/usr/include/d/4.8/gcc/atomics.di is in libphobos-4.8-dev 4.8.4-2ubuntu1~14.04.4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | /* GDC -- D front-end for GCC
Copyright (C) 2011, 2012 Free Software Foundation, Inc.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>.
*/
/* This module is intended to provide some basic support for lock-free
concurrent programming via the GCC builtins if the platform supports it. */
module gcc.atomics;
import gcc.builtins;
/**
* Private helper function for generating similar sync functions
*/
private template __sync_op_and(string op1, string op2)
{
const __sync_op_and = `
T __sync_` ~ op1 ~ `_and_` ~ op2 ~ `(T)(const ref shared T ptr, T value)
{
static if (T.sizeof == byte.sizeof)
return __sync_` ~ op1 ~ `_and_`~ op2 ~`_1(cast(void*) ptr, value);
else static if (T.sizeof == short.sizeof)
return __sync_` ~ op1 ~ `_and_`~ op2 ~`_2(cast(void*) ptr, value);
else static if (T.sizeof == int.sizeof)
return __sync_` ~ op1 ~ `_and_`~ op2 ~`_4(cast(void*) ptr, value);
else static if (T.sizeof == long.sizeof)
return __sync_` ~ op1 ~ `_and_`~ op2 ~`_8(cast(void*) ptr, value);
else
static assert(0, "Invalid template type specified.");
}`
;
}
/**
* These builtins perform the operation suggested by the name, and returns
* the value that had previously been in memory.
* That is,
* { tmp = *ptr; *ptr op= value; return tmp; }
* { tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand
*/
mixin(__sync_op_and!("fetch", "add"));
mixin(__sync_op_and!("fetch", "sub"));
mixin(__sync_op_and!("fetch", "or"));
mixin(__sync_op_and!("fetch", "and"));
mixin(__sync_op_and!("fetch", "xor"));
mixin(__sync_op_and!("fetch", "nand"));
/**
* These builtins perform the operation suggested by the name, and return
* the new value.
* That is,
* { *ptr op= value; return *ptr; }
* { *ptr = ~(*ptr & value); return *ptr; } // nand
*/
mixin(__sync_op_and!("add", "fetch"));
mixin(__sync_op_and!("sub", "fetch"));
mixin(__sync_op_and!("or", "fetch"));
mixin(__sync_op_and!("and", "fetch"));
mixin(__sync_op_and!("xor", "fetch"));
mixin(__sync_op_and!("nand", "fetch"));
/**
* These builtins perform an atomic compare and swap. That is, if the
* current value of *ptr is oldval, then write newval into *ptr.
*
* The "bool" version returns true if the comparison is successful and
* newval was written. The "val" version returns the contents of *ptr
* before the operation.
*/
bool __sync_bool_compare_and_swap(T)(shared(T)* ptr, const T oldval, const T newval)
{
static if (is(T == class))
{
version (D_LP64)
return __sync_bool_compare_and_swap_8(cast(ulong*) ptr, cast(ulong)(cast(void*) oldval), cast(ulong)(cast(void*) newval));
else
return __sync_bool_compare_and_swap_4(cast(uint*) ptr, cast(uint)(cast(void*) oldval), cast(uint)(cast(void*) newval));
}
else static if (T.sizeof == byte.sizeof)
return __sync_bool_compare_and_swap_1(cast(void*) ptr, oldval, newval);
else static if (T.sizeof == short.sizeof)
return __sync_bool_compare_and_swap_2(cast(void*) ptr, oldval, newval);
else static if (T.sizeof == int.sizeof)
return __sync_bool_compare_and_swap_4(cast(void*) ptr, oldval, newval);
else static if (T.sizeof == long.sizeof)
return __sync_bool_compare_and_swap_8(cast(void*) ptr, oldval, newval);
else
static assert(0, "Invalid template type specified.");
}
T __sync_val_compare_and_swap(T)(shared(T)* ptr, const T oldval, const T newval)
{
static if (is(T == class))
{
version (D_LP64)
return cast(T)cast(void*)__sync_val_compare_and_swap_8(cast(ulong*) ptr, cast(ulong)(cast(void*) oldval), cast(ulong)(cast(void*) newval));
else
return cast(T)cast(void*)__sync_val_compare_and_swap_4(cast(uint*) ptr, cast(uint)(cast(void*) oldval), cast(uint)(cast(void*) newval));
}
static if (T.sizeof == byte.sizeof)
return __sync_val_compare_and_swap_1(cast(void*) ptr, oldval, newval);
else static if (T.sizeof == short.sizeof)
return __sync_val_compare_and_swap_2(cast(void*) ptr, oldval, newval);
else static if (T.sizeof == int.sizeof)
return __sync_val_compare_and_swap_4(cast(void*) ptr, oldval, newval);
else static if (T.sizeof == long.sizeof)
return __sync_val_compare_and_swap_8(cast(void*) ptr, oldval, newval);
else
static assert(0, "Invalid template type specified.");
}
/**
* This builtin, as described by Intel, is not a traditional test-and-set
* operation, but rather an atomic exchange operation.
* It writes value into *ptr, and returns the previous contents of *ptr.
*
* Many targets have only minimal support for such locks, and do not
* support a full exchange operation. In this case, a target may support
* reduced functionality here by which the only valid value to store is
* the immediate constant 1. The exact value actually stored in *ptr is
* implementation defined.
*
* This builtin is not a full barrier, but rather an acquire barrier.
* This means that references after the builtin cannot move to
* (or be speculated to) before the builtin, but previous memory stores
* may not be globally visible yet, and previous memory loads may not yet
* be satisfied.
*/
T __sync_lock_test_and_set(T)(shared(T)* ptr, const T value)
{
static if (T.sizeof == byte.sizeof)
return __sync_lock_test_and_set_1(cast(void*) ptr, value);
else static if (T.sizeof == short.sizeof)
return __sync_lock_test_and_set_2(cast(void*) ptr, value);
else static if (T.sizeof == int.sizeof)
return __sync_lock_test_and_set_4(cast(void*) ptr, value);
else static if (T.sizeof == long.sizeof)
return __sync_lock_test_and_set_8(cast(void*) ptr, value);
else
static assert(0, "Invalid template type specified.");
}
/**
* This builtin releases the lock acquired by __sync_lock_test_and_set.
* Normally this means writing the constant 0 to *ptr.
*
* This builtin is not a full barrier, but rather a release barrier.
* This means that all previous memory stores are globally visible, and
* all previous memory loads have been satisfied, but following memory
* reads are not prevented from being speculated to before the barrier.
*/
void __sync_lock_release(T)(shared(T)* ptr)
{
static if (T.sizeof == byte.sizeof)
return __sync_lock_release_1(cast(void*) ptr);
else static if (T.sizeof == short.sizeof)
return __sync_lock_release_2(cast(void*) ptr);
else static if (T.sizeof == int.sizeof)
return __sync_lock_release_4(cast(void*) ptr);
else static if (T.sizeof == long.sizeof)
return __sync_lock_release_8(cast(void*) ptr);
else
static assert(0, "Invalid template type specified.");
}
|