a, b)!");
for(uint i=1; i<intervals.length; i++)
assert(intervals[i-1] < intervals[i]);
}
body
{
data = Uint24Array!(SP)(intervals);
}
/**
Get range that spans all of the $(CODEPOINT) intervals in this $(LREF InversionList).
Example:
---
import std.algorithm, std.typecons;
auto set = CodepointSet('A', 'D'+1, 'a', 'd'+1);
set.byInterval.equal([tuple('A', 'E'), tuple('a', 'e')]);
---
*/
@property auto byInterval()
{
static struct Intervals
{
this(Uint24Array!SP sp)
{
slice = sp;
start = 0;
end = sp.length;
}
@property auto front()const
{
uint a = slice[start];
uint b = slice[start+1];
return CodepointInterval(a, b);
}
@property auto back()const
{
uint a = slice[end-2];
uint b = slice[end-1];
return CodepointInterval(a, b);
}
void popFront()
{
start += 2;
}
void popBack()
{
end -= 2;
}
@property bool empty()const { return start == end; }
@property auto save(){ return this; }
private:
size_t start, end;
Uint24Array!SP slice;
}
return Intervals(data);
}
/**
Tests the presence of code point $(D val) in this set.
Example:
---
auto gothic = unicode.Gothic;
// Gothic letter ahsa
assert(gothic['\U00010330']);
// no ascii in Gothic obviously
assert(!gothic['$']);
---
*/
bool opIndex(uint val) const
{
// the <= ensures that searching in interval of [a, b) for 'a' you get .length == 1
// return assumeSorted!((a,b) => a<=b)(data[]).lowerBound(val).length & 1;
return sharSwitchLowerBound!"a<=b"(data[], val) & 1;
}
/// Number of $(CODEPOINTS) in this set
@property size_t length()
{
size_t sum = 0;
foreach(iv; byInterval)
{
sum += iv.b - iv.a;
}
return sum;
}
// bootstrap full set operations from 4 primitives (suitable as a template mixin):
// addInterval, skipUpTo, dropUpTo & byInterval iteration
//============================================================================
public:
/**
$(P Sets support natural syntax for set algebra, namely: )
$(BOOKTABLE ,
$(TR $(TH Operator) $(TH Math notation) $(TH Description) )
$(TR $(TD &) $(TD a ∩ b) $(TD intersection) )
$(TR $(TD |) $(TD a ∪ b) $(TD union) )
$(TR $(TD -) $(TD a ∖ b) $(TD subtraction) )
$(TR $(TD ~) $(TD a ~ b) $(TD symmetric set difference i.e. (a ∪ b) \ (a ∩ b)) )
)
Example:
---
auto lower = unicode.LowerCase;
auto upper = unicode.UpperCase;
auto ascii = unicode.ASCII;
assert((lower & upper).empty); // no intersection
auto lowerASCII = lower & ascii;
assert(lowerASCII.byCodepoint.equal(iota('a', 'z'+1)));
// throw away all of the lowercase ASCII
assert((ascii - lower).length == 128 - 26);
auto onlyOneOf = lower ~ ascii;
assert(!onlyOneOf['Δ']); // not ASCII and not lowercase
assert(onlyOneOf['$']); // ASCII and not lowercase
assert(!onlyOneOf['a']); // ASCII and lowercase
assert(onlyOneOf['я']); // not ASCII but lowercase
// throw away all cased letters from ASCII
auto noLetters = ascii - (lower | upper);
assert(noLetters.length == 128 - 26*2);
---
*/
This opBinary(string op, U)(U rhs)
if(isCodepointSet!U || is(U:dchar))
{
static if(op == "&" || op == "|" || op == "~")
{// symmetric ops thus can swap arguments to reuse r-value
static if(is(U:dchar))
{
auto tmp = this;
mixin("tmp "~op~"= rhs; ");
return tmp;
}
else
{
static if(is(Unqual!U == U))
{
// try hard to reuse r-value
mixin("rhs "~op~"= this;");
return rhs;
}
else
{
auto tmp = this;
mixin("tmp "~op~"= rhs;");
return tmp;
}
}
}
else static if(op == "-") // anti-symmetric
{
auto tmp = this;
tmp -= rhs;
return tmp;
}
else
static assert(0, "no operator "~op~" defined for Set");
}
/// The 'op=' versions of the above overloaded operators.
ref This opOpAssign(string op, U)(U rhs)
if(isCodepointSet!U || is(U:dchar))
{
static if(op == "|") // union
{
static if(is(U:dchar))
{
this.addInterval(rhs, rhs+1);
return this;
}
else
return this.add(rhs);
}
else static if(op == "&") // intersection
return this.intersect(rhs);// overloaded
else static if(op == "-") // set difference
return this.sub(rhs);// overloaded
else static if(op == "~") // symmetric set difference
{
auto copy = this & rhs;
this |= rhs;
this -= copy;
return this;
}
else
static assert(0, "no operator "~op~" defined for Set");
}
/**
Tests the presence of codepoint $(D ch) in this set,
the same as $(LREF opIndex).
*/
bool opBinaryRight(string op: "in", U)(U ch)
if(is(U : dchar))
{
return this[ch];
}
/// Obtains a set that is the inversion of this set. See also $(LREF inverted).
auto opUnary(string op: "!")()
{
return this.inverted;
}
/**
A range that spans each $(CODEPOINT) in this set.
Example:
---
import std.algorithm;
auto set = unicode.ASCII;
set.byCodepoint.equal(iota(0, 0x80));
---
*/
@property auto byCodepoint()
{
@trusted static struct CodepointRange
{
this(This set)
{
r = set.byInterval;
if(!r.empty)
cur = r.front.a;
}
@property dchar front() const
{
return cast(dchar)cur;
}
@property bool empty() const
{
return r.empty;
}
void popFront()
{
cur++;
while(cur >= r.front.b)
{
r.popFront();
if(r.empty)
break;
cur = r.front.a;
}
}
private:
uint cur;
typeof(This.init.byInterval) r;
}
return CodepointRange(this);
}
/**
$(P Obtain textual representation of this set in from of
open-right intervals and feed it to $(D sink).
)
$(P Used by various standard formatting facilities such as
$(XREF _format, formattedWrite), $(XREF _stdio, write),
$(XREF _stdio, writef), $(XREF _conv, to) and others.
)
Example:
---
import std.conv;
assert(unicode.ASCII.to!string == "[0..128$(RPAREN)");
---
*/
void toString(scope void delegate (const(char)[]) sink)
{
import std.format;
auto range = byInterval;
if(range.empty)
return;
auto val = range.front;
formattedWrite(sink, "[%d..%d)", val.a, val.b);
range.popFront();
foreach(i; range)
formattedWrite(sink, " [%d..%d)", i.a, i.b);
}
/**
Add an interval [a, b$(RPAREN) to this set.
Example:
---
CodepointSet someSet;
someSet.add('0', '5').add('A','Z'+1);
someSet.add('5', '9'+1);
assert(someSet['0']);
assert(someSet['5']);
assert(someSet['9']);
assert(someSet['Z']);
---
*/
ref add()(uint a, uint b)
{
addInterval(a, b);
return this;
}
private:
ref intersect(U)(U rhs)
if(isCodepointSet!U)
{
Marker mark;
foreach( i; rhs.byInterval)
{
mark = this.dropUpTo(i.a, mark);
mark = this.skipUpTo(i.b, mark);
}
this.dropUpTo(uint.max, mark);
return this;
}
ref intersect()(dchar ch)
{
foreach(i; byInterval)
if(i.a >= ch && ch < i.b)
return this = This.init.add(ch, ch+1);
this = This.init;
return this;
}
ref sub()(dchar ch)
{
return subChar(ch);
}
// same as the above except that skip & drop parts are swapped
ref sub(U)(U rhs)
if(isCodepointSet!U)
{
uint top;
Marker mark;
foreach(i; rhs.byInterval)
{
mark = this.skipUpTo(i.a, mark);
mark = this.dropUpTo(i.b, mark);
}
return this;
}
ref add(U)(U rhs)
if(isCodepointSet!U)
{
Marker start;
foreach(i; rhs.byInterval)
{
start = addInterval(i.a, i.b, start);
}
return this;
}
// end of mixin-able part
//============================================================================
public:
/**
Obtains a set that is the inversion of this set.
See the '!' $(LREF opUnary) for the same but using operators.
Example:
---
set = unicode.ASCII;
// union with the inverse gets all of the code points in the Unicode
assert((set | set.inverted).length == 0x110000);
// no intersection with the inverse
assert((set & set.inverted).empty);
---
*/
@property auto inverted()
{
InversionList inversion = this;
if(inversion.data.length == 0)
{
inversion.addInterval(0, lastDchar+1);
return inversion;
}
if(inversion.data[0] != 0)
genericReplace(inversion.data, 0, 0, [0]);
else
genericReplace(inversion.data, 0, 1, cast(uint[])null);
if(data[data.length-1] != lastDchar+1)
genericReplace(inversion.data,
inversion.data.length, inversion.data.length, [lastDchar+1]);
else
genericReplace(inversion.data,
inversion.data.length-1, inversion.data.length, cast(uint[])null);
return inversion;
}
/**
Generates string with D source code of unary function with name of
$(D funcName) taking a single $(D dchar) argument. If $(D funcName) is empty
the code is adjusted to be a lambda function.
The function generated tests if the $(CODEPOINT) passed
belongs to this set or not. The result is to be used with string mixin.
The intended usage area is aggressive optimization via meta programming
in parser generators and the like.
Note: Use with care for relatively small or regular sets. It
could end up being slower then just using multi-staged tables.
Example:
---
import std.stdio;
// construct set directly from [a, b) intervals
auto set = CodepointSet(10, 12, 45, 65, 100, 200);
writeln(set);
writeln(set.toSourceCode("func"));
---
The above outputs something along the lines of:
---
bool func(dchar ch)
{
if(ch < 45)
{
if(ch == 10 || ch == 11) return true;
return false;
}
else if (ch < 65) return true;
else
{
if(ch < 100) return false;
if(ch < 200) return true;
return false;
}
}
---
*/
string toSourceCode(string funcName="")
{
import std.string;
enum maxBinary = 3;
static string linearScope(R)(R ivals, string indent)
{
string result = indent~"{\n";
string deeper = indent~" ";
foreach(ival; ivals)
{
auto span = ival[1] - ival[0];
assert(span != 0);
if(span == 1)
{
result ~= format("%sif(ch == %s) return true;\n", deeper, ival[0]);
}
else if(span == 2)
{
result ~= format("%sif(ch == %s || ch == %s) return true;\n",
deeper, ival[0], ival[0]+1);
}
else
{
if(ival[0] != 0) // dchar is unsigned and < 0 is useless
result ~= format("%sif(ch < %s) return false;\n", deeper, ival[0]);
result ~= format("%sif(ch < %s) return true;\n", deeper, ival[1]);
}
}
result ~= format("%sreturn false;\n%s}\n", deeper, indent); // including empty range of intervals
return result;
}
static string binaryScope(R)(R ivals, string indent)
{
// time to do unrolled comparisons?
if(ivals.length < maxBinary)
return linearScope(ivals, indent);
else
return bisect(ivals, ivals.length/2, indent);
}
// not used yet if/elsebinary search is far better with DMD as of 2.061
// and GDC is doing fine job either way
static string switchScope(R)(R ivals, string indent)
{
string result = indent~"switch(ch){\n";
string deeper = indent~" ";
foreach(ival; ivals)
{
if(ival[0]+1 == ival[1])
{
result ~= format("%scase %s: return true;\n",
deeper, ival[0]);
}
else
{
result ~= format("%scase %s: .. case %s: return true;\n",
deeper, ival[0], ival[1]-1);
}
}
result ~= deeper~"default: return false;\n"~indent~"}\n";
return result;
}
static string bisect(R)(R range, size_t idx, string indent)
{
string deeper = indent ~ " ";
// bisect on one [a, b) interval at idx
string result = indent~"{\n";
// less branch, < a
result ~= format("%sif(ch < %s)\n%s",
deeper, range[idx][0], binaryScope(range[0..idx], deeper));
// middle point, >= a && < b
result ~= format("%selse if (ch < %s) return true;\n",
deeper, range[idx][1]);
// greater or equal branch, >= b
result ~= format("%selse\n%s",
deeper, binaryScope(range[idx+1..$], deeper));
return result~indent~"}\n";
}
string code = format("bool %s(dchar ch) @safe pure nothrow\n",
funcName.empty ? "function" : funcName);
auto range = byInterval.array();
// special case first bisection to be on ASCII vs beyond
auto tillAscii = countUntil!"a[0] > 0x80"(range);
if(tillAscii <= 0) // everything is ASCII or nothing is ascii (-1 & 0)
code ~= binaryScope(range, "");
else
code ~= bisect(range, tillAscii, "");
return code;
}
/**
True if this set doesn't contain any $(CODEPOINTS).
Example:
---
CodepointSet emptySet;
assert(emptySet.length == 0);
assert(emptySet.empty);
---
*/
@property bool empty() const
{
return data.length == 0;
}
private:
alias typeof(this) This;
alias size_t Marker;
// special case for normal InversionList
ref subChar(dchar ch)
{
auto mark = skipUpTo(ch);
if(mark != data.length
&& data[mark] == ch && data[mark-1] == ch)
{
// it has split, meaning that ch happens to be in one of intervals
data[mark] = data[mark]+1;
}
return this;
}
//
Marker addInterval(int a, int b, Marker hint=Marker.init)
in
{
assert(a <= b, text(a, " > ", b));
}
body
{
auto range = assumeSorted(data[]);
size_t pos;
size_t a_idx = range.lowerBound(a).length;
if(a_idx == range.length)
{
// [---+++----++++----++++++]
// [ a b]
data.append([a, b]);
return data.length-1;
}
size_t b_idx = range[a_idx..range.length].lowerBound(b).length+a_idx;
uint[] to_insert;
debug(std_uni)
{
writefln("a_idx=%d; b_idx=%d;", a_idx, b_idx);
}
if(b_idx == range.length)
{
// [-------++++++++----++++++-]
// [ s a b]
if(a_idx & 1)// a in positive
{
to_insert = [ b ];
}
else// a in negative
{
to_insert = [a, b];
}
genericReplace(data, a_idx, b_idx, to_insert);
return a_idx+to_insert.length-1;
}
uint top = data[b_idx];
debug(std_uni)
{
writefln("a_idx=%d; b_idx=%d;", a_idx, b_idx);
writefln("a=%s; b=%s; top=%s;", a, b, top);
}
if(a_idx & 1)
{// a in positive
if(b_idx & 1)// b in positive
{
// [-------++++++++----++++++-]
// [ s a b ]
to_insert = [top];
}
else // b in negative
{
// [-------++++++++----++++++-]
// [ s a b ]
if(top == b)
{
assert(b_idx+1 < data.length);
pos = genericReplace(data, a_idx, b_idx+2, [data[b_idx+1]]);
return pos;
}
to_insert = [b, top ];
}
}
else
{ // a in negative
if(b_idx & 1) // b in positive
{
// [----------+++++----++++++-]
// [ a b ]
to_insert = [a, top];
}
else// b in negative
{
// [----------+++++----++++++-]
// [ a s b ]
if(top == b)
{
assert(b_idx+1 < data.length);
pos = genericReplace(data, a_idx, b_idx+2, [a, data[b_idx+1] ]);
return pos;
}
to_insert = [a, b, top];
}
}
pos = genericReplace(data, a_idx, b_idx+1, to_insert);
debug(std_uni)
{
writefln("marker idx: %d; length=%d", pos, data[pos], data.length);
writeln("inserting ", to_insert);
}
return pos;
}
//
Marker dropUpTo(uint a, Marker pos=Marker.init)
in
{
assert(pos % 2 == 0); // at start of interval
}
body
{
auto range = assumeSorted!"a<=b"(data[pos..data.length]);
if(range.empty)
return pos;
size_t idx = pos;
idx += range.lowerBound(a).length;
debug(std_uni)
{
writeln("dropUpTo full length=", data.length);
writeln(pos,"~~~", idx);
}
if(idx == data.length)
return genericReplace(data, pos, idx, cast(uint[])[]);
if(idx & 1)
{ // a in positive
//[--+++----++++++----+++++++------...]
// |<---si s a t
genericReplace(data, pos, idx, [a]);
}
else
{ // a in negative
//[--+++----++++++----+++++++-------+++...]
// |<---si s a t
genericReplace(data, pos, idx, cast(uint[])[]);
}
return pos;
}
//
Marker skipUpTo(uint a, Marker pos=Marker.init)
out(result)
{
assert(result % 2 == 0);// always start of interval
//(may be 0-width after-split)
}
body
{
assert(data.length % 2 == 0);
auto range = assumeSorted!"a<=b"(data[pos..data.length]);
size_t idx = pos+range.lowerBound(a).length;
if(idx >= data.length) // could have Marker point to recently removed stuff
return data.length;
if(idx & 1)// inside of interval, check for split
{
uint top = data[idx];
if(top == a)// no need to split, it's end
return idx+1;
uint start = data[idx-1];
if(a == start)
return idx-1;
// split it up
genericReplace(data, idx, idx+1, [a, a, top]);
return idx+1; // avoid odd index
}
return idx;
}
Uint24Array!SP data;
};
@system unittest
{
// test examples
import std.algorithm, std.typecons;
auto set = CodepointSet('A', 'D'+1, 'a', 'd'+1);
set.byInterval.equalS([tuple('A', 'E'), tuple('a', 'e')]);
set = unicode.ASCII;
assert(set.byCodepoint.equalS(iota(0, 0x80)));
set = CodepointSet('a', 'z'+1, 'а', 'я'+1);
foreach(v; 'a'..'z'+1)
assert(set[v]);
// Cyrillic lowercase interval
foreach(v; 'а'..'я'+1)
assert(set[v]);
auto gothic = unicode.Gothic;
// Gothic letter ahsa
assert(gothic['\U00010330']);
// no ascii in Gothic obviously
assert(!gothic['$']);
CodepointSet emptySet;
assert(emptySet.length == 0);
assert(emptySet.empty);
set = unicode.ASCII;
// union with the inverse gets all of code points in the Unicode
assert((set | set.inverted).length == 0x110000);
// no intersection with inverse
assert((set & set.inverted).empty);
CodepointSet someSet;
someSet.add('0', '5').add('A','Z'+1);
someSet.add('5', '9'+1);
assert(someSet['0']);
assert(someSet['5']);
assert(someSet['9']);
assert(someSet['Z']);
auto lower = unicode.LowerCase;
auto upper = unicode.UpperCase;
auto ascii = unicode.ASCII;
assert((lower & upper).empty); // no intersection
auto lowerASCII = lower & ascii;
assert(lowerASCII.byCodepoint.equalS(iota('a', 'z'+1)));
// throw away all of the lowercase ASCII
assert((ascii - lower).length == 128 - 26);
auto onlyOneOf = lower ~ ascii;
assert(!onlyOneOf['Δ']); // not ASCII and not lowercase
assert(onlyOneOf['$']); // ASCII and not lowercase
assert(!onlyOneOf['a']); // ASCII and lowercase
assert(onlyOneOf['я']); // not ASCII but lowercase
auto noLetters = ascii - (lower | upper);
assert(noLetters.length == 128 - 26*2);
import std.conv;
assert(unicode.ASCII.to!string() == "[0..128)");
}
// pedantic version for ctfe, and aligned-access only architectures
@trusted uint safeRead24(const ubyte* ptr, size_t idx) pure nothrow
{
idx *= 3;
version(LittleEndian)
return ptr[idx] + (cast(uint)ptr[idx+1]<<8)
+ (cast(uint)ptr[idx+2]<<16);
else
return (cast(uint)ptr[idx]<<16) + (cast(uint)ptr[idx+1]<<8)
+ ptr[idx+2];
}
// ditto
@trusted void safeWrite24(ubyte* ptr, uint val, size_t idx) pure nothrow
{
idx *= 3;
version(LittleEndian)
{
ptr[idx] = val & 0xFF;
ptr[idx+1] = (val>>8) & 0xFF;
ptr[idx+2] = (val>>16) & 0xFF;
}
else
{
ptr[idx] = (val>>16) & 0xFF;
ptr[idx+1] = (val>>8) & 0xFF;
ptr[idx+2] = val & 0xFF;
}
}
// unaligned x86-like read/write functions
@trusted uint unalignedRead24(const ubyte* ptr, size_t idx) pure nothrow
{
uint* src = cast(uint*)(ptr+3*idx);
version(LittleEndian)
return *src & 0xFF_FFFF;
else
return *src >> 8;
}
// ditto
@trusted void unalignedWrite24(ubyte* ptr, uint val, size_t idx) pure nothrow
{
uint* dest = cast(uint*)(cast(ubyte*)ptr + 3*idx);
version(LittleEndian)
*dest = val | (*dest & 0xFF00_0000);
else
*dest = (val<<8) | (*dest & 0xFF);
}
uint read24(const ubyte* ptr, size_t idx) pure nothrow
{
static if(hasUnalignedReads)
return __ctfe ? safeRead24(ptr, idx) : unalignedRead24(ptr, idx);
else
return safeRead24(ptr, idx);
}
void write24(ubyte* ptr, uint val, size_t idx) pure nothrow
{
static if(hasUnalignedReads)
return __ctfe ? safeWrite24(ptr, val, idx) : unalignedWrite24(ptr, val, idx);
else
return safeWrite24(ptr, val, idx);
}
// Packed array of 24-bit integers, COW semantics.
@trusted struct Uint24Array(SP=GcPolicy)
{
this(Range)(Range range)
if(isInputRange!Range && hasLength!Range)
{
length = range.length;
copy(range, this[]);
}
this(Range)(Range range)
if(isForwardRange!Range && !hasLength!Range)
{
auto len = walkLength(range.save);
length = len;
copy(range, this[]);
}
this(this)
{
if(!empty)
{
refCount = refCount + 1;
}
}
~this()
{
if(!empty)
{
auto cnt = refCount;
if(cnt == 1)
SP.destroy(data);
else
refCount = cnt - 1;
}
}
// no ref-count for empty U24 array
@property bool empty() const { return data.length == 0; }
// report one less then actual size
@property size_t length() const
{
return data.length ? (data.length-4)/3 : 0;
}
//+ an extra slot for ref-count
@property void length(size_t len)
{
if(len == 0)
{
if(!empty)
freeThisReference();
return;
}
immutable bytes = len*3+4; // including ref-count
if(empty)
{
data = SP.alloc!ubyte(bytes);
refCount = 1;
return;
}
auto cur_cnt = refCount;
if(cur_cnt != 1) // have more references to this memory
{
refCount = cur_cnt - 1;
auto new_data = SP.alloc!ubyte(bytes);
// take shrinking into account
auto to_copy = min(bytes, data.length)-4;
copy(data[0..to_copy], new_data[0..to_copy]);
data = new_data; // before setting refCount!
refCount = 1;
}
else // 'this' is the only reference
{
// use the realloc (hopefully in-place operation)
data = SP.realloc(data, bytes);
refCount = 1; // setup a ref-count in the new end of the array
}
}
alias opDollar = length;
// Read 24-bit packed integer
uint opIndex(size_t idx)const
{
return read24(data.ptr, idx);
}
// Write 24-bit packed integer
void opIndexAssign(uint val, size_t idx)
in
{
assert(!empty && val <= 0xFF_FFFF);
}
body
{
auto cnt = refCount;
if(cnt != 1)
dupThisReference(cnt);
write24(data.ptr, val, idx);
}
//
auto opSlice(size_t from, size_t to)
{
return sliceOverIndexed(from, to, &this);
}
///
auto opSlice(size_t from, size_t to) const
{
return sliceOverIndexed(from, to, &this);
}
// length slices before the ref count
auto opSlice()
{
return opSlice(0, length);
}
// length slices before the ref count
auto opSlice() const
{
return opSlice(0, length);
}
void append(Range)(Range range)
if(isInputRange!Range && hasLength!Range && is(ElementType!Range : uint))
{
size_t nl = length + range.length;
length = nl;
copy(range, this[nl-range.length..nl]);
}
void append()(uint val)
{
length = length + 1;
this[$-1] = val;
}
bool opEquals()(auto const ref Uint24Array rhs)const
{
if(empty ^ rhs.empty)
return false; // one is empty and the other isn't
return empty || data[0..$-4] == rhs.data[0..$-4];
}
private:
// ref-count is right after the data
@property uint refCount() const
{
return read24(data.ptr, length);
}
@property void refCount(uint cnt)
in
{
assert(cnt <= 0xFF_FFFF);
}
body
{
write24(data.ptr, cnt, length);
}
void freeThisReference()
{
auto count = refCount;
if(count != 1) // have more references to this memory
{
// dec shared ref-count
refCount = count - 1;
data = [];
}
else
SP.destroy(data);
assert(!data.ptr);
}
void dupThisReference(uint count)
in
{
assert(!empty && count != 1 && count == refCount);
}
body
{
// dec shared ref-count
refCount = count - 1;
// copy to the new chunk of RAM
auto new_data = SP.alloc!ubyte(data.length);
// bit-blit old stuff except the counter
copy(data[0..$-4], new_data[0..$-4]);
data = new_data; // before setting refCount!
refCount = 1; // so that this updates the right one
}
ubyte[] data;
}
@trusted unittest// Uint24 tests //@@@BUG@@ iota is system ?!
{
void funcRef(T)(ref T u24)
{
u24.length = 2;
u24[1] = 1024;
T u24_c = u24;
assert(u24[1] == 1024);
u24.length = 0;
assert(u24.empty);
u24.append([1, 2]);
assert(equalS(u24[], [1, 2]));
u24.append(111);
assert(equalS(u24[], [1, 2, 111]));
assert(!u24_c.empty && u24_c[1] == 1024);
u24.length = 3;
copy(iota(0, 3), u24[]);
assert(equalS(u24[], iota(0, 3)));
assert(u24_c[1] == 1024);
}
void func2(T)(T u24)
{
T u24_2 = u24;
T u24_3;
u24_3 = u24_2;
assert(u24_2 == u24_3);
assert(equalS(u24[], u24_2[]));
assert(equalS(u24_2[], u24_3[]));
funcRef(u24_3);
assert(equalS(u24_3[], iota(0, 3)));
assert(!equalS(u24_2[], u24_3[]));
assert(equalS(u24_2[], u24[]));
u24_2 = u24_3;
assert(equalS(u24_2[], iota(0, 3)));
// to test that passed arg is intact outside
// plus try out opEquals
u24 = u24_3;
u24 = T.init;
u24_3 = T.init;
assert(u24.empty);
assert(u24 == u24_3);
assert(u24 != u24_2);
}
foreach(Policy; TypeTuple!(GcPolicy, ReallocPolicy))
{
alias typeof(Uint24Array!Policy.init[]) Range;
alias Uint24Array!Policy U24A;
static assert(isForwardRange!Range);
static assert(isBidirectionalRange!Range);
static assert(isOutputRange!(Range, uint));
static assert(isRandomAccessRange!(Range));
auto arr = U24A([42u, 36, 100]);
assert(arr[0] == 42);
assert(arr[1] == 36);
arr[0] = 72;
arr[1] = 0xFE_FEFE;
assert(arr[0] == 72);
assert(arr[1] == 0xFE_FEFE);
assert(arr[2] == 100);
U24A arr2 = arr;
assert(arr2[0] == 72);
arr2[0] = 11;
// test COW-ness
assert(arr[0] == 72);
assert(arr2[0] == 11);
// set this to about 100M to stress-test COW memory management
foreach(v; 0..10_000)
func2(arr);
assert(equalS(arr[], [72, 0xFE_FEFE, 100]));
auto r2 = U24A(iota(0, 100));
assert(equalS(r2[], iota(0, 100)), text(r2[]));
copy(iota(10, 170, 2), r2[10..90]);
assert(equalS(r2[], chain(iota(0, 10), iota(10, 170, 2), iota(90, 100)))
, text(r2[]));
}
}
version(unittest)
{
private alias TypeTuple!(InversionList!GcPolicy, InversionList!ReallocPolicy) AllSets;
}
@trusted unittest// core set primitives test
{
foreach(CodeList; AllSets)
{
CodeList a;
//"plug a hole" test
a.add(10, 20).add(25, 30).add(15, 27);
assert(a == CodeList(10, 30), text(a));
auto x = CodeList.init;
x.add(10, 20).add(30, 40).add(50, 60);
a = x;
a.add(20, 49);//[10, 49) [50, 60)
assert(a == CodeList(10, 49, 50 ,60));
a = x;
a.add(20, 50);
assert(a == CodeList(10, 60), text(a));
// simple unions, mostly edge effects
x = CodeList.init;
x.add(10, 20).add(40, 60);
a = x;
a.add(10, 25); //[10, 25) [40, 60)
assert(a == CodeList(10, 25, 40, 60));
a = x;
a.add(5, 15); //[5, 20) [40, 60)
assert(a == CodeList(5, 20, 40, 60));
a = x;
a.add(0, 10); // [0, 20) [40, 60)
assert(a == CodeList(0, 20, 40, 60));
a = x;
a.add(0, 5); // prepand
assert(a == CodeList(0, 5, 10, 20, 40, 60), text(a));
a = x;
a.add(5, 20);
assert(a == CodeList(5, 20, 40, 60));
a = x;
a.add(3, 37);
assert(a == CodeList(3, 37, 40, 60));
a = x;
a.add(37, 65);
assert(a == CodeList(10, 20, 37, 65));
// some tests on helpers for set intersection
x = CodeList.init.add(10, 20).add(40, 60).add(100, 120);
a = x;
auto m = a.skipUpTo(60);
a.dropUpTo(110, m);
assert(a == CodeList(10, 20, 40, 60, 110, 120), text(a.data[]));
a = x;
a.dropUpTo(100);
assert(a == CodeList(100, 120), text(a.data[]));
a = x;
m = a.skipUpTo(50);
a.dropUpTo(140, m);
assert(a == CodeList(10, 20, 40, 50), text(a.data[]));
a = x;
a.dropUpTo(60);
assert(a == CodeList(100, 120), text(a.data[]));
}
}
@trusted unittest
{ // full set operations
foreach(CodeList; AllSets)
{
CodeList a, b, c, d;
//"plug a hole"
a.add(20, 40).add(60, 80).add(100, 140).add(150, 200);
b.add(40, 60).add(80, 100).add(140, 150);
c = a | b;
d = b | a;
assert(c == CodeList(20, 200), text(CodeList.stringof," ", c));
assert(c == d, text(c," vs ", d));
b = CodeList.init.add(25, 45).add(65, 85).add(95,110).add(150, 210);
c = a | b; //[20,45) [60, 85) [95, 140) [150, 210)
d = b | a;
assert(c == CodeList(20, 45, 60, 85, 95, 140, 150, 210), text(c));
assert(c == d, text(c," vs ", d));
b = CodeList.init.add(10, 20).add(30,100).add(145,200);
c = a | b;//[10, 140) [145, 200)
d = b | a;
assert(c == CodeList(10, 140, 145, 200));
assert(c == d, text(c," vs ", d));
b = CodeList.init.add(0, 10).add(15, 100).add(10, 20).add(200, 220);
c = a | b;//[0, 140) [150, 220)
d = b | a;
assert(c == CodeList(0, 140, 150, 220));
assert(c == d, text(c," vs ", d));
a = CodeList.init.add(20, 40).add(60, 80);
b = CodeList.init.add(25, 35).add(65, 75);
c = a & b;
d = b & a;
assert(c == CodeList(25, 35, 65, 75), text(c));
assert(c == d, text(c," vs ", d));
a = CodeList.init.add(20, 40).add(60, 80).add(100, 140).add(150, 200);
b = CodeList.init.add(25, 35).add(65, 75).add(110, 130).add(160, 180);
c = a & b;
d = b & a;
assert(c == CodeList(25, 35, 65, 75, 110, 130, 160, 180), text(c));
assert(c == d, text(c," vs ", d));
a = CodeList.init.add(20, 40).add(60, 80).add(100, 140).add(150, 200);
b = CodeList.init.add(10, 30).add(60, 120).add(135, 160);
c = a & b;//[20, 30)[60, 80) [100, 120) [135, 140) [150, 160)
d = b & a;
assert(c == CodeList(20, 30, 60, 80, 100, 120, 135, 140, 150, 160),text(c));
assert(c == d, text(c, " vs ",d));
assert((c & a) == c);
assert((d & b) == d);
assert((c & d) == d);
b = CodeList.init.add(40, 60).add(80, 100).add(140, 200);
c = a & b;
d = b & a;
assert(c == CodeList(150, 200), text(c));
assert(c == d, text(c, " vs ",d));
assert((c & a) == c);
assert((d & b) == d);
assert((c & d) == d);
assert((a & a) == a);
assert((b & b) == b);
a = CodeList.init.add(20, 40).add(60, 80).add(100, 140).add(150, 200);
b = CodeList.init.add(30, 60).add(75, 120).add(190, 300);
c = a - b;// [30, 40) [60, 75) [120, 140) [150, 190)
d = b - a;// [40, 60) [80, 100) [200, 300)
assert(c == CodeList(20, 30, 60, 75, 120, 140, 150, 190), text(c));
assert(d == CodeList(40, 60, 80, 100, 200, 300), text(d));
assert(c - d == c, text(c-d, " vs ", c));
assert(d - c == d, text(d-c, " vs ", d));
assert(c - c == CodeList.init);
assert(d - d == CodeList.init);
a = CodeList.init.add(20, 40).add( 60, 80).add(100, 140).add(150, 200);
b = CodeList.init.add(10, 50).add(60, 160).add(190, 300);
c = a - b;// [160, 190)
d = b - a;// [10, 20) [40, 50) [80, 100) [140, 150) [200, 300)
assert(c == CodeList(160, 190), text(c));
assert(d == CodeList(10, 20, 40, 50, 80, 100, 140, 150, 200, 300), text(d));
assert(c - d == c, text(c-d, " vs ", c));
assert(d - c == d, text(d-c, " vs ", d));
assert(c - c == CodeList.init);
assert(d - d == CodeList.init);
a = CodeList.init.add(20, 40).add(60, 80).add(100, 140).add(150, 200);
b = CodeList.init.add(10, 30).add(45, 100).add(130, 190);
c = a ~ b; // [10, 20) [30, 40) [45, 60) [80, 130) [140, 150) [190, 200)
d = b ~ a;
assert(c == CodeList(10, 20, 30, 40, 45, 60, 80, 130, 140, 150, 190, 200),
text(c));
assert(c == d, text(c, " vs ", d));
}
}
@system:
unittest// vs single dchar
{
CodepointSet a = CodepointSet(10, 100, 120, 200);
assert(a - 'A' == CodepointSet(10, 65, 66, 100, 120, 200), text(a - 'A'));
assert((a & 'B') == CodepointSet(66, 67));
}
unittest// iteration & opIndex
{
import std.typecons;
foreach(CodeList; TypeTuple!(InversionList!(ReallocPolicy)))
{
auto arr = "ABCDEFGHIJKLMabcdefghijklm"d;
auto a = CodeList('A','N','a', 'n');
assert(equalS(a.byInterval,
[tuple(cast(uint)'A', cast(uint)'N'), tuple(cast(uint)'a', cast(uint)'n')]
), text(a.byInterval));
// same @@@BUG as in issue 8949 ?
version(bug8949)
{
assert(equalS(retro(a.byInterval),
[tuple(cast(uint)'a', cast(uint)'n'), tuple(cast(uint)'A', cast(uint)'N')]
), text(retro(a.byInterval)));
}
auto achr = a.byCodepoint;
assert(equalS(achr, arr), text(a.byCodepoint));
foreach(ch; a.byCodepoint)
assert(a[ch]);
auto x = CodeList(100, 500, 600, 900, 1200, 1500);
assert(equalS(x.byInterval, [ tuple(100, 500), tuple(600, 900), tuple(1200, 1500)]), text(x.byInterval));
foreach(ch; x.byCodepoint)
assert(x[ch]);
static if(is(CodeList == CodepointSet))
{
auto y = CodeList(x.byInterval);
assert(equalS(x.byInterval, y.byInterval));
}
assert(equalS(CodepointSet.init.byInterval, cast(Tuple!(uint, uint)[])[]));
assert(equalS(CodepointSet.init.byCodepoint, cast(dchar[])[]));
}
}
//============================================================================
// Generic Trie template and various ways to build it
//============================================================================
// debug helper to get a shortened array dump
auto arrayRepr(T)(T x)
{
if(x.length > 32)
{
return text(x[0..16],"~...~", x[x.length-16..x.length]);
}
else
return text(x);
}
/**
Maps $(D Key) to a suitable integer index within the range of $(D size_t).
The mapping is constructed by applying predicates from $(D Prefix) left to right
and concatenating the resulting bits.
The first (leftmost) predicate defines the most significant bits of
the resulting index.
*/
template mapTrieIndex(Prefix...)
{
size_t mapTrieIndex(Key)(Key key)
if(isValidPrefixForTrie!(Key, Prefix))
{
alias Prefix p;
size_t idx;
foreach(i, v; p[0..$-1])
{
idx |= p[i](key);
idx <<= p[i+1].bitSize;
}
idx |= p[$-1](key);
return idx;
}
}
/*
$(D TrieBuilder) is a type used for incremental construction
of $(LREF Trie)s.
See $(LREF buildTrie) for generic helpers built on top of it.
*/
@trusted struct TrieBuilder(Value, Key, Args...)
if(isBitPackableType!Value && isValidArgsForTrie!(Key, Args))
{
private:
// last index is not stored in table, it is used as an offset to values in a block.
static if(is(Value == bool))// always pack bool
alias V = BitPacked!(Value, 1);
else
alias V = Value;
static auto deduceMaxIndex(Preds...)()
{
size_t idx = 1;
foreach(v; Preds)
idx *= 2^^v.bitSize;
return idx;
}
static if(is(typeof(Args[0]) : Key)) // Args start with upper bound on Key
{
alias Prefix = Args[1..$];
enum lastPageSize = 2^^Prefix[$-1].bitSize;
enum translatedMaxIndex = mapTrieIndex!(Prefix)(Args[0]);
enum roughedMaxIndex =
(translatedMaxIndex + lastPageSize-1)/lastPageSize*lastPageSize;
// check warp around - if wrapped, use the default deduction rule
enum maxIndex = roughedMaxIndex < translatedMaxIndex ?
deduceMaxIndex!(Prefix)() : roughedMaxIndex;
}
else
{
alias Prefix = Args;
enum maxIndex = deduceMaxIndex!(Prefix)();
}
alias getIndex = mapTrieIndex!(Prefix);
enum lastLevel = Prefix.length-1;
struct ConstructState
{
bool zeros, ones; // current page is zeros? ones?
uint idx_zeros, idx_ones;
}
// iteration over levels of Trie, each indexes its own level and thus a shortened domain
size_t[Prefix.length] indices;
// default filler value to use
Value defValue;
// this is a full-width index of next item
size_t curIndex;
// all-zeros page index, all-ones page index (+ indicator if there is such a page)
ConstructState[Prefix.length] state;
// the table being constructed
MultiArray!(idxTypes!(Key, fullBitSize!(Prefix), Prefix[0..$]), V) table;
@disable this();
// this function assumes no holes in the input so
// indices are going one by one
void addValue(size_t level, T)(T val, size_t numVals)
{
enum pageSize = 1<<Prefix[level].bitSize;
if(numVals == 0)
return;
do
{
// need to take pointer again, memory block may move on resize
auto ptr = table.slice!(level);
static if(is(T : bool))
{
if(val)
state[level].zeros = false;
else
state[level].ones = false;
}
if(numVals == 1)
{
static if(level == Prefix.length-1)
ptr[indices[level]] = val;
else{// can incur narrowing conversion
assert(indices[level] < ptr.length);
ptr[indices[level]] = force!(typeof(ptr[indices[level]]))(val);
}
indices[level]++;
numVals = 0;
}
else
{
// where is the next page boundary
size_t nextPB = (indices[level]+pageSize)/pageSize*pageSize;
size_t j = indices[level];
size_t n = nextPB-j;// can fill right in this page
if(numVals > n)
numVals -= n;
else
{
n = numVals;
numVals = 0;
}
static if(level < Prefix.length-1)
assert(indices[level] <= 2^^Prefix[level+1].bitSize);
ptr[j..j+n] = val;
j += n;
indices[level] = j;
}
// last level (i.e. topmost) has 1 "page"
// thus it need not to add a new page on upper level
static if(level != 0)
{
if(indices[level] % pageSize == 0)
spillToNextPage!level(ptr);
}
}
while(numVals);
}
// this can re-use the current page if duplicate or allocate a new one
// it also makes sure that previous levels point to the correct page in this level
void spillToNextPage(size_t level, Slice)(ref Slice ptr)
{
alias typeof(table.slice!(level-1)[0]) NextIdx;
NextIdx next_lvl_index;
enum pageSize = 1<<Prefix[level].bitSize;
static if(is(T : bool))
{
if(state[level].zeros)
{
if(state[level].idx_empty == uint.max)
{
state[level].idx_empty = cast(uint)(indices[level]/pageSize - 1);
goto L_allocate_page;
}
else
{
next_lvl_index = force!NextIdx(state[level].idx_empty);
indices[level] -= pageSize;// it is a duplicate
goto L_know_index;
}
}
}
auto last = indices[level]-pageSize;
auto slice = ptr[indices[level] - pageSize..indices[level]];
size_t j;
for(j=0; j<last; j+=pageSize)
{
if(equalS(ptr[j..j+pageSize], slice[0..pageSize]))
{
// get index to it, reuse ptr space for the next block
next_lvl_index = force!NextIdx(j/pageSize);
version(none)
{
writefln("LEVEL(%s) page maped idx: %s: 0..%s ---> [%s..%s]"
,level
,indices[level-1], pageSize, j, j+pageSize);
writeln("LEVEL(", level
, ") mapped page is: ", slice, ": ", arrayRepr(ptr[j..j+pageSize]));
writeln("LEVEL(", level
, ") src page is :", ptr, ": ", arrayRepr(slice[0..pageSize]));
}
indices[level] -= pageSize; // reuse this page, it is duplicate
break;
}
}
if(j == last)
{
L_allocate_page:
next_lvl_index = force!NextIdx(indices[level]/pageSize - 1);
// allocate next page
version(none)
{
writefln("LEVEL(%s) page allocated: %s"
, level, arrayRepr(slice[0..pageSize]));
writefln("LEVEL(%s) index: %s ; page at this index %s"
, level
, next_lvl_index
, arrayRepr(
table.slice!(level)
[pageSize*next_lvl_index..(next_lvl_index+1)*pageSize]
));
}
table.length!level = table.length!level + pageSize;
}
L_know_index:
// reset all zero/ones tracking variables
static if(is(TypeOfBitPacked!T : bool))
{
state[level].zeros = true;
state[level].ones = true;
}
// for the previous level, values are indices to the pages in the current level
addValue!(level-1)(next_lvl_index, 1);
}
// idx - full-width index to fill with v (full-width index != key)
// fills everything in the range of [curIndex, idx) with filler
void putAt(size_t idx, Value v)
{
assert(idx >= curIndex);
size_t numFillers = idx - curIndex;
addValue!lastLevel(defValue, numFillers);
addValue!lastLevel(v, 1);
curIndex = idx + 1;
}
// ditto, but sets the range of [idxA, idxB) to v
void putRangeAt(size_t idxA, size_t idxB, Value v)
{
assert(idxA >= curIndex);
assert(idxB >= idxA);
size_t numFillers = idxA - curIndex;
addValue!lastLevel(defValue, numFillers);
addValue!lastLevel(v, idxB - idxA);
curIndex = idxB; // open-right
}
enum errMsg = "non-monotonic prefix function(s), an unsorted range or "
"duplicate key->value mapping";
public:
/**
Construct a builder, where $(D filler) is a value
to indicate empty slots (or "not found" condition).
*/
this(Value filler)
{
curIndex = 0;
defValue = filler;
// zeros-page index, ones-page index
foreach(ref v; state)
v = ConstructState(true, true, uint.max, uint.max);
table = typeof(table)(indices);
// one page per level is a bootstrap minimum
foreach(i; Sequence!(0, Prefix.length))
table.length!i = (1<<Prefix[i].bitSize);
}
/**
Put a value $(D v) into interval as
mapped by keys from $(D a) to $(D b).
All slots prior to $(D a) are filled with
the default filler.
*/
void putRange(Key a, Key b, Value v)
{
auto idxA = getIndex(a), idxB = getIndex(b);
// indexes of key should always grow
enforce(idxB >= idxA && idxA >= curIndex, errMsg);
putRangeAt(idxA, idxB, v);
}
/**
Put a value $(D v) into slot mapped by $(D key).
All slots prior to $(D key) are filled with the
default filler.
*/
void putValue(Key key, Value v)
{
auto idx = getIndex(key);
enforce(idx >= curIndex, text(errMsg, " ", idx));
putAt(idx, v);
}
/// Finishes construction of Trie, yielding an immutable Trie instance.
auto build()
{
static if(maxIndex != 0) // doesn't cover full range of size_t
{
assert(curIndex <= maxIndex);
addValue!lastLevel(defValue, maxIndex - curIndex);
}
else
{
if(curIndex != 0 // couldn't wrap around
|| (Prefix.length != 1 && indices[lastLevel] == 0)) // can be just empty
{
addValue!lastLevel(defValue, size_t.max - curIndex);
addValue!lastLevel(defValue, 1);
}
// else curIndex already completed the full range of size_t by wrapping around
}
return Trie!(V, Key, maxIndex, Prefix)(table);
}
}
/*
$(P A generic Trie data-structure for a fixed number of stages.
The design goal is optimal speed with smallest footprint size.
)
$(P It's intentionally read-only and doesn't provide constructors.
To construct one use a special builder,
see $(LREF TrieBuilder) and $(LREF buildTrie).
)
*/
@trusted public struct Trie(Value, Key, Args...)
if(isValidPrefixForTrie!(Key, Args)
|| (isValidPrefixForTrie!(Key, Args[1..$])
&& is(typeof(Args[0]) : size_t)))
{
static if(is(typeof(Args[0]) : size_t))
{
enum maxIndex = Args[0];
enum hasBoundsCheck = true;
alias Prefix = Args[1..$];
}
else
{
enum hasBoundsCheck = false;
alias Prefix = Args;
}
private this()(typeof(_table) table)
{
_table = table;
}
// only for constant Tries constructed from precompiled tables
private this()(const(size_t)[] offsets, const(size_t)[] sizes,
const(size_t)[] data) const
{
_table = typeof(_table)(offsets, sizes, data);
}
/*
$(P Lookup the $(D key) in this $(D Trie). )
$(P The lookup always succeeds if key fits the domain
provided during construction. The whole domain defined
is covered so instead of not found condition
the sentinel (filler) value could be used. )
$(P See $(LREF buildTrie), $(LREF TrieBuilder) for how to
define a domain of $(D Trie) keys and the sentinel value. )
Note:
Domain range-checking is only enabled in debug builds
and results in assertion failure.
*/
// templated to auto-detect pure, @safe and nothrow
TypeOfBitPacked!Value opIndex()(Key key) const
{
static if(hasBoundsCheck)
assert(mapTrieIndex!Prefix(key) < maxIndex);
size_t idx;
alias p = Prefix;
idx = cast(size_t)p[0](key);
foreach(i, v; p[0..$-1])
idx = cast(size_t)((_table.ptr!i[idx]<<p[i+1].bitSize) + p[i+1](key));
auto val = _table.ptr!(p.length-1)[idx];
return val;
}
@property size_t bytes(size_t n=size_t.max)() const
{
return _table.bytes!n;
}
@property size_t pages(size_t n)() const
{
return (bytes!n+2^^(Prefix[n].bitSize-1))
/2^^Prefix[n].bitSize;
}
void store(OutRange)(scope OutRange sink) const
if(isOutputRange!(OutRange, char))
{
_table.store(sink);
}
private:
MultiArray!(idxTypes!(Key, fullBitSize!(Prefix), Prefix[0..$]), Value) _table;
}
// create a tuple of 'sliceBits' that slice the 'top' of bits into pieces of sizes 'sizes'
// left-to-right, the most significant bits first
template GetBitSlicing(size_t top, sizes...)
{
static if(sizes.length > 0)
alias TypeTuple!(sliceBits!(top - sizes[0], top)
, GetBitSlicing!(top - sizes[0], sizes[1..$])) GetBitSlicing;
else
alias TypeTuple!() GetBitSlicing;
}
template callableWith(T)
{
template callableWith(alias Pred)
{
static if(!is(typeof(Pred(T.init))))
enum callableWith = false;
else
{
alias Result = typeof(Pred(T.init));
enum callableWith = isBitPackableType!(TypeOfBitPacked!(Result));
}
}
}
/*
Check if $(D Prefix) is a valid set of predicates
for $(D Trie) template having $(D Key) as the type of keys.
This requires all predicates to be callable, take
single argument of type $(D Key) and return unsigned value.
*/
template isValidPrefixForTrie(Key, Prefix...)
{
enum isValidPrefixForTrie = allSatisfy!(callableWith!Key, Prefix); // TODO: tighten the screws
}
/*
Check if $(D Args) is a set of maximum key value followed by valid predicates
for $(D Trie) template having $(D Key) as the type of keys.
*/
template isValidArgsForTrie(Key, Args...)
{
static if(Args.length > 1)
{
enum isValidArgsForTrie = isValidPrefixForTrie!(Key, Args)
|| (isValidPrefixForTrie!(Key, Args[1..$]) && is(typeof(Args[0]) : Key));
}
else
enum isValidArgsForTrie = isValidPrefixForTrie!Args;
}
@property size_t sumOfIntegerTuple(ints...)()
{
size_t count=0;
foreach(v; ints)
count += v;
return count;
}
/**
A shorthand for creating a custom multi-level fixed Trie
from a $(D CodepointSet). $(D sizes) are numbers of bits per level,
with the most significant bits used first.
Note: The sum of $(D sizes) must be equal 21.
See_Also: $(LREF toTrie), which is even simpler.
Example:
---
{
import std.stdio;
auto set = unicode("Number");
auto trie = codepointSetTrie!(8, 5, 8)(set);
writeln("Input code points to test:");
foreach(line; stdin.byLine)
{
int count=0;
foreach(dchar ch; line)
if(trie[ch])// is number
count++;
writefln("Contains %d number code points.", count);
}
}
---
*/
public template codepointSetTrie(sizes...)
if(sumOfIntegerTuple!sizes == 21)
{
auto codepointSetTrie(Set)(Set set)
if(isCodepointSet!Set)
{
auto builder = TrieBuilder!(bool, dchar, lastDchar+1, GetBitSlicing!(21, sizes))(false);
foreach(ival; set.byInterval)
builder.putRange(ival[0], ival[1], true);
return builder.build();
}
}
/// Type of Trie generated by codepointSetTrie function.
public template CodepointSetTrie(sizes...)
if(sumOfIntegerTuple!sizes == 21)
{
alias Prefix = GetBitSlicing!(21, sizes);
alias CodepointSetTrie = typeof(TrieBuilder!(bool, dchar, lastDchar+1, Prefix)(false).build());
}
/**
A slightly more general tool for building fixed $(D Trie)
for the Unicode data.
Specifically unlike $(D codepointSetTrie) it's allows creating mappings
of $(D dchar) to an arbitrary type $(D T).
Note: Overload taking $(D CodepointSet)s will naturally convert
only to bool mapping $(D Trie)s.
Example:
---
// pick characters from the Greek script
auto set = unicode.Greek;
// a user-defined property (or an expensive function)
// that we want to look up
static uint luckFactor(dchar ch)
{
// here we consider a character lucky
// if its code point has a lot of identical hex-digits
// e.g. arabic letter DDAL (\u0688) has a "luck factor" of 2
ubyte[6] nibbles; // 6 4-bit chunks of code point
uint value = ch;
foreach(i; 0..6)
{
nibbles[i] = value & 0xF;
value >>= 4;
}
uint luck;
foreach(n; nibbles)
luck = cast(uint)max(luck, count(nibbles[], n));
return luck;
}
// only unsigned built-ins are supported at the moment
alias LuckFactor = BitPacked!(uint, 3);
// create a temporary associative array (AA)
LuckFactor[dchar] map;
foreach(ch; set.byCodepoint)
map[ch] = luckFactor(ch);
// bits per stage are chosen randomly, fell free to optimize
auto trie = codepointTrie!(LuckFactor, 8, 5, 8)(map);
// from now on the AA is not needed
foreach(ch; set.byCodepoint)
assert(trie[ch] == luckFactor(ch)); // verify
// CJK is not Greek, thus it has the default value
assert(trie['\u4444'] == 0);
// and here is a couple of quite lucky Greek characters:
// Greek small letter epsilon with dasia
assert(trie['\u1F11'] == 3);
// Ancient Greek metretes sign
assert(trie['\U00010181'] == 3);
---
*/
public template codepointTrie(T, sizes...)
if(sumOfIntegerTuple!sizes == 21)
{
alias Prefix = GetBitSlicing!(21, sizes);
static if(is(TypeOfBitPacked!T == bool))
{
auto codepointTrie(Set)(in Set set)
if(isCodepointSet!Set)
{
return codepointSetTrie(set);
}
}
auto codepointTrie()(T[dchar] map, T defValue=T.init)
{
return buildTrie!(T, dchar, Prefix)(map, defValue);
}
// unsorted range of pairs
auto codepointTrie(R)(R range, T defValue=T.init)
if(isInputRange!R
&& is(typeof(ElementType!R.init[0]) : T)
&& is(typeof(ElementType!R.init[1]) : dchar))
{
// build from unsorted array of pairs
// TODO: expose index sorting functions for Trie
return buildTrie!(T, dchar, Prefix)(range, defValue, true);
}
}
unittest // codepointTrie example
{
// pick characters from the Greek script
auto set = unicode.Greek;
// a user-defined property (or an expensive function)
// that we want to look up
static uint luckFactor(dchar ch)
{
// here we consider a character lucky
// if its code point has a lot of identical hex-digits
// e.g. arabic letter DDAL (\u0688) has a "luck factor" of 2
ubyte[6] nibbles; // 6 4-bit chunks of code point
uint value = ch;
foreach(i; 0..6)
{
nibbles[i] = value & 0xF;
value >>= 4;
}
uint luck;
foreach(n; nibbles)
luck = cast(uint)max(luck, count(nibbles[], n));
return luck;
}
// only unsigned built-ins are supported at the moment
alias LuckFactor = BitPacked!(uint, 3);
// create a temporary associative array (AA)
LuckFactor[dchar] map;
foreach(ch; set.byCodepoint)
map[ch] = LuckFactor(luckFactor(ch));
// bits per stage are chosen randomly, fell free to optimize
auto trie = codepointTrie!(LuckFactor, 8, 5, 8)(map);
// from now on the AA is not needed
foreach(ch; set.byCodepoint)
assert(trie[ch] == luckFactor(ch)); // verify
// CJK is not Greek, thus it has the default value
assert(trie['\u4444'] == 0);
// and here is a couple of quite lucky Greek characters:
// Greek small letter epsilon with dasia
assert(trie['\u1F11'] == 3);
// Ancient Greek metretes sign
assert(trie['\U00010181'] == 3);
}
/// Type of Trie as generated by codepointTrie function.
public template CodepointTrie(T, sizes...)
if(sumOfIntegerTuple!sizes == 21)
{
alias Prefix = GetBitSlicing!(21, sizes);
alias CodepointTrie = typeof(TrieBuilder!(T, dchar, lastDchar+1, Prefix)(T.init).build());
}
// @@@BUG multiSort can's access private symbols from uni
public template cmpK0(alias Pred)
{
static bool cmpK0(Value, Key)
(Tuple!(Value, Key) a, Tuple!(Value, Key) b)
{
return Pred(a[1]) < Pred(b[1]);
}
}
/*
The most general utility for construction of $(D Trie)s
short of using $(D TrieBuilder) directly.
Provides a number of convenience overloads.
$(D Args) is tuple of maximum key value followed by
predicates to construct index from key.
Alternatively if the first argument is not a value convertible to $(D Key)
then the whole tuple of $(D Args) is treated as predicates
and the maximum Key is deduced from predicates.
*/
public template buildTrie(Value, Key, Args...)
if(isValidArgsForTrie!(Key, Args))
{
static if(is(typeof(Args[0]) : Key)) // prefix starts with upper bound on Key
{
alias Prefix = Args[1..$];
}
else
alias Prefix = Args;
alias getIndex = mapTrieIndex!(Prefix);
// for multi-sort
template GetComparators(size_t n)
{
static if(n > 0)
alias GetComparators =
TypeTuple!(GetComparators!(n-1), cmpK0!(Prefix[n-1]));
else
alias GetComparators = TypeTuple!();
}
/*
Build $(D Trie) from a range of a Key-Value pairs,
assuming it is sorted by Key as defined by the following lambda:
------
(a, b) => mapTrieIndex!(Prefix)(a) < mapTrieIndex!(Prefix)(b)
------
Exception is thrown if it's detected that the above order doesn't hold.
In other words $(LREF mapTrieIndex) should be a
monotonically increasing function that maps $(D Key) to an integer.
See also: $(XREF _algorithm, sort),
$(XREF _range, SortedRange),
$(XREF _algorithm, setUnion).
*/
auto buildTrie(Range)(Range range, Value filler=Value.init)
if(isInputRange!Range && is(typeof(Range.init.front[0]) : Value)
&& is(typeof(Range.init.front[1]) : Key))
{
auto builder = TrieBuilder!(Value, Key, Prefix)(filler);
foreach(v; range)
builder.putValue(v[1], v[0]);
return builder.build();
}
/*
If $(D Value) is bool (or BitPacked!(bool, x)) then it's possible
to build $(D Trie) from a range of open-right intervals of $(D Key)s.
The requirement on the ordering of keys (and the behavior on the
violation of it) is the same as for Key-Value range overload.
Intervals denote ranges of !$(D filler) i.e. the opposite of filler.
If no filler provided keys inside of the intervals map to true,
and $(D filler) is false.
*/
auto buildTrie(Range)(Range range, Value filler=Value.init)
if(is(TypeOfBitPacked!Value == bool)
&& isInputRange!Range && is(typeof(Range.init.front[0]) : Key)
&& is(typeof(Range.init.front[1]) : Key))
{
auto builder = TrieBuilder!(Value, Key, Prefix)(filler);
foreach(ival; range)
builder.putRange(ival[0], ival[1], !filler);
return builder.build();
}
auto buildTrie(Range)(Range range, Value filler, bool unsorted)
if(isInputRange!Range
&& is(typeof(Range.init.front[0]) : Value)
&& is(typeof(Range.init.front[1]) : Key))
{
alias Comps = GetComparators!(Prefix.length);
if(unsorted)
multiSort!(Comps)(range);
return buildTrie(range, filler);
}
/*
If $(D Value) is bool (or BitPacked!(bool, x)) then it's possible
to build $(D Trie) simply from an input range of $(D Key)s.
The requirement on the ordering of keys (and the behavior on the
violation of it) is the same as for Key-Value range overload.
Keys found in range denote !$(D filler) i.e. the opposite of filler.
If no filler provided keys map to true, and $(D filler) is false.
*/
auto buildTrie(Range)(Range range, Value filler=Value.init)
if(is(TypeOfBitPacked!Value == bool)
&& isInputRange!Range && is(typeof(Range.init.front) : Key))
{
auto builder = TrieBuilder!(Value, Key, Prefix)(filler);
foreach(v; range)
builder.putValue(v, !filler);
return builder.build();
}
/*
If $(D Key) is unsigned integer $(D Trie) could be constructed from array
of values where array index serves as key.
*/
auto buildTrie()(Value[] array, Value filler=Value.init)
if(isUnsigned!Key)
{
auto builder = TrieBuilder!(Value, Key, Prefix)(filler);
foreach(idx, v; array)
builder.putValue(idx, v);
return builder.build();
}
/*
Builds $(D Trie) from associative array.
*/
auto buildTrie(Key, Value)(Value[Key] map, Value filler=Value.init)
{
auto range = array(zip(map.values, map.keys));
return buildTrie(range, filler, true); // sort it
}
}
/++
Convenience function to construct optimal configurations for
packed Trie from any $(D set) of $(CODEPOINTS).
The parameter $(D level) indicates the number of trie levels to use,
allowed values are: 1, 2, 3 or 4. Levels represent different trade-offs
speed-size wise.
$(P Level 1 is fastest and the most memory hungry (a bit array). )
$(P Level 4 is the slowest and has the smallest footprint. )
See the $(S_LINK Synopsis, Synopsis) section for example.
Note:
Level 4 stays very practical (being faster and more predictable)
compared to using direct lookup on the $(D set) itself.
+/
public auto toTrie(size_t level, Set)(Set set)
if(isCodepointSet!Set)
{
static if(level == 1)
return codepointSetTrie!(21)(set);
else static if(level == 2)
return codepointSetTrie!(10, 11)(set);
else static if(level == 3)
return codepointSetTrie!(8, 5, 8)(set);
else static if(level == 4)
return codepointSetTrie!(6, 4, 4, 7)(set);
else
static assert(false,
"Sorry, toTrie doesn't support levels > 4, use codepointSetTrie directly");
}
/**
$(P Builds a $(D Trie) with typically optimal speed-size trade-off
and wraps it into a delegate of the following type:
$(D bool delegate(dchar ch)). )
$(P Effectively this creates a 'tester' lambda suitable
for algorithms like std.algorithm.find that take unary predicates. )
See the $(S_LINK Synopsis, Synopsis) section for example.
*/
public auto toDelegate(Set)(Set set)
if(isCodepointSet!Set)
{
// 3 is very small and is almost as fast as 2-level (due to CPU caches?)
auto t = toTrie!3(set);
return (dchar ch) => t[ch];
}
/**
$(P Opaque wrapper around unsigned built-in integers and
code unit (char/wchar/dchar) types.
Parameter $(D sz) indicates that the value is confined
to the range of [0, 2^^sz$(RPAREN). With this knowledge it can be
packed more tightly when stored in certain
data-structures like trie. )
Note:
$(P The $(D BitPacked!(T, sz)) is implicitly convertible to $(D T)
but not vise-versa. Users have to ensure the value fits in
the range required and use the $(D cast)
operator to perform the conversion.)
*/
struct BitPacked(T, size_t sz)
if(isIntegral!T || is(T:dchar))
{
enum bitSize = sz;
T _value;
alias _value this;
}
/*
Depending on the form of the passed argument $(D bitSizeOf) returns
the amount of bits required to represent a given type
or a return type of a given functor.
*/
template bitSizeOf(Args...)
if(Args.length == 1)
{
alias T = Args[0];
static if(__traits(compiles, { size_t val = T.bitSize; })) //(is(typeof(T.bitSize) : size_t))
{
enum bitSizeOf = T.bitSize;
}
else static if(is(ReturnType!T dummy == BitPacked!(U, bits), U, size_t bits))
{
enum bitSizeOf = bitSizeOf!(ReturnType!T);
}
else
{
enum bitSizeOf = T.sizeof*8;
}
}
/**
Tests if $(D T) is some instantiation of $(LREF BitPacked)!(U, x)
and thus suitable for packing.
*/
template isBitPacked(T)
{
static if(is(T dummy == BitPacked!(U, bits), U, size_t bits))
enum isBitPacked = true;
else
enum isBitPacked = false;
}
/**
Gives the type $(D U) from $(LREF BitPacked)!(U, x)
or $(D T) itself for every other type.
*/
template TypeOfBitPacked(T)
{
static if(is(T dummy == BitPacked!(U, bits), U, size_t bits))
alias TypeOfBitPacked = U;
else
alias TypeOfBitPacked = T;
}
/*
Wrapper, used in definition of custom data structures from $(D Trie) template.
Applying it to a unary lambda function indicates that the returned value always
fits within $(D bits) of bits.
*/
struct assumeSize(alias Fn, size_t bits)
{
enum bitSize = bits;
static auto ref opCall(T)(auto ref T arg)
{
return Fn(arg);
}
}
/*
A helper for defining lambda function that yields a slice
of certain bits from an unsigned integral value.
The resulting lambda is wrapped in assumeSize and can be used directly
with $(D Trie) template.
*/
struct sliceBits(size_t from, size_t to)
{
//for now bypass assumeSize, DMD has trouble inlining it
enum bitSize = to-from;
static auto opCall(T)(T x)
out(result)
{
assert(result < (1<<to-from));
}
body
{
static assert(from < to);
return (x >> from) & ((1<<(to-from))-1);
}
}
uint low_8(uint x) { return x&0xFF; }
@safe pure nothrow uint midlow_8(uint x){ return (x&0xFF00)>>8; }
alias assumeSize!(low_8, 8) lo8;
alias assumeSize!(midlow_8, 8) mlo8;
static assert(bitSizeOf!lo8 == 8);
static assert(bitSizeOf!(sliceBits!(4, 7)) == 3);
static assert(bitSizeOf!(BitPacked!(uint, 2)) == 2);
template Sequence(size_t start, size_t end)
{
static if(start < end)
alias TypeTuple!(start, Sequence!(start+1, end)) Sequence;
else
alias TypeTuple!() Sequence;
}
//---- TRIE TESTS ----
unittest
{
static trieStats(TRIE)(TRIE t)
{
version(std_uni_stats)
{
import std.stdio;
writeln("---TRIE FOOTPRINT STATS---");
foreach(i; Sequence!(0, t.table.dim) )
{
writefln("lvl%s = %s bytes; %s pages"
, i, t.bytes!i, t.pages!i);
}
writefln("TOTAL: %s bytes", t.bytes);
version(none)
{
writeln("INDEX (excluding value level):");
foreach(i; Sequence!(0, t.table.dim-1) )
writeln(t.table.slice!(i)[0..t.table.length!i]);
}
writeln("---------------------------");
}
}
//@@@BUG link failure, lambdas not found by linker somehow (in case of trie2)
// alias assumeSize!(8, function (uint x) { return x&0xFF; }) lo8;
// alias assumeSize!(7, function (uint x) { return (x&0x7F00)>>8; }) next8;
alias CodepointSet Set;
auto set = Set('A','Z','a','z');
auto trie = buildTrie!(bool, uint, 256, lo8)(set.byInterval);// simple bool array
for(int a='a'; a<'z';a++)
assert(trie[a]);
for(int a='A'; a<'Z';a++)
assert(trie[a]);
for(int a=0; a<'A'; a++)
assert(!trie[a]);
for(int a ='Z'; a<'a'; a++)
assert(!trie[a]);
trieStats(trie);
auto redundant2 = Set(
1, 18, 256+2, 256+111, 512+1, 512+18, 768+2, 768+111);
auto trie2 = buildTrie!(bool, uint, 1024, mlo8, lo8)(redundant2.byInterval);
trieStats(trie2);
foreach(e; redundant2.byCodepoint)
assert(trie2[e], text(cast(uint)e, " - ", trie2[e]));
foreach(i; 0..1024)
{
assert(trie2[i] == (i in redundant2));
}
auto redundant3 = Set(
2, 4, 6, 8, 16,
2+16, 4+16, 16+6, 16+8, 16+16,
2+32, 4+32, 32+6, 32+8,
);
enum max3 = 256;
// sliceBits
auto trie3 = buildTrie!(bool, uint, max3,
sliceBits!(6,8), sliceBits!(4,6), sliceBits!(0,4)
)(redundant3.byInterval);
trieStats(trie3);
foreach(i; 0..max3)
assert(trie3[i] == (i in redundant3), text(cast(uint)i));
auto redundant4 = Set(
10, 64, 64+10, 128, 128+10, 256, 256+10, 512,
1000, 2000, 3000, 4000, 5000, 6000
);
enum max4 = 2^^16;
auto trie4 = buildTrie!(bool, size_t, max4,
sliceBits!(13, 16), sliceBits!(9, 13), sliceBits!(6, 9) , sliceBits!(0, 6)
)(redundant4.byInterval);
foreach(i; 0..max4){
if(i in redundant4)
assert(trie4[i], text(cast(uint)i));
}
trieStats(trie4);
alias mapToS = mapTrieIndex!(useItemAt!(0, char));
string[] redundantS = ["tea", "start", "orange"];
redundantS.sort!((a,b) => mapToS(a) < mapToS(b))();
auto strie = buildTrie!(bool, string, useItemAt!(0, char))(redundantS);
// using first char only
assert(redundantS == ["orange", "start", "tea"]);
assert(strie["test"], text(strie["test"]));
assert(!strie["aea"]);
assert(strie["s"]);
// a bit size test
auto a = array(map!(x => to!ubyte(x))(iota(0, 256)));
auto bt = buildTrie!(bool, ubyte, sliceBits!(7, 8), sliceBits!(5, 7), sliceBits!(0, 5))(a);
trieStats(bt);
foreach(i; 0..256)
assert(bt[cast(ubyte)i]);
}
template useItemAt(size_t idx, T)
if(isIntegral!T || is(T: dchar))
{
size_t impl(in T[] arr){ return arr[idx]; }
alias useItemAt = assumeSize!(impl, 8*T.sizeof);
}
template useLastItem(T)
{
size_t impl(in T[] arr){ return arr[$-1]; }
alias useLastItem = assumeSize!(impl, 8*T.sizeof);
}
template fullBitSize(Prefix...)
{
static if(Prefix.length > 0)
enum fullBitSize = bitSizeOf!(Prefix[0])+fullBitSize!(Prefix[1..$]);
else
enum fullBitSize = 0;
}
template idxTypes(Key, size_t fullBits, Prefix...)
{
static if(Prefix.length == 1)
{// the last level is value level, so no index once reduced to 1-level
alias TypeTuple!() idxTypes;
}
else
{
// Important note on bit packing
// Each level has to hold enough of bits to address the next one
// The bottom level is known to hold full bit width
// thus it's size in pages is full_bit_width - size_of_last_prefix
// Recourse on this notion
alias TypeTuple!(
idxTypes!(Key, fullBits - bitSizeOf!(Prefix[$-1]), Prefix[0..$-1]),
BitPacked!(typeof(Prefix[$-2](Key.init)), fullBits - bitSizeOf!(Prefix[$-1]))
) idxTypes;
}
}
//============================================================================
@trusted int comparePropertyName(Char1, Char2)(const(Char1)[] a, const(Char2)[] b)
{
alias low = std.ascii.toLower;
return cmp(
a.map!(x => low(x))()
.filter!(x => !isWhite(x) && x != '-' && x != '_')(),
b.map!(x => low(x))()
.filter!(x => !isWhite(x) && x != '-' && x != '_')()
);
}
bool propertyNameLess(Char1, Char2)(const(Char1)[] a, const(Char2)[] b)
{
return comparePropertyName(a, b) < 0;
}
//============================================================================
// Utilities for compression of Unicode code point sets
//============================================================================
@safe void compressTo(uint val, ref ubyte[] arr) pure nothrow
{
// not optimized as usually done 1 time (and not public interface)
if(val < 128)
arr ~= cast(ubyte)val;
else if(val < (1<<13))
{
arr ~= (0b1_00<<5) | cast(ubyte)(val>>8);
arr ~= val & 0xFF;
}
else
{
assert(val < (1<<21));
arr ~= (0b1_01<<5) | cast(ubyte)(val>>16);
arr ~= (val >> 8) & 0xFF;
arr ~= val & 0xFF;
}
}
@safe uint decompressFrom(const(ubyte)[] arr, ref size_t idx) pure
{
uint first = arr[idx++];
if(!(first & 0x80)) // no top bit -> [0..127]
return first;
uint extra = ((first>>5) & 1) + 1; // [1, 2]
uint val = (first & 0x1F);
enforce(idx + extra <= arr.length, "bad code point interval encoding");
foreach(j; 0..extra)
val = (val<<8) | arr[idx+j];
idx += extra;
return val;
}
package ubyte[] compressIntervals(Range)(Range intervals)
if(isInputRange!Range && isIntegralPair!(ElementType!Range))
{
ubyte[] storage;
uint base = 0;
// RLE encode
foreach(val; intervals)
{
compressTo(val[0]-base, storage);
base = val[0];
if(val[1] != lastDchar+1) // till the end of the domain so don't store it
{
compressTo(val[1]-base, storage);
base = val[1];
}
}
return storage;
}
unittest
{
auto run = [tuple(80, 127), tuple(128, (1<<10)+128)];
ubyte[] enc = [cast(ubyte)80, 47, 1, (0b1_00<<5) | (1<<2), 0];
assert(compressIntervals(run) == enc);
auto run2 = [tuple(0, (1<<20)+512+1), tuple((1<<20)+512+4, lastDchar+1)];
ubyte[] enc2 = [cast(ubyte)0, (0b1_01<<5) | (1<<4), 2, 1, 3]; // odd length-ed
assert(compressIntervals(run2) == enc2);
size_t idx = 0;
assert(decompressFrom(enc, idx) == 80);
assert(decompressFrom(enc, idx) == 47);
assert(decompressFrom(enc, idx) == 1);
assert(decompressFrom(enc, idx) == (1<<10));
idx = 0;
assert(decompressFrom(enc2, idx) == 0);
assert(decompressFrom(enc2, idx) == (1<<20)+512+1);
assert(equalS(decompressIntervals(compressIntervals(run)), run));
assert(equalS(decompressIntervals(compressIntervals(run2)), run2));
}
// Creates a range of $(D CodepointInterval) that lazily decodes compressed data.
@safe package auto decompressIntervals(const(ubyte)[] data)
{
return DecompressedIntervals(data);
}
@trusted struct DecompressedIntervals
{
const(ubyte)[] _stream;
size_t _idx;
CodepointInterval _front;
this(const(ubyte)[] stream)
{
_stream = stream;
popFront();
}
@property CodepointInterval front()
{
assert(!empty);
return _front;
}
void popFront()
{
if(_idx == _stream.length)
{
_idx = size_t.max;
return;
}
uint base = _front[1];
_front[0] = base + decompressFrom(_stream, _idx);
if(_idx == _stream.length)// odd length ---> till the end
_front[1] = lastDchar+1;
else
{
base = _front[0];
_front[1] = base + decompressFrom(_stream, _idx);
}
}
@property bool empty() const
{
return _idx == size_t.max;
}
@property DecompressedIntervals save() { return this; }
}
static assert(isInputRange!DecompressedIntervals);
static assert(isForwardRange!DecompressedIntervals);
//============================================================================
version(std_uni_bootstrap){}
else
{
// helper for looking up code point sets
@trusted ptrdiff_t findUnicodeSet(alias table, C)(in C[] name)
{
auto range = assumeSorted!((a,b) => propertyNameLess(a,b))
(table.map!"a.name"());
size_t idx = range.lowerBound(name).length;
if(idx < range.length && comparePropertyName(range[idx], name) == 0)
return idx;
return -1;
}
// another one that loads it
@trusted bool loadUnicodeSet(alias table, Set, C)(in C[] name, ref Set dest)
{
auto idx = findUnicodeSet!table(name);
if(idx >= 0)
{
dest = Set(asSet(table[idx].compressed));
return true;
}
return false;
}
@trusted bool loadProperty(Set=CodepointSet, C)
(in C[] name, ref Set target)
{
alias comparePropertyName ucmp;
// conjure cumulative properties by hand
if(ucmp(name, "L") == 0 || ucmp(name, "Letter") == 0)
{
target |= asSet(uniProps.Lu);
target |= asSet(uniProps.Ll);
target |= asSet(uniProps.Lt);
target |= asSet(uniProps.Lo);
target |= asSet(uniProps.Lm);
}
else if(ucmp(name,"LC") == 0 || ucmp(name,"Cased Letter")==0)
{
target |= asSet(uniProps.Ll);
target |= asSet(uniProps.Lu);
target |= asSet(uniProps.Lt);// Title case
}
else if(ucmp(name, "M") == 0 || ucmp(name, "Mark") == 0)
{
target |= asSet(uniProps.Mn);
target |= asSet(uniProps.Mc);
target |= asSet(uniProps.Me);
}
else if(ucmp(name, "N") == 0 || ucmp(name, "Number") == 0)
{
target |= asSet(uniProps.Nd);
target |= asSet(uniProps.Nl);
target |= asSet(uniProps.No);
}
else if(ucmp(name, "P") == 0 || ucmp(name, "Punctuation") == 0)
{
target |= asSet(uniProps.Pc);
target |= asSet(uniProps.Pd);
target |= asSet(uniProps.Ps);
target |= asSet(uniProps.Pe);
target |= asSet(uniProps.Pi);
target |= asSet(uniProps.Pf);
target |= asSet(uniProps.Po);
}
else if(ucmp(name, "S") == 0 || ucmp(name, "Symbol") == 0)
{
target |= asSet(uniProps.Sm);
target |= asSet(uniProps.Sc);
target |= asSet(uniProps.Sk);
target |= asSet(uniProps.So);
}
else if(ucmp(name, "Z") == 0 || ucmp(name, "Separator") == 0)
{
target |= asSet(uniProps.Zs);
target |= asSet(uniProps.Zl);
target |= asSet(uniProps.Zp);
}
else if(ucmp(name, "C") == 0 || ucmp(name, "Other") == 0)
{
target |= asSet(uniProps.Co);
target |= asSet(uniProps.Lo);
target |= asSet(uniProps.No);
target |= asSet(uniProps.So);
target |= asSet(uniProps.Po);
}
else if(ucmp(name, "graphical") == 0){
target |= asSet(uniProps.Alphabetic);
target |= asSet(uniProps.Mn);
target |= asSet(uniProps.Mc);
target |= asSet(uniProps.Me);
target |= asSet(uniProps.Nd);
target |= asSet(uniProps.Nl);
target |= asSet(uniProps.No);
target |= asSet(uniProps.Pc);
target |= asSet(uniProps.Pd);
target |= asSet(uniProps.Ps);
target |= asSet(uniProps.Pe);
target |= asSet(uniProps.Pi);
target |= asSet(uniProps.Pf);
target |= asSet(uniProps.Po);
target |= asSet(uniProps.Zs);
target |= asSet(uniProps.Sm);
target |= asSet(uniProps.Sc);
target |= asSet(uniProps.Sk);
target |= asSet(uniProps.So);
}
else if(ucmp(name, "any") == 0)
target = Set(0,0x110000);
else if(ucmp(name, "ascii") == 0)
target = Set(0,0x80);
else
return loadUnicodeSet!(uniProps.tab)(name, target);
return true;
}
// CTFE-only helper for checking property names at compile-time
@safe bool isPrettyPropertyName(C)(in C[] name)
{
auto names = [
"L", "Letters",
"LC", "Cased Letter",
"M", "Mark",
"N", "Number",
"P", "Punctuation",
"S", "Symbol",
"Z", "Separator"
"Graphical",
"any",
"ascii"
];
auto x = find!(x => comparePropertyName(x, name) == 0)(names);
return !x.empty;
}
// ditto, CTFE-only, not optimized
@safe private static bool findSetName(alias table, C)(in C[] name)
{
return findUnicodeSet!table(name) >= 0;
}
template SetSearcher(alias table, string kind)
{
/// Run-time checked search.
static auto opCall(C)(in C[] name)
if(is(C : dchar))
{
CodepointSet set;
if(loadUnicodeSet!table(name, set))
return set;
throw new Exception("No unicode set for "~kind~" by name "
~name.to!string()~" was found.");
}
/// Compile-time checked search.
static @property auto opDispatch(string name)()
{
static if(findSetName!table(name))
{
CodepointSet set;
loadUnicodeSet!table(name, set);
return set;
}
else
static assert(false, "No unicode set for "~kind~" by name "
~name~" was found.");
}
}
/**
A single entry point to lookup Unicode $(CODEPOINT) sets by name or alias of
a block, script or general category.
It uses well defined standard rules of property name lookup.
This includes fuzzy matching of names, so that
'White_Space', 'white-SpAce' and 'whitespace' are all considered equal
and yield the same set of white space $(CHARACTERS).
*/
@safe public struct unicode
{
/**
Performs the lookup of set of $(CODEPOINTS)
with compile-time correctness checking.
This short-cut version combines 3 searches:
across blocks, scripts, and common binary properties.
Note that since scripts and blocks overlap the
usual trick to disambiguate is used - to get a block use
$(D unicode.InBlockName), to search a script
use $(D unicode.ScriptName).
See also $(LREF block), $(LREF script)
and (not included in this search) $(LREF hangulSyllableType).
Example:
---
auto ascii = unicode.ASCII;
assert(ascii['A']);
assert(ascii['~']);
assert(!ascii['\u00e0']);
// matching is case-insensitive
assert(ascii == unicode.ascII);
assert(!ascii['à']);
// underscores, '-' and whitespace in names are ignored too
auto latin = unicode.in_latin1_Supplement;
assert(latin['à']);
assert(!latin['$']);
// BTW Latin 1 Supplement is a block, hence "In" prefix
assert(latin == unicode("In Latin 1 Supplement"));
import std.exception;
// run-time look up throws if no such set is found
assert(collectException(unicode("InCyrilliac")));
---
*/
static @property auto opDispatch(string name)()
{
static if(findAny(name))
return loadAny(name);
else
static assert(false, "No unicode set by name "~name~" was found.");
}
/**
The same lookup across blocks, scripts, or binary properties,
but performed at run-time.
This version is provided for cases where $(D name)
is not known beforehand; otherwise compile-time
checked $(LREF opDispatch) is typically a better choice.
See the $(S_LINK Unicode properties, table of properties) for available
sets.
*/
static auto opCall(C)(in C[] name)
if(is(C : dchar))
{
return loadAny(name);
}
/**
Narrows down the search for sets of $(CODEPOINTS) to all Unicode blocks.
See also $(S_LINK Unicode properties, table of properties).
Note:
Here block names are unambiguous as no scripts are searched
and thus to search use simply $(D unicode.block.BlockName) notation.
See $(S_LINK Unicode properties, table of properties) for available sets.
Example:
---
// use .block for explicitness
assert(unicode.block.Greek_and_Coptic == unicode.InGreek_and_Coptic);
---
*/
struct block
{
mixin SetSearcher!(blocks.tab, "block");
}
/**
Narrows down the search for sets of $(CODEPOINTS) to all Unicode scripts.
See the $(S_LINK Unicode properties, table of properties) for available
sets.
Example:
---
auto arabicScript = unicode.script.arabic;
auto arabicBlock = unicode.block.arabic;
// there is an intersection between script and block
assert(arabicBlock['']);
assert(arabicScript['']);
// but they are different
assert(arabicBlock != arabicScript);
assert(arabicBlock == unicode.inArabic);
assert(arabicScript == unicode.arabic);
---
*/
struct script
{
mixin SetSearcher!(scripts.tab, "script");
}
/**
Fetch a set of $(CODEPOINTS) that have the given hangul syllable type.
Other non-binary properties (once supported) follow the same
notation - $(D unicode.propertyName.propertyValue) for compile-time
checked access and $(D unicode.propertyName(propertyValue))
for run-time checked one.
See the $(S_LINK Unicode properties, table of properties) for available
sets.
Example:
---
// L here is syllable type not Letter as in unicode.L short-cut
auto leadingVowel = unicode.hangulSyllableType("L");
// check that some leading vowels are present
foreach(vowel; '\u1110'..'\u115F')
assert(leadingVowel[vowel]);
assert(leadingVowel == unicode.hangulSyllableType.L);
---
*/
struct hangulSyllableType
{
mixin SetSearcher!(hangul.tab, "hangul syllable type");
}
private:
alias ucmp = comparePropertyName;
static bool findAny(string name)
{
return isPrettyPropertyName(name)
|| findSetName!(uniProps.tab)(name) || findSetName!(scripts.tab)(name)
|| (ucmp(name[0..2],"In") == 0 && findSetName!(blocks.tab)(name[2..$]));
}
static auto loadAny(Set=CodepointSet, C)(in C[] name)
{
Set set;
bool loaded = loadProperty(name, set) || loadUnicodeSet!(scripts.tab)(name, set)
|| (ucmp(name[0..2],"In") == 0
&& loadUnicodeSet!(blocks.tab)(name[2..$], set));
if(loaded)
return set;
throw new Exception("No unicode set by name "~name.to!string()~" was found.");
}
// FIXME: re-disable once the compiler is fixed
// Disabled to prevent the mistake of creating instances of this pseudo-struct.
//@disable ~this();
}
unittest
{
auto ascii = unicode.ASCII;
assert(ascii['A']);
assert(ascii['~']);
assert(!ascii['\u00e0']);
// matching is case-insensitive
assert(ascii == unicode.ascII);
assert(!ascii['à']);
// underscores, '-' and whitespace in names are ignored too
auto latin = unicode.Inlatin1_Supplement;
assert(latin['à']);
assert(!latin['$']);
// BTW Latin 1 Supplement is a block, hence "In" prefix
assert(latin == unicode("In Latin 1 Supplement"));
import std.exception;
// R-T look up throws if no such set is found
assert(collectException(unicode("InCyrilliac")));
assert(unicode.block.Greek_and_Coptic == unicode.InGreek_and_Coptic);
// L here is explicitly syllable type not "Letter" as in unicode.L
auto leadingVowel = unicode.hangulSyllableType("L");
// check that some leading vowels are present
foreach(vowel; '\u1110'..'\u115F'+1)
assert(leadingVowel[vowel]);
assert(leadingVowel == unicode.hangulSyllableType.L);
auto arabicScript = unicode.script.arabic;
auto arabicBlock = unicode.block.arabic;
// there is an intersection between script and block
assert(arabicBlock['']);
assert(arabicScript['']);
// but they are different
assert(arabicBlock != arabicScript);
assert(arabicBlock == unicode.inArabic);
assert(arabicScript == unicode.arabic);
}
unittest
{
assert(unicode("InHebrew") == asSet(blocks.Hebrew));
assert(unicode("separator") == (asSet(uniProps.Zs) | asSet(uniProps.Zl) | asSet(uniProps.Zp)));
assert(unicode("In-Kharoshthi") == asSet(blocks.Kharoshthi));
}
enum EMPTY_CASE_TRIE = ushort.max;// from what gen_uni uses internally
// control - '\r'
enum controlSwitch = `
case '\u0000':..case '\u0008':case '\u000E':..case '\u001F':case '\u007F':..case '\u0084':case '\u0086':..case '\u009F': case '\u0009':..case '\u000C': case '\u0085':
`;
// TODO: redo the most of hangul stuff algorithmically in case of Graphemes too
// kill unrolled switches
private static bool isRegionalIndicator(dchar ch)
{
return ch >= '\U0001F1E6' && ch <= '\U0001F1FF';
}
template genericDecodeGrapheme(bool getValue)
{
alias graphemeExtend = graphemeExtendTrie;
alias spacingMark = mcTrie;
static if(getValue)
alias Grapheme Value;
else
alias void Value;
Value genericDecodeGrapheme(Input)(ref Input range)
{
enum GraphemeState {
Start,
CR,
RI,
L,
V,
LVT
}
static if(getValue)
Grapheme grapheme;
auto state = GraphemeState.Start;
enum eat = q{
static if(getValue)
grapheme ~= ch;
range.popFront();
};
dchar ch;
assert(!range.empty, "Attempting to decode grapheme from an empty " ~ Input.stringof);
while(!range.empty)
{
ch = range.front;
final switch(state) with(GraphemeState)
{
case Start:
mixin(eat);
if(ch == '\r')
state = CR;
else if(isRegionalIndicator(ch))
state = RI;
else if(isHangL(ch))
state = L;
else if(hangLV[ch] || isHangV(ch))
state = V;
else if(hangLVT[ch])
state = LVT;
else if(isHangT(ch))
state = LVT;
else
{
switch(ch)
{
mixin(controlSwitch);
goto L_End;
default:
goto L_End_Extend;
}
}
break;
case CR:
if(ch == '\n')
mixin(eat);
goto L_End_Extend;
case RI:
if(isRegionalIndicator(ch))
mixin(eat);
else
goto L_End_Extend;
break;
case L:
if(isHangL(ch))
mixin(eat);
else if(isHangV(ch) || hangLV[ch])
{
state = V;
mixin(eat);
}
else if(hangLVT[ch])
{
state = LVT;
mixin(eat);
}
else
goto L_End_Extend;
break;
case V:
if(isHangV(ch))
mixin(eat);
else if(isHangT(ch))
{
state = LVT;
mixin(eat);
}
else
goto L_End_Extend;
break;
case LVT:
if(isHangT(ch))
{
mixin(eat);
}
else
goto L_End_Extend;
break;
}
}
L_End_Extend:
while(!range.empty)
{
ch = range.front;
// extend & spacing marks
if(!graphemeExtend[ch] && !spacingMark[ch])
break;
mixin(eat);
}
L_End:
static if(getValue)
return grapheme;
}
}
@trusted:
public: // Public API continues
/++
Returns the length of grapheme cluster starting at $(D index).
Both the resulting length and the $(D index) are measured
in $(S_LINK Code unit, code units).
Example:
---
// ASCII as usual is 1 code unit, 1 code point etc.
assert(graphemeStride(" ", 1) == 1);
// A + combing ring above
string city = "A\u030Arhus";
size_t first = graphemeStride(city, 0);
assert(first == 3); //\u030A has 2 UTF-8 code units
assert(city[0..first] == "A\u030A");
assert(city[first..$] == "rhus");
---
+/
size_t graphemeStride(C)(in C[] input, size_t index)
if(is(C : dchar))
{
auto src = input[index..$];
auto n = src.length;
genericDecodeGrapheme!(false)(src);
return n - src.length;
}
// for now tested separately see test_grapheme.d
unittest
{
assert(graphemeStride(" ", 1) == 1);
// A + combing ring above
string city = "A\u030Arhus";
size_t first = graphemeStride(city, 0);
assert(first == 3); //\u030A has 2 UTF-8 code units
assert(city[0..first] == "A\u030A");
assert(city[first..$] == "rhus");
}
/++
Reads one full grapheme cluster from an input range of dchar $(D inp).
For examples see the $(LREF Grapheme) below.
Note:
This function modifies $(D inp) and thus $(D inp)
must be an L-value.
+/
Grapheme decodeGrapheme(Input)(ref Input inp)
if(isInputRange!Input && is(Unqual!(ElementType!Input) == dchar))
{
return genericDecodeGrapheme!true(inp);
}
unittest
{
Grapheme gr;
string s = " \u0020\u0308 ";
gr = decodeGrapheme(s);
assert(gr.length == 1 && gr[0] == ' ');
gr = decodeGrapheme(s);
assert(gr.length == 2 && equalS(gr[0..2], " \u0308"));
s = "\u0300\u0308\u1100";
assert(equalS(decodeGrapheme(s)[], "\u0300\u0308"));
assert(equalS(decodeGrapheme(s)[], "\u1100"));
s = "\u11A8\u0308\uAC01";
assert(equalS(decodeGrapheme(s)[], "\u11A8\u0308"));
assert(equalS(decodeGrapheme(s)[], "\uAC01"));
}
/++
$(P A structure designed to effectively pack $(CHARACTERS)
of a $(CLUSTER).
)
$(P $(D Grapheme) has value semantics so 2 copies of a $(D Grapheme)
always refer to distinct objects. In most actual scenarios a $(D Grapheme)
fits on the stack and avoids memory allocation overhead for all but quite
long clusters.
)
Example:
---
import std.algorithm;
string bold = "ku\u0308hn";
// note that decodeGrapheme takes parameter by ref
// slicing a grapheme yields a range of dchar
assert(decodeGrapheme(bold)[].equal("k"));
// the next grapheme is 2 characters long
auto wideOne = decodeGrapheme(bold);
assert(wideOne.length == 2);
assert(wideOne[].equal("u\u0308"));
// the usual range manipulation is possible
assert(wideOne[].filter!isMark.equal("\u0308"));
---
$(P See also $(LREF decodeGrapheme), $(LREF graphemeStride). )
+/
@trusted struct Grapheme
{
public:
this(C)(in C[] chars...)
if(is(C : dchar))
{
this ~= chars;
}
this(Input)(Input seq)
if(!isDynamicArray!Input
&& isInputRange!Input && is(ElementType!Input : dchar))
{
this ~= seq;
}
/// Gets a $(CODEPOINT) at the given index in this cluster.
dchar opIndex(size_t index) const pure nothrow
{
assert(index < length);
return read24(isBig ? ptr_ : small_.ptr, index);
}
/++
Writes a $(CODEPOINT) $(D ch) at given index in this cluster.
Warning:
Use of this facility may invalidate grapheme cluster,
see also $(LREF Grapheme.valid).
Example:
---
auto g = Grapheme("A\u0302");
assert(g[0] == 'A');
assert(g.valid);
g[1] = '~'; // ASCII tilda is not a combining mark
assert(g[1] == '~');
assert(!g.valid);
---
+/
void opIndexAssign(dchar ch, size_t index) pure nothrow
{
assert(index < length);
write24(isBig ? ptr_ : small_.ptr, ch, index);
}
/++
Random-access range over Grapheme's $(CHARACTERS).
Warning: Invalidates when this Grapheme leaves the scope,
attempts to use it then would lead to memory corruption.
+/
@system auto opSlice(size_t a, size_t b) pure nothrow
{
return sliceOverIndexed(a, b, &this);
}
/// ditto
@system auto opSlice() pure nothrow
{
return sliceOverIndexed(0, length, &this);
}
/// Grapheme cluster length in $(CODEPOINTS).
@property size_t length() const pure nothrow
{
return isBig ? len_ : slen_ & 0x7F;
}
/++
Append $(CHARACTER) $(D ch) to this grapheme.
Warning:
Use of this facility may invalidate grapheme cluster,
see also $(D valid).
Example:
---
auto g = Grapheme("A");
assert(g.valid);
g ~= '\u0301';
assert(g[].equal("A\u0301"));
assert(g.valid);
g ~= "B";
// not a valid grapheme cluster anymore
assert(!g.valid);
// still could be useful though
assert(g[].equal("A\u0301B"));
---
See also $(LREF Grapheme.valid) below.
+/
ref opOpAssign(string op)(dchar ch)
{
static if(op == "~")
{
if(!isBig)
{
if(slen_ + 1 > small_cap)
convertToBig();// & fallthrough to "big" branch
else
{
write24(small_.ptr, ch, smallLength);
slen_++;
return this;
}
}
assert(isBig);
if(len_ + 1 > cap_)
{
cap_ += grow;
ptr_ = cast(ubyte*)enforce(realloc(ptr_, 3*(cap_+1)));
}
write24(ptr_, ch, len_++);
return this;
}
else
static assert(false, "No operation "~op~" defined for Grapheme");
}
/// Append all $(CHARACTERS) from the input range $(D inp) to this Grapheme.
ref opOpAssign(string op, Input)(Input inp)
if(isInputRange!Input && is(ElementType!Input : dchar))
{
static if(op == "~")
{
foreach(dchar ch; inp)
this ~= ch;
return this;
}
else
static assert(false, "No operation "~op~" defined for Grapheme");
}
/++
True if this object contains valid extended grapheme cluster.
Decoding primitives of this module always return a valid $(D Grapheme).
Appending to and direct manipulation of grapheme's $(CHARACTERS) may
render it no longer valid. Certain applications may chose to use
Grapheme as a "small string" of any $(CODEPOINTS) and ignore this property
entirely.
+/
@property bool valid()() /*const*/
{
auto r = this[];
genericDecodeGrapheme!false(r);
return r.length == 0;
}
this(this)
{
if(isBig)
{// dup it
auto raw_cap = 3*(cap_+1);
auto p = cast(ubyte*)enforce(malloc(raw_cap));
p[0..raw_cap] = ptr_[0..raw_cap];
ptr_ = p;
}
}
~this()
{
if(isBig)
{
free(ptr_);
}
}
private:
enum small_bytes = ((ubyte*).sizeof+3*size_t.sizeof-1);
// "out of the blue" grow rate, needs testing
// (though graphemes are typically small < 9)
enum grow = 20;
enum small_cap = small_bytes/3;
enum small_flag = 0x80, small_mask = 0x7F;
// 16 bytes in 32bits, should be enough for the majority of cases
union
{
struct
{
ubyte* ptr_;
size_t cap_;
size_t len_;
size_t padding_;
}
struct
{
ubyte[small_bytes] small_;
ubyte slen_;
}
}
void convertToBig()
{
size_t k = smallLength;
ubyte* p = cast(ubyte*)enforce(malloc(3*(grow+1)));
for(int i=0; i<k; i++)
write24(p, read24(small_.ptr, i), i);
// now we can overwrite small array data
ptr_ = p;
len_ = slen_;
assert(grow > len_);
cap_ = grow;
setBig();
}
void setBig(){ slen_ |= small_flag; }
@property size_t smallLength() pure nothrow
{
return slen_ & small_mask;
}
@property ubyte isBig() const pure nothrow
{
return slen_ & small_flag;
}
}
static assert(Grapheme.sizeof == size_t.sizeof*4);
// verify the example
unittest
{
import std.algorithm;
string bold = "ku\u0308hn";
// note that decodeGrapheme takes parameter by ref
auto first = decodeGrapheme(bold);
assert(first.length == 1);
assert(first[0] == 'k');
// the next grapheme is 2 characters long
auto wideOne = decodeGrapheme(bold);
// slicing a grapheme yields a random-access range of dchar
assert(wideOne[].equalS("u\u0308"));
assert(wideOne.length == 2);
static assert(isRandomAccessRange!(typeof(wideOne[])));
// all of the usual range manipulation is possible
assert(wideOne[].filter!isMark().equalS("\u0308"));
auto g = Grapheme("A");
assert(g.valid);
g ~= '\u0301';
assert(g[].equalS("A\u0301"));
assert(g.valid);
g ~= "B";
// not a valid grapheme cluster anymore
assert(!g.valid);
// still could be useful though
assert(g[].equalS("A\u0301B"));
}
unittest
{
auto g = Grapheme("A\u0302");
assert(g[0] == 'A');
assert(g.valid);
g[1] = '~'; // ASCII tilda is not a combining mark
assert(g[1] == '~');
assert(!g.valid);
}
unittest
{
// not valid clusters (but it just a test)
auto g = Grapheme('a', 'b', 'c', 'd', 'e');
assert(g[0] == 'a');
assert(g[1] == 'b');
assert(g[2] == 'c');
assert(g[3] == 'd');
assert(g[4] == 'e');
g[3] = 'Й';
assert(g[2] == 'c');
assert(g[3] == 'Й', text(g[3], " vs ", 'Й'));
assert(g[4] == 'e');
assert(!g.valid);
g ~= 'ц';
g ~= '~';
assert(g[0] == 'a');
assert(g[1] == 'b');
assert(g[2] == 'c');
assert(g[3] == 'Й');
assert(g[4] == 'e');
assert(g[5] == 'ц');
assert(g[6] == '~');
assert(!g.valid);
Grapheme copy = g;
copy[0] = 'X';
copy[1] = '-';
assert(g[0] == 'a' && copy[0] == 'X');
assert(g[1] == 'b' && copy[1] == '-');
assert(equalS(g[2..g.length], copy[2..copy.length]));
copy = Grapheme("АБВГДЕЁЖЗИКЛМ");
assert(equalS(copy[0..8], "АБВГДЕЁЖ"), text(copy[0..8]));
copy ~= "xyz";
assert(equalS(copy[13..15], "xy"), text(copy[13..15]));
assert(!copy.valid);
Grapheme h;
foreach(dchar v; iota(cast(int)'A', cast(int)'Z'+1).map!"cast(dchar)a"())
h ~= v;
assert(equalS(h[], iota(cast(int)'A', cast(int)'Z'+1)));
}
/++
$(P Does basic case-insensitive comparison of strings $(D str1) and $(D str2).
This function uses simpler comparison rule thus achieving better performance
then $(LREF icmp). However keep in mind the warning below.)
Warning:
This function only handles 1:1 $(CODEPOINT) mapping
and thus is not sufficient for certain alphabets
like German, Greek and few others.
Example:
---
assert(sicmp("Август", "авгусТ") == 0);
// Greek also works as long as there is no 1:M mapping in sight
assert(sicmp("ΌΎ", "όύ") == 0);
// things like the following won't get matched as equal
// Greek small letter iota with dialytika and tonos
assert(sicmp("ΐ", "\u03B9\u0308\u0301") != 0);
// while icmp has no problem with that
assert(icmp("ΐ", "\u03B9\u0308\u0301") == 0);
assert(icmp("ΌΎ", "όύ") == 0);
---
+/
int sicmp(S1, S2)(S1 str1, S2 str2)
if(isForwardRange!S1 && is(Unqual!(ElementType!S1) == dchar)
&& isForwardRange!S2 && is(Unqual!(ElementType!S2) == dchar))
{
alias sTable = simpleCaseTable;
size_t ridx=0;
foreach(dchar lhs; str1)
{
if(ridx == str2.length)
return 1;
dchar rhs = std.utf.decode(str2, ridx);
int diff = lhs - rhs;
if(!diff)
continue;
size_t idx = simpleCaseTrie[lhs];
size_t idx2 = simpleCaseTrie[rhs];
// simpleCaseTrie is packed index table
if(idx != EMPTY_CASE_TRIE)
{
if(idx2 != EMPTY_CASE_TRIE)
{// both cased chars
// adjust idx --> start of bucket
idx = idx - sTable[idx].n;
idx2 = idx2 - sTable[idx2].n;
if(idx == idx2)// one bucket, equivalent chars
continue;
else// not the same bucket
diff = sTable[idx].ch - sTable[idx2].ch;
}
else
diff = sTable[idx - sTable[idx].n].ch - rhs;
}
else if(idx2 != EMPTY_CASE_TRIE)
{
diff = lhs - sTable[idx2 - sTable[idx2].n].ch;
}
// one of chars is not cased at all
return diff;
}
return ridx == str2.length ? 0 : -1;
}
// overloads for the most common cases to reduce compile time
@safe pure /*TODO nothrow*/
{
int sicmp(const(char)[] str1, const(char)[] str2)
{ return sicmp!(const(char)[], const(char)[])(str1, str2); }
int sicmp(const(wchar)[] str1, const(wchar)[] str2)
{ return sicmp!(const(wchar)[], const(wchar)[])(str1, str2); }
int sicmp(const(dchar)[] str1, const(dchar)[] str2)
{ return sicmp!(const(dchar)[], const(dchar)[])(str1, str2); }
}
private int fullCasedCmp(Range)(dchar lhs, dchar rhs, ref Range rtail)
@trusted pure /*TODO nothrow*/
{
alias fTable = fullCaseTable;
size_t idx = fullCaseTrie[lhs];
// fullCaseTrie is packed index table
if(idx == EMPTY_CASE_TRIE)
return lhs;
size_t start = idx - fTable[idx].n;
size_t end = fTable[idx].size + start;
assert(fTable[start].entry_len == 1);
for(idx=start; idx<end; idx++)
{
auto entryLen = fTable[idx].entry_len;
if(entryLen == 1)
{
if(fTable[idx].seq[0] == rhs)
{
return 0;
}
}
else
{// OK it's a long chunk, like 'ss' for German
dstring seq = fTable[idx].seq[0..entryLen];
if(rhs == seq[0]
&& rtail.skipOver(seq[1..$]))
{
// note that this path modifies rtail
// iff we managed to get there
return 0;
}
}
}
return fTable[start].seq[0]; // new remapped character for accurate diffs
}
/++
$(P Does case insensitive comparison of $(D str1) and $(D str2).
Follows the rules of full case-folding mapping.
This includes matching as equal german ß with "ss" and
other 1:M $(CODEPOINT) mappings unlike $(LREF sicmp).
The cost of $(D icmp) being pedantically correct is
slightly worse performance.
)
Example:
---
assert(icmp("Rußland", "Russland") == 0);
assert(icmp("ᾩ -> \u1F70\u03B9", "\u1F61\u03B9 -> ᾲ") == 0);
---
+/
int icmp(S1, S2)(S1 str1, S2 str2)
if(isForwardRange!S1 && is(Unqual!(ElementType!S1) == dchar)
&& isForwardRange!S2 && is(Unqual!(ElementType!S2) == dchar))
{
for(;;)
{
if(str1.empty)
return str2.empty ? 0 : -1;
dchar lhs = str1.front;
if(str2.empty)
return 1;
dchar rhs = str2.front;
str1.popFront();
str2.popFront();
int diff = lhs - rhs;
if(!diff)
continue;
// first try to match lhs to <rhs,right-tail> sequence
int cmpLR = fullCasedCmp(lhs, rhs, str2);
if(!cmpLR)
continue;
// then rhs to <lhs,left-tail> sequence
int cmpRL = fullCasedCmp(rhs, lhs, str1);
if(!cmpRL)
continue;
// cmpXX contain remapped codepoints
// to obtain stable ordering of icmp
diff = cmpLR - cmpRL;
return diff;
}
}
// overloads for the most common cases to reduce compile time
@safe pure /*TODO nothrow*/
{
int icmp(const(char)[] str1, const(char)[] str2)
{ return icmp!(const(char)[], const(char)[])(str1, str2); }
int icmp(const(wchar)[] str1, const(wchar)[] str2)
{ return icmp!(const(wchar)[], const(wchar)[])(str1, str2); }
int icmp(const(dchar)[] str1, const(dchar)[] str2)
{ return icmp!(const(dchar)[], const(dchar)[])(str1, str2); }
}
unittest
{
assertCTFEable!(
{
foreach(cfunc; TypeTuple!(icmp, sicmp))
{
foreach(S1; TypeTuple!(string, wstring, dstring))
foreach(S2; TypeTuple!(string, wstring, dstring))
{
assert(cfunc("".to!S1(), "".to!S2()) == 0);
assert(cfunc("A".to!S1(), "".to!S2()) > 0);
assert(cfunc("".to!S1(), "0".to!S2()) < 0);
assert(cfunc("abc".to!S1(), "abc".to!S2()) == 0);
assert(cfunc("abcd".to!S1(), "abc".to!S2()) > 0);
assert(cfunc("abc".to!S1(), "abcd".to!S2()) < 0);
assert(cfunc("Abc".to!S1(), "aBc".to!S2()) == 0);
assert(cfunc("авГуст".to!S1(), "АВгУСТ".to!S2()) == 0);
// Check example:
assert(cfunc("Август".to!S1(), "авгусТ".to!S2()) == 0);
assert(cfunc("ΌΎ".to!S1(), "όύ".to!S2()) == 0);
}
// check that the order is properly agnostic to the case
auto strs = [ "Apple", "ORANGE", "orAcle", "amp", "banana"];
sort!((a,b) => cfunc(a,b) < 0)(strs);
assert(strs == ["amp", "Apple", "banana", "orAcle", "ORANGE"]);
}
assert(icmp("ßb", "ssa") > 0);
// Check example:
assert(icmp("Russland", "Rußland") == 0);
assert(icmp("ᾩ -> \u1F70\u03B9", "\u1F61\u03B9 -> ᾲ") == 0);
assert(icmp("ΐ"w, "\u03B9\u0308\u0301") == 0);
assert(sicmp("ΐ", "\u03B9\u0308\u0301") != 0);
//bugzilla 11057
assert( icmp("K", "L") < 0 );
});
}
/++
$(P Returns the $(S_LINK Combining class, combining class) of $(D ch).)
Example:
---
// shorten the code
alias CC = combiningClass;
// combining tilda
assert(CC('\u0303') == 230);
// combining ring below
assert(CC('\u0325') == 220);
// the simple consequence is that "tilda" should be
// placed after a "ring below" in a sequence
---
+/
ubyte combiningClass(dchar ch)
{
return combiningClassTrie[ch];
}
unittest
{
foreach(ch; 0..0x80)
assert(combiningClass(ch) == 0);
assert(combiningClass('\u05BD') == 22);
assert(combiningClass('\u0300') == 230);
assert(combiningClass('\u0317') == 220);
assert(combiningClass('\u1939') == 222);
}
/// Unicode character decomposition type.
enum UnicodeDecomposition {
/// Canonical decomposition. The result is canonically equivalent sequence.
Canonical,
/**
Compatibility decomposition. The result is compatibility equivalent sequence.
Note: Compatibility decomposition is a $(B lossy) conversion,
typically suitable only for fuzzy matching and internal processing.
*/
Compatibility
};
/**
Shorthand aliases for character decomposition type, passed as a
template parameter to $(LREF decompose).
*/
enum {
Canonical = UnicodeDecomposition.Canonical,
Compatibility = UnicodeDecomposition.Compatibility
};
/++
Try to canonically compose 2 $(CHARACTERS).
Returns the composed $(CHARACTER) if they do compose and dchar.init otherwise.
The assumption is that $(D first) comes before $(D second) in the original text,
usually meaning that the first is a starter.
Note: Hangul syllables are not covered by this function.
See $(D composeJamo) below.
Example:
---
assert(compose('A','\u0308') == '\u00C4');
assert(compose('A', 'B') == dchar.init);
assert(compose('C', '\u0301') == '\u0106');
// note that the starter is the first one
// thus the following doesn't compose
assert(compose('\u0308', 'A') == dchar.init);
---
+/
public dchar compose(dchar first, dchar second)
{
import std.internal.unicode_comp;
size_t packed = compositionJumpTrie[first];
if(packed == ushort.max)
return dchar.init;
// unpack offset and length
size_t idx = packed & composeIdxMask, cnt = packed >> composeCntShift;
// TODO: optimize this micro binary search (no more then 4-5 steps)
auto r = compositionTable[idx..idx+cnt].map!"a.rhs"().assumeSorted();
auto target = r.lowerBound(second).length;
if(target == cnt)
return dchar.init;
auto entry = compositionTable[idx+target];
if(entry.rhs != second)
return dchar.init;
return entry.composed;
}
/++
Returns a full $(S_LINK Canonical decomposition, Canonical)
(by default) or $(S_LINK Compatibility decomposition, Compatibility)
decomposition of $(CHARACTER) $(D ch).
If no decomposition is available returns a $(LREF Grapheme)
with the $(D ch) itself.
Note:
This function also decomposes hangul syllables
as prescribed by the standard.
See also $(LREF decomposeHangul) for a restricted version
that takes into account only hangul syllables but
no other decompositions.
Example:
---
import std.algorithm;
assert(decompose('Ĉ')[].equal("C\u0302"));
assert(decompose('D')[].equal("D"));
assert(decompose('\uD4DC')[].equal("\u1111\u1171\u11B7"));
assert(decompose!Compatibility('¹').equal("1"));
---
+/
public Grapheme decompose(UnicodeDecomposition decompType=Canonical)(dchar ch)
{
import std.internal.unicode_decomp;
static if(decompType == Canonical)
{
alias table = decompCanonTable;
alias mapping = canonMappingTrie;
}
else static if(decompType == Compatibility)
{
alias table = decompCompatTable;
alias mapping = compatMappingTrie;
}
ushort idx = mapping[ch];
if(!idx) // not found, check hangul arithmetic decomposition
return decomposeHangul(ch);
auto decomp = table[idx..$].until(0);
return Grapheme(decomp);
}
unittest
{
// verify examples
assert(compose('A','\u0308') == '\u00C4');
assert(compose('A', 'B') == dchar.init);
assert(compose('C', '\u0301') == '\u0106');
// note that the starter is the first one
// thus the following doesn't compose
assert(compose('\u0308', 'A') == dchar.init);
import std.algorithm;
assert(decompose('Ĉ')[].equalS("C\u0302"));
assert(decompose('D')[].equalS("D"));
assert(decompose('\uD4DC')[].equalS("\u1111\u1171\u11B7"));
assert(decompose!Compatibility('¹')[].equalS("1"));
}
//----------------------------------------------------------------------------
// Hangul specific composition/decomposition
enum jamoSBase = 0xAC00;
enum jamoLBase = 0x1100;
enum jamoVBase = 0x1161;
enum jamoTBase = 0x11A7;
enum jamoLCount = 19, jamoVCount = 21, jamoTCount = 28;
enum jamoNCount = jamoVCount * jamoTCount;
enum jamoSCount = jamoLCount * jamoNCount;
// Tests if $(D ch) is a Hangul leading consonant jamo.
bool isJamoL(dchar ch)
{
// first cmp rejects ~ 1M code points above leading jamo range
return ch < jamoLBase+jamoLCount && ch >= jamoLBase;
}
// Tests if $(D ch) is a Hangul vowel jamo.
bool isJamoT(dchar ch)
{
// first cmp rejects ~ 1M code points above trailing jamo range
// Note: ch == jamoTBase doesn't indicate trailing jamo (TIndex must be > 0)
return ch < jamoTBase+jamoTCount && ch > jamoTBase;
}
// Tests if $(D ch) is a Hangul trailnig consonant jamo.
bool isJamoV(dchar ch)
{
// first cmp rejects ~ 1M code points above vowel range
return ch < jamoVBase+jamoVCount && ch >= jamoVBase;
}
int hangulSyllableIndex(dchar ch)
{
int idxS = cast(int)ch - jamoSBase;
return idxS >= 0 && idxS < jamoSCount ? idxS : -1;
}
// internal helper: compose hangul syllables leaving dchar.init in holes
void hangulRecompose(dchar[] seq)
{
for(size_t idx = 0; idx + 1 < seq.length; )
{
if(isJamoL(seq[idx]) && isJamoV(seq[idx+1]))
{
int indexL = seq[idx] - jamoLBase;
int indexV = seq[idx+1] - jamoVBase;
int indexLV = indexL * jamoNCount + indexV * jamoTCount;
if(idx + 2 < seq.length && isJamoT(seq[idx+2]))
{
seq[idx] = jamoSBase + indexLV + seq[idx+2] - jamoTBase;
seq[idx+1] = dchar.init;
seq[idx+2] = dchar.init;
idx += 3;
}
else
{
seq[idx] = jamoSBase + indexLV;
seq[idx+1] = dchar.init;
idx += 2;
}
}
else
idx++;
}
}
//----------------------------------------------------------------------------
public:
/**
Decomposes a Hangul syllable. If $(D ch) is not a composed syllable
then this function returns $(LREF Grapheme) containing only $(D ch) as is.
Example:
---
import std.algorithm;
assert(decomposeHangul('\uD4DB')[].equal("\u1111\u1171\u11B6"));
---
*/
Grapheme decomposeHangul(dchar ch)
{
int idxS = cast(int)ch - jamoSBase;
if(idxS < 0 || idxS >= jamoSCount) return Grapheme(ch);
int idxL = idxS / jamoNCount;
int idxV = (idxS % jamoNCount) / jamoTCount;
int idxT = idxS % jamoTCount;
int partL = jamoLBase + idxL;
int partV = jamoVBase + idxV;
if(idxT > 0) // there is a trailling consonant (T); <L,V,T> decomposition
return Grapheme(partL, partV, jamoTBase + idxT);
else // <L, V> decomposition
return Grapheme(partL, partV);
}
/++
Try to compose hangul syllable out of a leading consonant ($(D lead)),
a $(D vowel) and optional $(D trailing) consonant jamos.
On success returns the composed LV or LVT hangul syllable.
If any of $(D lead) and $(D vowel) are not a valid hangul jamo
of the respective $(CHARACTER) class returns dchar.init.
Example:
---
assert(composeJamo('\u1111', '\u1171', '\u11B6') == '\uD4DB');
// leaving out T-vowel, or passing any codepoint
// that is not trailing consonant composes an LV-syllable
assert(composeJamo('\u1111', '\u1171') == '\uD4CC');
assert(composeJamo('\u1111', '\u1171', ' ') == '\uD4CC');
assert(composeJamo('\u1111', 'A') == dchar.init);
assert(composeJamo('A', '\u1171') == dchar.init);
---
+/
dchar composeJamo(dchar lead, dchar vowel, dchar trailing=dchar.init)
{
if(!isJamoL(lead))
return dchar.init;
int indexL = lead - jamoLBase;
if(!isJamoV(vowel))
return dchar.init;
int indexV = vowel - jamoVBase;
int indexLV = indexL * jamoNCount + indexV * jamoTCount;
dchar syllable = jamoSBase + indexLV;
return isJamoT(trailing) ? syllable + (trailing - jamoTBase) : syllable;
}
unittest
{
static void testDecomp(UnicodeDecomposition T)(dchar ch, string r)
{
Grapheme g = decompose!T(ch);
assert(equalS(g[], r), text(g[], " vs ", r));
}
testDecomp!Canonical('\u1FF4', "\u03C9\u0301\u0345");
testDecomp!Canonical('\uF907', "\u9F9C");
testDecomp!Compatibility('\u33FF', "\u0067\u0061\u006C");
testDecomp!Compatibility('\uA7F9', "\u0153");
// check examples
assert(decomposeHangul('\uD4DB')[].equalS("\u1111\u1171\u11B6"));
assert(composeJamo('\u1111', '\u1171', '\u11B6') == '\uD4DB');
assert(composeJamo('\u1111', '\u1171') == '\uD4CC'); // leave out T-vowel
assert(composeJamo('\u1111', '\u1171', ' ') == '\uD4CC');
assert(composeJamo('\u1111', 'A') == dchar.init);
assert(composeJamo('A', '\u1171') == dchar.init);
}
/**
Enumeration type for normalization forms,
passed as template parameter for functions like $(LREF normalize).
*/
enum NormalizationForm {
NFC,
NFD,
NFKC,
NFKD
}
enum {
/**
Shorthand aliases from values indicating normalization forms.
*/
NFC = NormalizationForm.NFC,
///ditto
NFD = NormalizationForm.NFD,
///ditto
NFKC = NormalizationForm.NFKC,
///ditto
NFKD = NormalizationForm.NFKD
};
/++
Returns $(D input) string normalized to the chosen form.
Form C is used by default.
For more information on normalization forms see
the $(S_LINK Normalization, normalization section).
Note:
In cases where the string in question is already normalized,
it is returned unmodified and no memory allocation happens.
Example:
---
// any encoding works
wstring greet = "Hello world";
assert(normalize(greet) is greet); // the same exact slice
// An example of a character with all 4 forms being different:
// Greek upsilon with acute and hook symbol (code point 0x03D3)
assert(normalize!NFC("ϓ") == "\u03D3");
assert(normalize!NFD("ϓ") == "\u03D2\u0301");
assert(normalize!NFKC("ϓ") == "\u038E");
assert(normalize!NFKD("ϓ") == "\u03A5\u0301");
---
+/
inout(C)[] normalize(NormalizationForm norm=NFC, C)(inout(C)[] input)
{
auto anchors = splitNormalized!norm(input);
if(anchors[0] == input.length && anchors[1] == input.length)
return input;
dchar[] decomposed;
decomposed.reserve(31);
ubyte[] ccc;
ccc.reserve(31);
auto app = appender!(C[])();
do
{
app.put(input[0..anchors[0]]);
foreach(dchar ch; input[anchors[0]..anchors[1]])
static if(norm == NFD || norm == NFC)
{
foreach(dchar c; decompose!Canonical(ch)[])
decomposed ~= c;
}
else // NFKD & NFKC
{
foreach(dchar c; decompose!Compatibility(ch)[])
decomposed ~= c;
}
ccc.length = decomposed.length;
size_t firstNonStable = 0;
ubyte lastClazz = 0;
foreach(idx, dchar ch; decomposed)
{
auto clazz = combiningClass(ch);
ccc[idx] = clazz;
if(clazz == 0 && lastClazz != 0)
{
// found a stable code point after unstable ones
sort!("a[0] < b[0]", SwapStrategy.stable)
(zip(ccc[firstNonStable..idx], decomposed[firstNonStable..idx]));
firstNonStable = decomposed.length;
}
else if(clazz != 0 && lastClazz == 0)
{
// found first unstable code point after stable ones
firstNonStable = idx;
}
lastClazz = clazz;
}
sort!("a[0] < b[0]", SwapStrategy.stable)
(zip(ccc[firstNonStable..$], decomposed[firstNonStable..$]));
static if(norm == NFC || norm == NFKC)
{
size_t idx = 0;
auto first = countUntil(ccc, 0);
if(first >= 0) // no starters?? no recomposition
{
for(;;)
{
auto second = recompose(first, decomposed, ccc);
if(second == decomposed.length)
break;
first = second;
}
// 2nd pass for hangul syllables
hangulRecompose(decomposed);
}
}
static if(norm == NFD || norm == NFKD)
app.put(decomposed);
else
{
auto clean = remove!("a == dchar.init", SwapStrategy.stable)(decomposed);
app.put(decomposed[0 .. clean.length]);
}
// reset variables
decomposed.length = 0;
decomposed.assumeSafeAppend();
ccc.length = 0;
ccc.assumeSafeAppend();
input = input[anchors[1]..$];
// and move on
anchors = splitNormalized!norm(input);
}while(anchors[0] != input.length);
app.put(input[0..anchors[0]]);
return cast(inout(C)[])app.data;
}
unittest
{
assert(normalize!NFD("abc\uF904def") == "abc\u6ED1def", text(normalize!NFD("abc\uF904def")));
assert(normalize!NFKD("2¹⁰") == "210", normalize!NFKD("2¹⁰"));
assert(normalize!NFD("Äffin") == "A\u0308ffin");
// check example
// any encoding works
wstring greet = "Hello world";
assert(normalize(greet) is greet); // the same exact slice
// An example of a character with all 4 forms being different:
// Greek upsilon with acute and hook symbol (code point 0x03D3)
assert(normalize!NFC("ϓ") == "\u03D3");
assert(normalize!NFD("ϓ") == "\u03D2\u0301");
assert(normalize!NFKC("ϓ") == "\u038E");
assert(normalize!NFKD("ϓ") == "\u03A5\u0301");
}
// canonically recompose given slice of code points, works in-place and mutates data
private size_t recompose(size_t start, dchar[] input, ubyte[] ccc)
{
assert(input.length == ccc.length);
int accumCC = -1;// so that it's out of 0..255 range
bool foundSolidStarter = false;
// writefln("recomposing %( %04x %)", input);
// first one is always a starter thus we start at i == 1
size_t i = start+1;
for(; ; )
{
if(i == input.length)
break;
int curCC = ccc[i];
// In any character sequence beginning with a starter S
// a character C is blocked from S if and only if there
// is some character B between S and C, and either B
// is a starter or it has the same or higher combining class as C.
//------------------------
// Applying to our case:
// S is input[0]
// accumCC is the maximum CCC of characters between C and S,
// as ccc are sorted
// C is input[i]
if(curCC > accumCC)
{
dchar comp = compose(input[start], input[i]);
if(comp != dchar.init)
{
input[start] = comp;
input[i] = dchar.init;// put a sentinel
// current was merged so its CCC shouldn't affect
// composing with the next one
}
else {
// if it was a starter then accumCC is now 0, end of loop
accumCC = curCC;
if(accumCC == 0)
break;
}
}
else{
// ditto here
accumCC = curCC;
if(accumCC == 0)
break;
}
i++;
}
return i;
}
// returns tuple of 2 indexes that delimit:
// normalized text, piece that needs normalization and
// the rest of input starting with stable code point
private auto splitNormalized(NormalizationForm norm, C)(const(C)[] input)
{
auto result = input;
ubyte lastCC = 0;
foreach(idx, dchar ch; input)
{
static if(norm == NFC)
if(ch < 0x0300)
{
lastCC = 0;
continue;
}
ubyte CC = combiningClass(ch);
if(lastCC > CC && CC != 0)
{
return seekStable!norm(idx, input);
}
if(notAllowedIn!norm(ch))
{
return seekStable!norm(idx, input);
}
lastCC = CC;
}
return tuple(input.length, input.length);
}
private auto seekStable(NormalizationForm norm, C)(size_t idx, in C[] input)
{
auto br = input[0..idx];
size_t region_start = 0;// default
for(;;)
{
if(br.empty)// start is 0
break;
dchar ch = br.back;
if(combiningClass(ch) == 0 && allowedIn!norm(ch))
{
region_start = br.length - std.utf.codeLength!C(ch);
break;
}
br.popFront();
}
///@@@BUG@@@ can't use find: " find is a nested function and can't be used..."
size_t region_end=input.length;// end is $ by default
foreach(i, dchar ch; input[idx..$])
{
if(combiningClass(ch) == 0 && allowedIn!norm(ch))
{
region_end = i+idx;
break;
}
}
// writeln("Region to normalize: ", input[region_start..region_end]);
return tuple(region_start, region_end);
}
/**
Tests if dchar $(D ch) is always allowed (Quick_Check=YES) in normalization
form $(D norm).
---
// e.g. Cyrillic is always allowed, so is ASCII
assert(allowedIn!NFC('я'));
assert(allowedIn!NFD('я'));
assert(allowedIn!NFKC('я'));
assert(allowedIn!NFKD('я'));
assert(allowedIn!NFC('Z'));
---
*/
public bool allowedIn(NormalizationForm norm)(dchar ch)
{
return !notAllowedIn!norm(ch);
}
// not user friendly name but more direct
private bool notAllowedIn(NormalizationForm norm)(dchar ch)
{
static if(norm == NFC)
alias qcTrie = nfcQCTrie;
else static if(norm == NFD)
alias qcTrie = nfdQCTrie;
else static if(norm == NFKC)
alias qcTrie = nfkcQCTrie;
else static if(norm == NFKD)
alias qcTrie = nfkdQCTrie;
else
static assert("Unknown normalization form "~norm);
return qcTrie[ch];
}
unittest
{
assert(allowedIn!NFC('я'));
assert(allowedIn!NFD('я'));
assert(allowedIn!NFKC('я'));
assert(allowedIn!NFKD('я'));
assert(allowedIn!NFC('Z'));
}
}
version(std_uni_bootstrap)
{
// old version used for bootstrapping of gen_uni.d that generates
// up to date optimal versions of all of isXXX functions
@safe pure nothrow public bool isWhite(dchar c)
{
return std.ascii.isWhite(c) ||
c == lineSep || c == paraSep ||
c == '\u0085' || c == '\u00A0' || c == '\u1680' || c == '\u180E' ||
(c >= '\u2000' && c <= '\u200A') ||
c == '\u202F' || c == '\u205F' || c == '\u3000';
}
}
else
{
// trusted -> avoid bounds check
@trusted pure nothrow
ushort toLowerIndex(dchar c)
{
alias trie = toLowerIndexTrie;
return trie[c];
}
// trusted -> avoid bounds check
@trusted pure nothrow
dchar toLowerTab(size_t idx)
{
return toLowerTable[idx];
}
// trusted -> avoid bounds check
@trusted pure nothrow
ushort toTitleIndex(dchar c)
{
alias trie = toTitleIndexTrie;
return trie[c];
}
// trusted -> avoid bounds check
@trusted pure nothrow
dchar toTitleTab(size_t idx)
{
return toTitleTable[idx];
}
// trusted -> avoid bounds check
@trusted pure nothrow
ushort toUpperIndex(dchar c)
{
alias trie = toUpperIndexTrie;
return trie[c];
}
// trusted -> avoid bounds check
@trusted pure nothrow
dchar toUpperTab(size_t idx)
{
return toUpperTable[idx];
}
public:
/++
Whether or not $(D c) is a Unicode whitespace $(CHARACTER).
(general Unicode category: Part of C0(tab, vertical tab, form feed,
carriage return, and linefeed characters), Zs, Zl, Zp, and NEL(U+0085))
+/
@safe pure nothrow
public bool isWhite(dchar c)
{
return isWhiteGen(c); // call pregenerated binary search
}
deprecated ("Please use std.uni.isLower instead")
bool isUniLower(dchar c) @safe pure nothrow
{
return isLower(c);
}
/++
Return whether $(D c) is a Unicode lowercase $(CHARACTER).
+/
@safe pure nothrow
bool isLower(dchar c)
{
if(std.ascii.isASCII(c))
return std.ascii.isLower(c);
return lowerCaseTrie[c];
}
@safe unittest
{
foreach(v; 0..0x80)
assert(std.ascii.isLower(v) == isLower(v));
assert(isLower('я'));
assert(isLower('й'));
assert(!isLower('Ж'));
// Greek HETA
assert(!isLower('\u0370'));
assert(isLower('\u0371'));
assert(!isLower('\u039C')); // capital MU
assert(isLower('\u03B2')); // beta
// from extended Greek
assert(!isLower('\u1F18'));
assert(isLower('\u1F00'));
foreach(v; unicode.lowerCase.byCodepoint)
assert(isLower(v) && !isUpper(v));
}
deprecated ("Please use std.uni.isUpper instead")
@safe pure nothrow
bool isUniUpper(dchar c)
{
return isUpper(c);
}
/++
Return whether $(D c) is a Unicode uppercase $(CHARACTER).
+/
@safe pure nothrow
bool isUpper(dchar c)
{
if(std.ascii.isASCII(c))
return std.ascii.isUpper(c);
return upperCaseTrie[c];
}
@safe unittest
{
foreach(v; 0..0x80)
assert(std.ascii.isLower(v) == isLower(v));
assert(!isUpper('й'));
assert(isUpper('Ж'));
// Greek HETA
assert(isUpper('\u0370'));
assert(!isUpper('\u0371'));
assert(isUpper('\u039C')); // capital MU
assert(!isUpper('\u03B2')); // beta
// from extended Greek
assert(!isUpper('\u1F00'));
assert(isUpper('\u1F18'));
foreach(v; unicode.upperCase.byCodepoint)
assert(isUpper(v) && !isLower(v));
}
deprecated ("Please use std.uni.toLower instead")
@safe pure nothrow
dchar toUniLower(dchar c)
{
return toLower(c);
}
/++
If $(D c) is a Unicode uppercase $(CHARACTER), then its lowercase equivalent
is returned. Otherwise $(D c) is returned.
Warning: certain alphabets like German and Greek have no 1:1
upper-lower mapping. Use overload of toLower which takes full string instead.
+/
@safe pure nothrow
dchar toLower(dchar c)
{
// optimize ASCII case
if(c < 0xAA)
{
if(c < 'A')
return c;
if(c <= 'Z')
return c + 32;
return c;
}
size_t idx = toLowerIndex(c);
if(idx < MAX_SIMPLE_LOWER)
{
return toLowerTab(idx);
}
return c;
}
//TODO: Hidden for now, needs better API.
//Other transforms could use better API as well, but this one is a new primitive.
@safe pure nothrow
private dchar toTitlecase(dchar c)
{
// optimize ASCII case
if(c < 0xAA)
{
if(c < 'a')
return c;
if(c <= 'z')
return c - 32;
return c;
}
size_t idx = toTitleIndex(c);
if(idx < MAX_SIMPLE_TITLE)
{
return toTitleTab(idx);
}
return c;
}
private alias UpperTriple = TypeTuple!(toUpperIndex, MAX_SIMPLE_UPPER, toUpperTab);
private alias LowerTriple = TypeTuple!(toLowerIndex, MAX_SIMPLE_LOWER, toLowerTab);
// generic toUpper/toLower on whole string, creates new or returns as is
private S toCase(alias indexFn, uint maxIdx, alias tableFn, S)(S s) @trusted pure
if(isSomeString!S)
{
foreach(i, dchar cOuter; s)
{
ushort idx = indexFn(cOuter);
if(idx == ushort.max)
continue;
auto result = s[0 .. i].dup;
foreach(dchar c; s[i .. $])
{
idx = indexFn(c);
if(idx == ushort.max)
result ~= c;
else if(idx < maxIdx)
{
c = tableFn(idx);
result ~= c;
}
else
{
auto val = tableFn(idx);
// unpack length + codepoint
uint len = val>>24;
result ~= cast(dchar)(val & 0xFF_FFFF);
foreach(j; idx+1..idx+len)
result ~= tableFn(j);
}
}
return cast(S) result;
}
return s;
}
// TODO: helper, I wish std.utf was more flexible (and stright)
private size_t encodeTo(char[] buf, size_t idx, dchar c) @trusted pure
{
if (c <= 0x7F)
{
buf[idx] = cast(char)c;
idx++;
}
else if (c <= 0x7FF)
{
buf[idx] = cast(char)(0xC0 | (c >> 6));
buf[idx+1] = cast(char)(0x80 | (c & 0x3F));
idx += 2;
}
else if (c <= 0xFFFF)
{
buf[idx] = cast(char)(0xE0 | (c >> 12));
buf[idx+1] = cast(char)(0x80 | ((c >> 6) & 0x3F));
buf[idx+2] = cast(char)(0x80 | (c & 0x3F));
idx += 3;
}
else if (c <= 0x10FFFF)
{
buf[idx] = cast(char)(0xF0 | (c >> 18));
buf[idx+1] = cast(char)(0x80 | ((c >> 12) & 0x3F));
buf[idx+2] = cast(char)(0x80 | ((c >> 6) & 0x3F));
buf[idx+3] = cast(char)(0x80 | (c & 0x3F));
idx += 4;
}
else
assert(0);
return idx;
}
unittest
{
char[] s = "abcd".dup;
size_t i = 0;
i = encodeTo(s, i, 'X');
assert(s == "Xbcd");
i = encodeTo(s, i, cast(dchar)'\u00A9');
assert(s == "X\xC2\xA9d");
}
// TODO: helper, I wish std.utf was more flexible (and stright)
private size_t encodeTo(wchar[] buf, size_t idx, dchar c) @trusted pure
{
import std.utf;
if (c <= 0xFFFF)
{
if (0xD800 <= c && c <= 0xDFFF)
throw (new UTFException("Encoding an isolated surrogate code point in UTF-16")).setSequence(c);
buf[idx] = cast(wchar)c;
idx++;
}
else if (c <= 0x10FFFF)
{
buf[idx] = cast(wchar)((((c - 0x10000) >> 10) & 0x3FF) + 0xD800);
buf[idx+1] = cast(wchar)(((c - 0x10000) & 0x3FF) + 0xDC00);
idx += 2;
}
else
assert(0);
return idx;
}
private size_t encodeTo(dchar[] buf, size_t idx, dchar c) @trusted pure
{
buf[idx] = c;
idx++;
return idx;
}
private void toCaseInPlace(alias indexFn, uint maxIdx, alias tableFn, C)(ref C[] s) @trusted pure
if (is(C == char) || is(C == wchar) || is(C == dchar))
{
import std.utf;
size_t curIdx = 0;
size_t destIdx = 0;
alias slowToCase = toCaseInPlaceAlloc!(indexFn, maxIdx, tableFn);
size_t lastUnchanged = 0;
// in-buffer move of bytes to a new start index
// the trick is that it may not need to copy at all
static size_t moveTo(C[] str, size_t dest, size_t from, size_t to)
{
// Interestingly we may just bump pointer for a while
// then have to copy if a re-cased char was smaller the original
// later we may regain pace with char that got bigger
// In the end it sometimes flip-flops between the 2 cases below
if(dest == from)
return to;
// got to copy
foreach(C c; str[from..to])
str[dest++] = c;
return dest;
}
while(curIdx != s.length)
{
size_t startIdx = curIdx;
dchar ch = decode(s, curIdx);
// TODO: special case for ASCII
auto caseIndex = indexFn(ch);
if(caseIndex == ushort.max) // unchanged, skip over
{
continue;
}
else if(caseIndex < maxIdx) // 1:1 codepoint mapping
{
// previous cased chars had the same length as uncased ones
// thus can just adjust pointer
destIdx = moveTo(s, destIdx, lastUnchanged, startIdx);
lastUnchanged = curIdx;
dchar cased = tableFn(caseIndex);
auto casedLen = codeLength!C(cased);
if(casedLen + destIdx > curIdx) // no place to fit cased char
{
// switch to slow codepath, where we allocate
return slowToCase(s, startIdx, destIdx);
}
else
{
destIdx = encodeTo(s, destIdx, cased);
}
}
else // 1:m codepoint mapping, slow codepath
{
destIdx = moveTo(s, destIdx, lastUnchanged, startIdx);
lastUnchanged = curIdx;
return slowToCase(s, startIdx, destIdx);
}
assert(destIdx <= curIdx);
}
if(lastUnchanged != s.length)
{
destIdx = moveTo(s, destIdx, lastUnchanged, s.length);
}
s = s[0..destIdx];
}
// helper to precalculate size of case-converted string
private template toCaseLength(alias indexFn, uint maxIdx, alias tableFn)
{
size_t toCaseLength(C)(in C[] str)
{
import std.utf;
size_t codeLen = 0;
size_t lastNonTrivial = 0;
size_t curIdx = 0;
while(curIdx != str.length)
{
size_t startIdx = curIdx;
dchar ch = decode(str, curIdx);
ushort caseIndex = indexFn(ch);
if(caseIndex == ushort.max)
continue;
else if(caseIndex < maxIdx)
{
codeLen += startIdx - lastNonTrivial;
lastNonTrivial = curIdx;
dchar cased = tableFn(caseIndex);
codeLen += codeLength!C(cased);
}
else
{
codeLen += startIdx - lastNonTrivial;
lastNonTrivial = curIdx;
auto val = tableFn(caseIndex);
auto len = val>>24;
dchar cased = val & 0xFF_FFFF;
codeLen += codeLength!C(cased);
foreach(j; caseIndex+1..caseIndex+len)
codeLen += codeLength!C(tableFn(j));
}
}
if(lastNonTrivial != str.length)
codeLen += str.length - lastNonTrivial;
return codeLen;
}
}
unittest
{
import std.conv;
alias toLowerLength = toCaseLength!(LowerTriple);
assert(toLowerLength("abcd") == 4);
assert(toLowerLength("аБВгд456") == 10+3);
}
// slower code path that preallocates and then copies
// case-converted stuf to the new string
private template toCaseInPlaceAlloc(alias indexFn, uint maxIdx, alias tableFn)
{
void toCaseInPlaceAlloc(C)(ref C[] s, size_t curIdx,
size_t destIdx) @trusted pure
if (is(C == char) || is(C == wchar) || is(C == dchar))
{
import std.utf : decode;
alias caseLength = toCaseLength!(indexFn, maxIdx, tableFn);
auto trueLength = destIdx + caseLength(s[curIdx..$]);
C[] ns = new C[trueLength];
ns[0..destIdx] = s[0..destIdx];
size_t lastUnchanged = curIdx;
while(curIdx != s.length)
{
size_t startIdx = curIdx; // start of current codepoint
dchar ch = decode(s, curIdx);
auto caseIndex = indexFn(ch);
if(caseIndex == ushort.max) // skip over
{
continue;
}
else if(caseIndex < maxIdx) // 1:1 codepoint mapping
{
dchar cased = tableFn(caseIndex);
auto toCopy = startIdx - lastUnchanged;
ns[destIdx .. destIdx+toCopy] = s[lastUnchanged .. startIdx];
lastUnchanged = curIdx;
destIdx += toCopy;
destIdx = encodeTo(ns, destIdx, cased);
}
else // 1:m codepoint mapping, slow codepath
{
auto toCopy = startIdx - lastUnchanged;
ns[destIdx .. destIdx+toCopy] = s[lastUnchanged .. startIdx];
lastUnchanged = curIdx;
destIdx += toCopy;
auto val = tableFn(caseIndex);
// unpack length + codepoint
uint len = val>>24;
destIdx = encodeTo(ns, destIdx, cast(dchar)(val & 0xFF_FFFF));
foreach(j; caseIndex+1..caseIndex+len)
destIdx = encodeTo(ns, destIdx, tableFn(j));
}
}
if(lastUnchanged != s.length)
{
auto toCopy = s.length - lastUnchanged;
ns[destIdx..destIdx+toCopy] = s[lastUnchanged..$];
destIdx += toCopy;
}
assert(ns.length == destIdx);
s = ns;
}
}
/++
Converts $(D s) to lowercase (by performing Unicode lowercase mapping) in place.
For a few characters string length may increase after the transformation,
in such a case the function reallocates exactly once.
If $(D s) does not have any uppercase characters, then $(D s) is unaltered.
+/
void toLowerInPlace(C)(ref C[] s) @trusted pure
if (is(C == char) || is(C == wchar) || is(C == dchar))
{
toCaseInPlace!(LowerTriple)(s);
}
// overloads for the most common cases to reduce compile time
@safe pure /*TODO nothrow*/
{
void toLowerInPlace(ref char[] s)
{ toLowerInPlace!char(s); }
void toLowerInPlace(ref wchar[] s)
{ toLowerInPlace!wchar(s); }
void toLowerInPlace(ref dchar[] s)
{ toLowerInPlace!dchar(s); }
}
/++
Converts $(D s) to uppercase (by performing Unicode uppercase mapping) in place.
For a few characters string length may increase after the transformation,
in such a case the function reallocates exactly once.
If $(D s) does not have any lowercase characters, then $(D s) is unaltered.
+/
void toUpperInPlace(C)(ref C[] s) @trusted pure
if (is(C == char) || is(C == wchar) || is(C == dchar))
{
toCaseInPlace!(UpperTriple)(s);
}
// overloads for the most common cases to reduce compile time/code size
@safe pure /*TODO nothrow*/
{
void toUpperInPlace(ref char[] s)
{ toUpperInPlace!char(s); }
void toUpperInPlace(ref wchar[] s)
{ toUpperInPlace!wchar(s); }
void toUpperInPlace(ref dchar[] s)
{ toUpperInPlace!dchar(s); }
}
/++
Returns a string which is identical to $(D s) except that all of its
characters are converted to lowercase (by preforming Unicode lowercase mapping).
If none of $(D s) characters were affected, then $(D s) itself is returned.
+/
S toLower(S)(S s) @trusted pure
if(isSomeString!S)
{
return toCase!(LowerTriple)(s);
}
// overloads for the most common cases to reduce compile time
@safe pure /*TODO nothrow*/
{
string toLower(string s)
{ return toLower!string(s); }
wstring toLower(wstring s)
{ return toLower!wstring(s); }
dstring toLower(dstring s)
{ return toLower!dstring(s); }
}
@trusted unittest //@@@BUG std.format is not @safe
{
import std.string : format;
foreach(ch; 0..0x80)
assert(std.ascii.toLower(ch) == toLower(ch));
assert(toLower('Я') == 'я');
assert(toLower('Δ') == 'δ');
foreach(ch; unicode.upperCase.byCodepoint)
{
dchar low = ch.toLower();
assert(low == ch || isLower(low), format("%s -> %s", ch, low));
}
assert(toLower("АЯ") == "ая");
assert("\u1E9E".toLower == "\u00df");
assert("\u00df".toUpper == "SS");
}
//bugzilla 9629
unittest
{
wchar[] test = "hello þ world"w.dup;
auto piece = test[6..7];
toUpperInPlace(piece);
assert(test == "hello Þ world");
}
unittest
{
string s1 = "FoL";
string s2 = toLower(s1);
assert(cmp(s2, "fol") == 0, s2);
assert(s2 != s1);
char[] s3 = s1.dup;
toLowerInPlace(s3);
assert(s3 == s2);
s1 = "A\u0100B\u0101d";
s2 = toLower(s1);
s3 = s1.dup;
assert(cmp(s2, "a\u0101b\u0101d") == 0);
assert(s2 !is s1);
toLowerInPlace(s3);
assert(s3 == s2);
s1 = "A\u0460B\u0461d";
s2 = toLower(s1);
s3 = s1.dup;
assert(cmp(s2, "a\u0461b\u0461d") == 0);
assert(s2 !is s1);
toLowerInPlace(s3);
assert(s3 == s2);
s1 = "\u0130";
s2 = toLower(s1);
s3 = s1.dup;
assert(s2 == "i\u0307");
assert(s2 !is s1);
toLowerInPlace(s3);
assert(s3 == s2);
// Test on wchar and dchar strings.
assert(toLower("Some String"w) == "some string"w);
assert(toLower("Some String"d) == "some string"d);
}
deprecated("Please use std.uni.toUpper instead")
@safe pure nothrow
dchar toUniUpper(dchar c)
{
return toUpper(c);
}
/++
If $(D c) is a Unicode lowercase $(CHARACTER), then its uppercase equivalent
is returned. Otherwise $(D c) is returned.
Warning:
Certain alphabets like German and Greek have no 1:1
upper-lower mapping. Use overload of toUpper which takes full string instead.
+/
@safe pure nothrow
dchar toUpper(dchar c)
{
// optimize ASCII case
if(c < 0xAA)
{
if(c < 'a')
return c;
if(c <= 'z')
return c - 32;
return c;
}
size_t idx = toUpperIndex(c);
if(idx < MAX_SIMPLE_UPPER)
{
return toUpperTab(idx);
}
return c;
}
@trusted unittest
{
import std.string : format;
foreach(ch; 0..0x80)
assert(std.ascii.toUpper(ch) == toUpper(ch));
assert(toUpper('я') == 'Я');
assert(toUpper('δ') == 'Δ');
foreach(ch; unicode.lowerCase.byCodepoint)
{
dchar up = ch.toUpper();
assert(up == ch || isUpper(up), format("%s -> %s", ch, up));
}
}
/++
Returns a string which is identical to $(D s) except that all of its
characters are converted to uppercase (by preforming Unicode uppercase mapping).
If none of $(D s) characters were affected, then $(D s) itself is returned.
+/
S toUpper(S)(S s) @trusted pure
if(isSomeString!S)
{
return toCase!(UpperTriple)(s);
}
// overloads for the most common cases to reduce compile time
@safe pure /*TODO nothrow*/
{
string toUpper(string s)
{ return toUpper!string(s); }
wstring toUpper(wstring s)
{ return toUpper!wstring(s); }
dstring toUpper(dstring s)
{ return toUpper!dstring(s); }
}
unittest
{
string s1 = "FoL";
string s2;
char[] s3;
s2 = toUpper(s1);
s3 = s1.dup; toUpperInPlace(s3);
assert(s3 == s2, s3);
assert(cmp(s2, "FOL") == 0);
assert(s2 !is s1);
s1 = "a\u0100B\u0101d";
s2 = toUpper(s1);
s3 = s1.dup; toUpperInPlace(s3);
assert(s3 == s2);
assert(cmp(s2, "A\u0100B\u0100D") == 0);
assert(s2 !is s1);
s1 = "a\u0460B\u0461d";
s2 = toUpper(s1);
s3 = s1.dup; toUpperInPlace(s3);
assert(s3 == s2);
assert(cmp(s2, "A\u0460B\u0460D") == 0);
assert(s2 !is s1);
}
unittest
{
static void doTest(C)(const(C)[] s, const(C)[] trueUp, const(C)[] trueLow)
{
import std.string : format;
string diff = "src: %( %x %)\nres: %( %x %)\ntru: %( %x %)";
auto low = s.toLower() , up = s.toUpper();
auto lowInp = s.dup, upInp = s.dup;
lowInp.toLowerInPlace();
upInp.toUpperInPlace();
assert(low == trueLow, format(diff, low, trueLow));
assert(up == trueUp, format(diff, up, trueUp));
assert(lowInp == trueLow,
format(diff, cast(ubyte[])s, cast(ubyte[])lowInp, cast(ubyte[])trueLow));
assert(upInp == trueUp,
format(diff, cast(ubyte[])s, cast(ubyte[])upInp, cast(ubyte[])trueUp));
}
foreach(S; TypeTuple!(dstring, wstring, string))
{
S easy = "123";
S good = "abCФеж";
S awful = "\u0131\u023f\u2126";
S wicked = "\u0130\u1FE2";
auto options = [easy, good, awful, wicked];
S[] lower = ["123", "abcфеж", "\u0131\u023f\u03c9", "i\u0307\u1Fe2"];
S[] upper = ["123", "ABCФЕЖ", "I\u2c7e\u2126", "\u0130\u03A5\u0308\u0300"];
foreach(val; TypeTuple!(easy, good))
{
auto e = val.dup;
auto g = e;
e.toUpperInPlace();
assert(e is g);
e.toLowerInPlace();
assert(e is g);
}
foreach(i, v; options)
{
doTest(v, upper[i], lower[i]);
}
// a few combinatorial runs
foreach(i; 0..options.length)
foreach(j; i..options.length)
foreach(k; j..options.length)
{
auto sample = options[i] ~ options[j] ~ options[k];
auto sample2 = options[k] ~ options[j] ~ options[i];
doTest(sample, upper[i] ~ upper[j] ~ upper[k],
lower[i] ~ lower[j] ~ lower[k]);
doTest(sample2, upper[k] ~ upper[j] ~ upper[i],
lower[k] ~ lower[j] ~ lower[i]);
}
}
}
deprecated("Please use std.uni.isAlpha instead.")
@safe pure nothrow
bool isUniAlpha(dchar c)
{
return isAlpha(c);
}
/++
Returns whether $(D c) is a Unicode alphabetic $(CHARACTER)
(general Unicode category: Alphabetic).
+/
@safe pure nothrow
bool isAlpha(dchar c)
{
// optimization
if(c < 0xAA)
{
size_t x = c - 'A';
if(x <= 'Z' - 'A')
return true;
else
{
x = c - 'a';
if(x <= 'z'-'a')
return true;
}
return false;
}
return alphaTrie[c];
}
@safe unittest
{
auto alpha = unicode("Alphabetic");
foreach(ch; alpha.byCodepoint)
assert(isAlpha(ch));
foreach(ch; 0..0x4000)
assert((ch in alpha) == isAlpha(ch));
}
/++
Returns whether $(D c) is a Unicode mark
(general Unicode category: Mn, Me, Mc).
+/
@safe pure nothrow
bool isMark(dchar c)
{
return markTrie[c];
}
@safe unittest
{
auto mark = unicode("Mark");
foreach(ch; mark.byCodepoint)
assert(isMark(ch));
foreach(ch; 0..0x4000)
assert((ch in mark) == isMark(ch));
}
/++
Returns whether $(D c) is a Unicode numerical $(CHARACTER)
(general Unicode category: Nd, Nl, No).
+/
@safe pure nothrow
bool isNumber(dchar c)
{
return numberTrie[c];
}
@safe unittest
{
auto n = unicode("N");
foreach(ch; n.byCodepoint)
assert(isNumber(ch));
foreach(ch; 0..0x4000)
assert((ch in n) == isNumber(ch));
}
/++
Returns whether $(D c) is a Unicode punctuation $(CHARACTER)
(general Unicode category: Pd, Ps, Pe, Pc, Po, Pi, Pf).
+/
@safe pure nothrow
bool isPunctuation(dchar c)
{
return punctuationTrie[c];
}
unittest
{
assert(isPunctuation('\u0021'));
assert(isPunctuation('\u0028'));
assert(isPunctuation('\u0029'));
assert(isPunctuation('\u002D'));
assert(isPunctuation('\u005F'));
assert(isPunctuation('\u00AB'));
assert(isPunctuation('\u00BB'));
foreach(ch; unicode("P").byCodepoint)
assert(isPunctuation(ch));
}
/++
Returns whether $(D c) is a Unicode symbol $(CHARACTER)
(general Unicode category: Sm, Sc, Sk, So).
+/
@safe pure nothrow
bool isSymbol(dchar c)
{
return symbolTrie[c];
}
unittest
{
import std.string;
assert(isSymbol('\u0024'));
assert(isSymbol('\u002B'));
assert(isSymbol('\u005E'));
assert(isSymbol('\u00A6'));
foreach(ch; unicode("S").byCodepoint)
assert(isSymbol(ch), format("%04x", ch));
}
/++
Returns whether $(D c) is a Unicode space $(CHARACTER)
(general Unicode category: Zs)
Note: This doesn't include '\n', '\r', \t' and other non-space $(CHARACTER).
For commonly used less strict semantics see $(LREF isWhite).
+/
@safe pure nothrow
bool isSpace(dchar c)
{
return isSpaceGen(c);
}
unittest
{
assert(isSpace('\u0020'));
auto space = unicode.Zs;
foreach(ch; space.byCodepoint)
assert(isSpace(ch));
foreach(ch; 0..0x1000)
assert(isSpace(ch) == space[ch]);
}
/++
Returns whether $(D c) is a Unicode graphical $(CHARACTER)
(general Unicode category: L, M, N, P, S, Zs).
+/
@safe pure nothrow
bool isGraphical(dchar c)
{
return graphicalTrie[c];
}
unittest
{
auto set = unicode("Graphical");
import std.string;
foreach(ch; set.byCodepoint)
assert(isGraphical(ch), format("%4x", ch));
foreach(ch; 0..0x4000)
assert((ch in set) == isGraphical(ch));
}
/++
Returns whether $(D c) is a Unicode control $(CHARACTER)
(general Unicode category: Cc).
+/
@safe pure nothrow
bool isControl(dchar c)
{
return isControlGen(c);
}
unittest
{
assert(isControl('\u0000'));
assert(isControl('\u0081'));
assert(!isControl('\u0100'));
auto cc = unicode.Cc;
foreach(ch; cc.byCodepoint)
assert(isControl(ch));
foreach(ch; 0..0x1000)
assert(isControl(ch) == cc[ch]);
}
/++
Returns whether $(D c) is a Unicode formatting $(CHARACTER)
(general Unicode category: Cf).
+/
@safe pure nothrow
bool isFormat(dchar c)
{
return isFormatGen(c);
}
unittest
{
assert(isFormat('\u00AD'));
foreach(ch; unicode("Format").byCodepoint)
assert(isFormat(ch));
}
// code points for private use, surrogates are not likely to change in near feature
// if need be they can be generated from unicode data as well
/++
Returns whether $(D c) is a Unicode Private Use $(CODEPOINT)
(general Unicode category: Co).
+/
@safe pure nothrow
bool isPrivateUse(dchar c)
{
return (0x00_E000 <= c && c <= 0x00_F8FF)
|| (0x0F_0000 <= c && c <= 0x0F_FFFD)
|| (0x10_0000 <= c && c <= 0x10_FFFD);
}
/++
Returns whether $(D c) is a Unicode surrogate $(CODEPOINT)
(general Unicode category: Cs).
+/
@safe pure nothrow
bool isSurrogate(dchar c)
{
return (0xD800 <= c && c <= 0xDFFF);
}
/++
Returns whether $(D c) is a Unicode high surrogate (lead surrogate).
+/
@safe pure nothrow
bool isSurrogateHi(dchar c)
{
return (0xD800 <= c && c <= 0xDBFF);
}
/++
Returns whether $(D c) is a Unicode low surrogate (trail surrogate).
+/
@safe pure nothrow
bool isSurrogateLo(dchar c)
{
return (0xDC00 <= c && c <= 0xDFFF);
}
/++
Returns whether $(D c) is a Unicode non-character i.e.
a $(CODEPOINT) with no assigned abstract character.
(general Unicode category: Cn)
+/
@safe pure nothrow
bool isNonCharacter(dchar c)
{
return nonCharacterTrie[c];
}
unittest
{
auto set = unicode("Cn");
foreach(ch; set.byCodepoint)
assert(isNonCharacter(ch));
}
private:
// load static data from pre-generated tables into usable datastructures
@safe auto asSet(const (ubyte)[] compressed)
{
return CodepointSet(decompressIntervals(compressed));
}
@safe pure nothrow auto asTrie(T...)(in TrieEntry!T e)
{
return const(CodepointTrie!T)(e.offsets, e.sizes, e.data);
}
@safe pure nothrow @property
{
// It's important to use auto return here, so that the compiler
// only runs semantic on the return type if the function gets
// used. Also these are functions rather than templates to not
// increase the object size of the caller.
auto lowerCaseTrie() { static immutable res = asTrie(lowerCaseTrieEntries); return res; }
auto upperCaseTrie() { static immutable res = asTrie(upperCaseTrieEntries); return res; }
auto simpleCaseTrie() { static immutable res = asTrie(simpleCaseTrieEntries); return res; }
auto fullCaseTrie() { static immutable res = asTrie(fullCaseTrieEntries); return res; }
auto alphaTrie() { static immutable res = asTrie(alphaTrieEntries); return res; }
auto markTrie() { static immutable res = asTrie(markTrieEntries); return res; }
auto numberTrie() { static immutable res = asTrie(numberTrieEntries); return res; }
auto punctuationTrie() { static immutable res = asTrie(punctuationTrieEntries); return res; }
auto symbolTrie() { static immutable res = asTrie(symbolTrieEntries); return res; }
auto graphicalTrie() { static immutable res = asTrie(graphicalTrieEntries); return res; }
auto nonCharacterTrie() { static immutable res = asTrie(nonCharacterTrieEntries); return res; }
//normalization quick-check tables
auto nfcQCTrie()
{
import std.internal.unicode_norm;
static immutable res = asTrie(nfcQCTrieEntries);
return res;
}
auto nfdQCTrie()
{
import std.internal.unicode_norm;
static immutable res = asTrie(nfdQCTrieEntries);
return res;
}
auto nfkcQCTrie()
{
import std.internal.unicode_norm;
static immutable res = asTrie(nfkcQCTrieEntries);
return res;
}
auto nfkdQCTrie()
{
import std.internal.unicode_norm;
static immutable res = asTrie(nfkdQCTrieEntries);
return res;
}
//grapheme breaking algorithm tables
auto mcTrie()
{
import std.internal.unicode_grapheme;
static immutable res = asTrie(mcTrieEntries);
return res;
}
auto graphemeExtendTrie()
{
import std.internal.unicode_grapheme;
static immutable res = asTrie(graphemeExtendTrieEntries);
return res;
}
auto hangLV()
{
import std.internal.unicode_grapheme;
static immutable res = asTrie(hangulLVTrieEntries);
return res;
}
auto hangLVT()
{
import std.internal.unicode_grapheme;
static immutable res = asTrie(hangulLVTTrieEntries);
return res;
}
// tables below are used for composition/decomposition
auto combiningClassTrie()
{
import std.internal.unicode_comp;
static immutable res = asTrie(combiningClassTrieEntries);
return res;
}
auto compatMappingTrie()
{
import std.internal.unicode_decomp;
static immutable res = asTrie(compatMappingTrieEntries);
return res;
}
auto canonMappingTrie()
{
import std.internal.unicode_decomp;
static immutable res = asTrie(canonMappingTrieEntries);
return res;
}
auto compositionJumpTrie()
{
import std.internal.unicode_comp;
static immutable res = asTrie(compositionJumpTrieEntries);
return res;
}
//case conversion tables
auto toUpperIndexTrie() { static immutable res = asTrie(toUpperIndexTrieEntries); return res; }
auto toLowerIndexTrie() { static immutable res = asTrie(toLowerIndexTrieEntries); return res; }
auto toTitleIndexTrie() { static immutable res = asTrie(toTitleIndexTrieEntries); return res; }
}
}// version(!std_uni_bootstrap)
|