/usr/share/Yap/clpqr/redund.pl is in yap 5.1.3-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | /*
Part of CLP(Q,R) (Constraint Logic Programming over Rationals and Reals)
Author: Leslie De Koninck
E-mail: Leslie.DeKoninck@cs.kuleuven.be
WWW: http://www.swi-prolog.org
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
Copyright (C): 2006, K.U. Leuven and
1992-1995, Austrian Research Institute for
Artificial Intelligence (OFAI),
Vienna, Austria
This software is based on CLP(Q,R) by Christian Holzbaur for SICStus
Prolog and distributed under the license details below with permission from
all mentioned authors.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(redund,
[
redundancy_vars/1,
systems/3
]).
:- use_module(class,
[
class_allvars/2
]).
%
% redundancy removal (semantic definition)
%
% done:
% +) deal with active bounds
% +) indep t_[lu] -> t_none invalidates invariants (fixed)
%
% systems(Vars,SystemsIn,SystemsOut)
%
% Returns in SystemsOut the different classes to which variables in Vars
% belong. Every class only appears once in SystemsOut.
systems([],Si,Si).
systems([V|Vs],Si,So) :-
( var(V),
get_attr(V,itf,Att),
arg(6,Att,class(C)),
not_memq(Si,C)
-> systems(Vs,[C|Si],So)
; systems(Vs,Si,So)
).
% not_memq(Lst,El)
%
% Succeeds if El is not a member of Lst (does not use unification).
not_memq([],_).
not_memq([Y|Ys],X) :-
X \== Y,
not_memq(Ys,X).
% redundancy_systems(Classes)
%
% Does redundancy removal via redundancy_vs/1 on all variables in the classes Classes.
redundancy_systems([]).
redundancy_systems([S|Sys]) :-
class_allvars(S,All),
redundancy_vs(All),
redundancy_systems(Sys).
% redundancy_vars(Vs)
%
% Does the same thing as redundancy_vs/1 but has some extra timing facilities that
% may be used.
redundancy_vars(Vs) :-
!,
redundancy_vs(Vs).
redundancy_vars(Vs) :-
statistics(runtime,[Start|_]),
redundancy_vs(Vs),
statistics(runtime,[End|_]),
Duration is End-Start,
format(user_error,"% Redundancy elimination took ~d msec~n",Duration).
% redundancy_vs(Vs)
%
% Removes redundant bounds from the variables in Vs via redundant/3
redundancy_vs(Vs) :-
var(Vs),
!.
redundancy_vs([]).
redundancy_vs([V|Vs]) :-
( get_attr(V,itf,Att),
arg(2,Att,type(Type)),
arg(3,Att,strictness(Strict)),
redundant(Type,V,Strict)
-> redundancy_vs(Vs)
; redundancy_vs(Vs)
).
% redundant(Type,Var,Strict)
%
% Removes redundant bounds from variable Var with type Type and strictness Strict.
% A redundant bound is one that is satisfied anyway (so adding the inverse of the bound
% makes the system infeasible. This predicate can either fail or succeed but a success
% doesn't necessarily mean a redundant bound.
redundant(t_l(L),X,Strict) :-
get_attr(X,itf,Att),
arg(1,Att,CLP),
detach_bounds(CLP,X), % drop temporarily
% if not redundant, backtracking will restore bound
negate_l(Strict,CLP,L,X),
red_t_l. % negate_l didn't fail, redundant bound
redundant(t_u(U),X,Strict) :-
get_attr(X,itf,Att),
arg(1,Att,CLP),
detach_bounds(CLP,X),
negate_u(Strict,CLP,U,X),
red_t_u.
redundant(t_lu(L,U),X,Strict) :-
strictness_parts(Strict,Sl,Su),
( get_attr(X,itf,Att),
arg(1,Att,CLP),
setarg(2,Att,type(t_u(U))),
setarg(3,Att,strictness(Su)),
negate_l(Strict,CLP,L,X)
-> red_t_l,
( redundant(t_u(U),X,Strict)
-> true
; true
)
; get_attr(X,itf,Att),
arg(1,Att,CLP),
setarg(2,Att,type(t_l(L))),
setarg(3,Att,strictness(Sl)),
negate_u(Strict,CLP,U,X)
-> red_t_u
; true
).
redundant(t_L(L),X,Strict) :-
get_attr(X,itf,Att),
arg(1,Att,CLP),
Bound is -L,
intro_at(CLP,X,Bound,t_none), % drop temporarily
detach_bounds(CLP,X),
negate_l(Strict,CLP,L,X),
red_t_L.
redundant(t_U(U),X,Strict) :-
get_attr(X,itf,Att),
arg(1,Att,CLP),
Bound is -U,
intro_at(CLP,X,Bound,t_none), % drop temporarily
detach_bounds(CLP,X),
negate_u(Strict,CLP,U,X),
red_t_U.
redundant(t_Lu(L,U),X,Strict) :-
strictness_parts(Strict,Sl,Su),
( Bound is -L,
get_attr(X,itf,Att),
arg(1,Att,CLP),
intro_at(CLP,X,Bound,t_u(U)),
get_attr(X,itf,Att2), % changed?
setarg(3,Att2,strictness(Su)),
negate_l(Strict,CLP,L,X)
-> red_t_l,
( redundant(t_u(U),X,Strict)
-> true
; true
)
; get_attr(X,itf,Att),
arg(1,Att,CLP),
setarg(2,Att,type(t_L(L))),
setarg(3,Att,strictness(Sl)),
negate_u(Strict,CLP,U,X)
-> red_t_u
; true
).
redundant(t_lU(L,U),X,Strict) :-
strictness_parts(Strict,Sl,Su),
( get_attr(X,itf,Att),
arg(1,Att,CLP),
setarg(2,Att,type(t_U(U))),
setarg(3,Att,strictness(Su)),
negate_l(Strict,CLP,L,X)
-> red_t_l,
( redundant(t_U(U),X,Strict)
-> true
; true
)
; get_attr(X,itf,Att),
arg(1,Att,CLP),
Bound is -U,
intro_at(CLP,X,Bound,t_l(L)),
get_attr(X,itf,Att2), % changed?
setarg(3,Att2,strictness(Sl)),
negate_u(Strict,CLP,U,X)
-> red_t_u
; true
).
% strictness_parts(Strict,Lower,Upper)
%
% Splits strictness Strict into two parts: one related to the lowerbound and
% one related to the upperbound.
strictness_parts(Strict,Lower,Upper) :-
Lower is Strict /\ 2,
Upper is Strict /\ 1.
% negate_l(Strict,Lowerbound,X)
%
% Fails if X does not necessarily satisfy the lowerbound and strictness
% In other words: if adding the inverse of the lowerbound (X < L or X =< L)
% does not result in a failure, this predicate fails.
negate_l(0,CLP,L,X) :-
CLP:{L > X},
!,
fail.
negate_l(1,CLP,L,X) :-
CLP:{L > X},
!,
fail.
negate_l(2,CLP,L,X) :-
CLP:{L >= X},
!,
fail.
negate_l(3,CLP,L,X) :-
CLP:{L >= X},
!,
fail.
negate_l(_,_,_,_).
% negate_u(Strict,Upperbound,X)
%
% Fails if X does not necessarily satisfy the upperbound and strictness
% In other words: if adding the inverse of the upperbound (X > U or X >= U)
% does not result in a failure, this predicate fails.
negate_u(0,CLP,U,X) :-
CLP:{U < X},
!,
fail.
negate_u(1,CLP,U,X) :-
CLP:{U =< X},
!,
fail.
negate_u(2,CLP,U,X) :-
CLP:{U < X},
!,
fail.
negate_u(3,CLP,U,X) :-
CLP:{U =< X},
!,
fail.
negate_u(_,_,_,_).
% CLP(Q,R)
detach_bounds(clpq,X) :- bv_q:detach_bounds(X).
detach_bounds(clpr,X) :- bv_r:detach_bounds(X).
intro_at(clpq,A,B,C) :- bv_q:intro_at(A,B,C).
intro_at(clpr,A,B,C) :- bv_r:intro_at(A,B,C).
% Profiling: these predicates are called during redundant and can be used
% to count the number of redundant bounds.
red_t_l.
red_t_u.
red_t_L.
red_t_U.
|