This file is indexed.

/usr/share/why/coq/WhyFloatsStrictLegacy.v is in why 2.30+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
(* Why model for floating-point numbers
   Implements the file lib/why/floats_strict.why *)

Require Export Reals.
Require Export AllFloat.
Require Export RND.

Let radix := 2%Z.
Coercion Local FtoRradix := FtoR radix.

Section Z2R.

Fixpoint P2R (p : positive) :=
  match p with
  | xH => 1%R
  | xO xH => 2%R
  | xO t => (2 * P2R t)%R
  | xI xH => 3%R
  | xI t => (1 + 2 * P2R t)%R
  end.

Definition Z2R n :=
  match n with
  | Zpos p => P2R p
  | Zneg p => Ropp (P2R p)
  | Z0 => R0
  end.

Lemma P2R_INR :
  forall n, P2R n = INR (nat_of_P n).
Proof.
induction n ; simpl ; try (
  rewrite IHn ;
  rewrite <- (mult_INR 2) ;
  rewrite <- (nat_of_P_mult_morphism 2) ;
  change (2 * n)%positive with (xO n)).
(* xI *)
rewrite (Rplus_comm 1).
change (nat_of_P (xO n)) with (Pmult_nat n 2).
case n ; intros ; simpl ; try apply refl_equal.
case (Pmult_nat p 4) ; intros ; try apply refl_equal.
rewrite Rplus_0_l.
apply refl_equal.
apply Rplus_comm.
(* xO *)
case n ; intros ; apply refl_equal.
(* xH *)
apply refl_equal.
Qed.


Lemma Z2R_IZR :
  forall n, Z2R n = IZR n.
Proof.
intro.
case n ; intros ; simpl.
apply refl_equal.
apply P2R_INR.
apply Ropp_eq_compat.
apply P2R_INR.
Qed.

End Z2R.

Section Utiles.

Lemma radixGreaterOne: (1 < radix)%Z.
auto with zarith.
Qed.


Definition nat_to_N (n:nat) := match n with 
   |  0    => N0
   | (S m) => (Npos (P_of_succ_nat m))
   end.

Lemma nat_to_N_correct: forall n:nat, Z_of_N (nat_to_N n)=n.
intros.
intros; induction n; simpl; auto.
Qed.


Definition make_bound (p E:nat) := Bound 
      (P_of_succ_nat (pred (Zabs_nat (Zpower_nat radix p))))
      (nat_to_N E).

Lemma make_EGivesEmin: forall p E:nat, 
        (Z_of_N (dExp (make_bound p E)))=E.
intros; simpl; apply nat_to_N_correct.
Qed.

Lemma make_pGivesBound: forall p E:nat, 
        Zpos (vNum (make_bound p E))=(Zpower_nat radix p).
intros.
unfold make_bound, vNum.
apply
 trans_eq
  with
    (Z_of_nat
       (nat_of_P
          (P_of_succ_nat
             (pred (Zabs_nat (Zpower_nat radix p)))))).
unfold Z_of_nat in |- *; rewrite nat_of_P_o_P_of_succ_nat_eq_succ;
 auto with zarith.
rewrite nat_of_P_o_P_of_succ_nat_eq_succ; auto with arith zarith.
cut (Zabs (Zpower_nat radix p) = Zpower_nat radix p).
intros H; pattern (Zpower_nat radix p) at 2 in |- *; rewrite <- H.
rewrite Zabs_absolu.
rewrite <- (S_pred (Zabs_nat (Zpower_nat radix p)) 0);
 auto with arith zarith.
apply lt_Zlt_inv; simpl in |- *; auto with zarith arith.
rewrite <- Zabs_absolu; rewrite H; auto with arith zarith.
apply Zabs_eq; auto with arith zarith.
Qed.


Lemma Rmult_eq_compat: forall p1 p2 q1 q2,
  p1=p2 -> q1 = q2 -> (p1*q1=p2*q2)%R.
intros; rewrite H; rewrite H0; trivial.
Qed.

End Utiles.

Inductive mode : Set :=
  | nearest_even : mode
  | to_zero : mode
  | up : mode
  | down : mode
  | nearest_away : mode.

(** Double precision: definitions *)

Let bdouble := make_bound 53 1074.

Lemma pdGreaterThanOne: 1 < 53.
auto with arith.
Qed.

Lemma pdGivesBound: Zpos (vNum bdouble) = Zpower_nat radix 53.
unfold bdouble; apply make_pGivesBound.
Qed.

Record double : Set := mk_double {
   df         : float;
   Hcandf       : Fcanonic radix bdouble df;
   double_exact : R;
   double_model : R
 }.

Definition double_value (f:double) := FtoRradix (df f).


Definition round_double_aux (m:mode) (r r1 r2:R) := match m with
  |  nearest_even => mk_double (RND_EvenClosest bdouble radix 53 r) 
                     (RND_EvenClosest_canonic bdouble radix 53 
                         radixGreaterOne pdGreaterThanOne pdGivesBound r)
                     r1 r2
  |  to_zero      => mk_double (RND_Zero bdouble radix 53 r) 
                     (RND_Zero_canonic bdouble radix 53 
                         radixGreaterOne pdGreaterThanOne pdGivesBound r)
                     r1 r2
  |  down           => mk_double (RND_Min bdouble radix 53 r) 
                     (RND_Min_canonic bdouble radix 53 
                         radixGreaterOne pdGreaterThanOne pdGivesBound r)
                     r1 r2
  |  up         => mk_double (RND_Max bdouble radix 53 r) 
                     (RND_Max_canonic bdouble radix 53 
                         radixGreaterOne pdGreaterThanOne pdGivesBound r)
                     r1 r2
  |  nearest_away => mk_double (RND_ClosestUp bdouble radix 53 r) 
                     (RND_ClosestUp_canonic bdouble radix 53 
                         radixGreaterOne pdGreaterThanOne pdGivesBound r)
                     r1 r2
  end.
   
Definition round_double_logic (m:mode) (r:R) :=  round_double_aux m r r r.
Definition round_double (m:mode) (r:R) := double_value (round_double_aux m r r r).

Definition double_round_error  (x:double)
  := (Rabs (Rminus (double_value x) (double_exact x))).

Definition double_total_error  (x:double)
  := (Rabs (Rminus (double_value x) (double_model x))).

Definition any_double := round_double_logic nearest_even 0%R.

Definition max_double  
  := (9007199254740991 * 19958403095347198116563727130368385660674512604354575415025472424372118918689640657849579654926357010893424468441924952439724379883935936607391717982848314203200056729510856765175377214443629871826533567445439239933308104551208703888888552684480441575071209068757560416423584952303440099278848)%R.

Definition no_overflow_double  (m:mode) (x:R)
  := (Rle (Rabs (round_double m x)) max_double).


(** Single precision: definitions *)

Let bsingle := make_bound 24 149.

Lemma psGreaterThanOne: 1 < 24.
auto with arith.
Qed.

Lemma psGivesBound: Zpos (vNum bsingle) = Zpower_nat radix 24.
unfold bsingle; apply make_pGivesBound.
Qed.

Record single : Set := mk_single {
   sf           : float;
   Hcansf         : Fcanonic radix bsingle sf;
   single_exact : R;
   single_model : R
 }.

Definition single_value (f:single) := FtoRradix (sf f).

Definition round_single_aux (m:mode) (r r1 r2:R) := match m with
  |  nearest_even => mk_single (RND_EvenClosest bsingle radix 24 r) 
                     (RND_EvenClosest_canonic bsingle radix 24 
                         radixGreaterOne psGreaterThanOne psGivesBound r)
                     r1 r2
  |  to_zero      => mk_single (RND_Zero bsingle radix 24 r) 
                     (RND_Zero_canonic bsingle radix 24 
                         radixGreaterOne psGreaterThanOne psGivesBound r)
                     r1 r2
  |  up           => mk_single (RND_Max bsingle radix 24 r) 
                     (RND_Max_canonic bsingle radix 24 
                         radixGreaterOne psGreaterThanOne psGivesBound r)
                     r1 r2
  |  down         => mk_single (RND_Min bsingle radix 24 r) 
                     (RND_Min_canonic bsingle radix 24 
                         radixGreaterOne psGreaterThanOne psGivesBound r)
                     r1 r2
  |  nearest_away => mk_single (RND_ClosestUp bsingle radix 24 r) 
                     (RND_ClosestUp_canonic bsingle radix 24 
                         radixGreaterOne psGreaterThanOne psGivesBound r)
                     r1 r2
  end.


Definition round_single_logic (m:mode) (r:R) :=  round_single_aux m r r r.
Definition round_single (m:mode) (r:R) := single_value (round_single_aux m r r r).


Definition single_round_error  (x:single)
  := (Rabs (Rminus (single_value x) (single_exact x))).

Definition single_total_error  (x:single)
  := (Rabs (Rminus (single_value x) (single_model x))).

Definition max_single  
  := (33554430 * 10141204801825835211973625643008)%R.

Definition any_single  := round_single_logic nearest_even 0%R.

Definition no_overflow_single  (m:mode) (x:R)
  := (Rle (Rabs (round_single m x)) max_single).


Definition single_to_double (m:mode) (s:single) :=
 round_double_aux m (single_value s) (single_exact s) (single_model s).

Definition double_to_single (m:mode) (d:double) :=
 round_single_aux m (double_value d) (double_exact d) (double_model d).

(* Double and Single precision: axioms *)

Axiom double_le_strict: forall (s:double), 
   (Rabs (double_value s) <= max_double)%R.

Axiom single_le_strict: forall (s:single), 
   (Rabs (single_value s) <= max_single)%R.

(* Double precision: lemmas *)

Lemma mode_double_RoundingMode: forall m, exists P, RoundedModeP bdouble radix P /\
  forall x y z, P x (df (round_double_aux m x y z)).
intros m; case m; simpl.
exists (EvenClosest bdouble radix 53); split.
apply EvenClosestRoundedModeP; try apply pdGivesBound; auto with zarith.
intros; apply RND_EvenClosest_correct; try apply pdGivesBound; auto with zarith.
exists (ToZeroP bdouble radix); split.
apply ToZeroRoundedModeP with 53; try apply pdGivesBound; auto with zarith.
intros; apply RND_Zero_correct; try apply pdGivesBound; auto with zarith.
exists (isMax bdouble radix); split.
apply MaxRoundedModeP with 53; try apply pdGivesBound; auto with zarith.
intros; apply RND_Max_correct; try apply pdGivesBound; auto with zarith.
exists (isMin bdouble radix); split.
apply MinRoundedModeP with 53; try apply pdGivesBound; auto with zarith.
intros; apply RND_Min_correct; try apply pdGivesBound; auto with zarith.
exists (Closest bdouble radix); split.
apply ClosestRoundedModeP with 53; try apply pdGivesBound; auto with zarith.
intros; apply RND_ClosestUp_correct; try apply pdGivesBound; auto with zarith.
Qed.


Lemma max_double_bounded:
  exists f:float, Fbounded bdouble f /\ FtoRradix f = max_double.
exists (Float 9007199254740991 971); split.
split.
rewrite pdGivesBound; simpl; auto with zarith.
simpl; auto with zarith.
unfold max_double.
unfold FtoRradix, FtoR.
simpl (Fnum (Float 9007199254740991 971)); simpl  (Fexp (Float 9007199254740991 971)).
apply Rmult_eq_compat.
rewrite <- Z2R_IZR.
reflexivity.
replace 971%Z with (Z_of_nat 971) by reflexivity.
rewrite <- Zpower_nat_Z_powerRZ.
unfold Zpower_nat.
simpl (iter_nat 971 Z (fun x : Z => (radix * x)%Z) 1%Z).
rewrite <- Z2R_IZR.
reflexivity.
Qed.


Lemma bounded_real_no_overflow_double :
  (forall (m:mode),
   (forall (x:R), ((Rle (Rabs x) max_double) -> (no_overflow_double m x)))).
unfold no_overflow_double; intros.
elim (mode_double_RoundingMode m); intros P (H1,H2).
elim max_double_bounded; intros f (H3,H4).
rewrite <- H4.
apply RoundAbsMonotoner with bdouble 53 P x; try apply pdGivesBound; auto with zarith.
fold FtoRradix; rewrite H4; trivial.
Qed.

Lemma round_double_down_le :
  (forall (x:R), (Rle (round_double down x) x)).
intros; apply isMin_inv1 with bdouble.
simpl; apply RND_Min_correct; try apply pdGivesBound; auto with zarith.
Qed.

Lemma round_up_double_ge :
  (forall (x:R), (Rge (round_double up x) x)).
intros; apply Rle_ge; apply isMax_inv1 with bdouble.
simpl; apply RND_Max_correct; try apply pdGivesBound; auto with zarith.
Qed.

Lemma round_down_double_neg :
  (forall (x:R), (eq (round_double down (Ropp x)) (Ropp (round_double up x)))).
intros.
unfold round_double, double_value, FtoRradix; simpl.
rewrite <- Fopp_correct.
generalize (MinUniqueP bdouble radix); unfold UniqueP.
intros T; apply T with (-x)%R.
apply RND_Min_correct; try apply pdGivesBound; auto with zarith.
apply MaxOppMin.
apply RND_Max_correct; try apply pdGivesBound; auto with zarith.
Qed.

Lemma round_up_double_neg :
  (forall (x:R), (eq (round_double up (Ropp x)) (Ropp (round_double down x)))).
intros.
unfold round_double, double_value, FtoRradix; simpl.
rewrite <- Fopp_correct.
generalize (MaxUniqueP bdouble radix); unfold UniqueP.
intros T; apply T with (-x)%R.
apply RND_Max_correct; try apply pdGivesBound; auto with zarith.
apply MinOppMax.
apply RND_Min_correct; try apply pdGivesBound; auto with zarith.
Qed.

Lemma round_double_idempotent :
  (forall (m1:mode),
   (forall (m2:mode),
    (forall (x:R),
     (eq (round_double m1 (round_double m2 x)) (round_double m2 x))))).
intros.
elim (mode_double_RoundingMode m1); intros P (H1,H2).
unfold round_double, double_value; simpl.
apply sym_eq.
apply RoundedModeProjectorIdemEq with bdouble 53 P; 
  try apply pdGivesBound; auto with zarith.
elim (mode_double_RoundingMode m2); intros P' (H1',H2').
apply RoundedModeBounded with radix P' x; trivial.
Qed.


(* Single precision: lemmas *)

Lemma mode_single_RoundingMode: forall m, exists P, RoundedModeP bsingle radix P /\
  forall x y z, P x (sf (round_single_aux m x y z)).
intros m; case m; simpl.
exists (EvenClosest bsingle radix 24); split.
apply EvenClosestRoundedModeP; try apply psGivesBound; auto with zarith.
intros; apply RND_EvenClosest_correct; try apply psGivesBound; auto with zarith.
exists (ToZeroP bsingle radix); split.
apply ToZeroRoundedModeP with 24; try apply psGivesBound; auto with zarith.
intros; apply RND_Zero_correct; try apply psGivesBound; auto with zarith.
exists (isMax bsingle radix); split.
apply MaxRoundedModeP with 24; try apply psGivesBound; auto with zarith.
intros; apply RND_Max_correct; try apply psGivesBound; auto with zarith.
exists (isMin bsingle radix); split.
apply MinRoundedModeP with 24; try apply psGivesBound; auto with zarith.
intros; apply RND_Min_correct; try apply psGivesBound; auto with zarith.
exists (Closest bsingle radix); split.
apply ClosestRoundedModeP with 24; try apply psGivesBound; auto with zarith.
intros; apply RND_ClosestUp_correct; try apply psGivesBound; auto with zarith.
Qed.


Lemma max_single_bounded:
  exists f:float, Fbounded bsingle f /\ FtoRradix f = max_single.
exists (Float 16777215 104); split.
split.
rewrite psGivesBound; simpl; auto with zarith.
simpl; auto with zarith.
unfold max_single.
rewrite Rmult_assoc; rewrite Rmult_comm; rewrite Rmult_assoc.
unfold FtoRradix, FtoR.
simpl (Fnum (Float 16777215 104)); simpl  (Fexp (Float 16777215 104)).
apply Rmult_eq_compat.
rewrite <- Z2R_IZR.
reflexivity.
simpl.
ring.
Qed.


Lemma bounded_real_no_overflow_single :
  (forall (m:mode),
   (forall (x:R), ((Rle (Rabs x) max_single) -> (no_overflow_single m x)))).
unfold no_overflow_single; intros.
elim (mode_single_RoundingMode m); intros P (H1,H2).
elim max_single_bounded; intros f (H3,H4).
rewrite <- H4.
apply RoundAbsMonotoner with bsingle 24 P x; try apply psGivesBound; auto with zarith.
fold FtoRradix; rewrite H4; trivial.
Qed.

Lemma round_single_down_le :
  (forall (x:R), (Rle (round_single down x) x)).
intros; apply isMin_inv1 with bsingle.
simpl; apply RND_Min_correct; try apply psGivesBound; auto with zarith.
Qed.

Lemma round_up_single_ge :
  (forall (x:R), (Rge (round_single up x) x)).
intros; apply Rle_ge; apply isMax_inv1 with bsingle.
simpl; apply RND_Max_correct; try apply psGivesBound; auto with zarith.
Qed.

Lemma round_down_single_neg :
  (forall (x:R), (eq (round_single down (Ropp x)) (Ropp (round_single up x)))).
intros.
unfold round_single, single_value, FtoRradix; simpl.
rewrite <- Fopp_correct.
generalize (MinUniqueP bsingle radix); unfold UniqueP.
intros T; apply T with (-x)%R.
apply RND_Min_correct; try apply psGivesBound; auto with zarith.
apply MaxOppMin.
apply RND_Max_correct; try apply psGivesBound; auto with zarith.
Qed.

Lemma round_up_single_neg :
  (forall (x:R), (eq (round_single up (Ropp x)) (Ropp (round_single down x)))).
intros.
unfold round_single, single_value, FtoRradix; simpl.
rewrite <- Fopp_correct.
generalize (MaxUniqueP bsingle radix); unfold UniqueP.
intros T; apply T with (-x)%R.
apply RND_Max_correct; try apply psGivesBound; auto with zarith.
apply MinOppMax.
apply RND_Min_correct; try apply psGivesBound; auto with zarith.
Qed.

Lemma round_single_idempotent :
  (forall (m1:mode),
   (forall (m2:mode),
    (forall (x:R),
     (eq (round_single m1 (round_single m2 x)) (round_single m2 x))))).
intros.
elim (mode_single_RoundingMode m1); intros P (H1,H2).
unfold round_single, single_value; simpl.
apply sym_eq.
apply RoundedModeProjectorIdemEq with bsingle 24 P; 
  try apply psGivesBound; auto with zarith.
elim (mode_single_RoundingMode m2); intros P' (H1',H2').
apply RoundedModeBounded with radix P' x; trivial.
Qed.


Lemma double_to_single_val :
  (forall (m:mode),
   (forall (s:single),
    (eq (double_value (single_to_double m s)) (single_value s)))).
intros.
elim (mode_double_RoundingMode m); intros P (H1,H2).
apply sym_eq; unfold single_to_double.
apply RoundedModeProjectorIdemEq with bdouble 53 P;
   try apply pdGivesBound; auto with zarith.
destruct s.
simpl (sf (mk_single sf0 Hcansf0 single_exact0 single_model0)).
assert (Fbounded bsingle sf0).
apply FcanonicBound with radix; exact Hcansf0.
elim H; intros H3 H4; split.
rewrite pdGivesBound.
apply Zlt_le_trans with (1:=H3).
rewrite psGivesBound; clear.
apply Zpower_nat_monotone_le;auto with zarith.
apply Zle_trans with (2:=H4).
clear; simpl; auto with zarith.
Qed.

Lemma single_to_double_val :
  (forall (m:mode),
   (forall (d:double),
    (eq (single_value (double_to_single m d)) (round_single
                                               m (double_value d))))).
intros; case m; reflexivity.
Qed.


(* Various Why predicates. Only definitions are left. *)

(*Why predicate*) Definition single_of_real_post  (m:mode) (x:R) (res:single)
  := (eq (single_value res) (round_single m x)) /\
     (eq (single_exact res) x) /\ (eq (single_model res) x).

(*Why predicate*) Definition add_single_post  (m:mode) (x:single) (y:single) (res:single)
  := (eq (single_value res) (round_single
                             m (Rplus (single_value x) (single_value y)))) /\
     (eq (single_exact res) (Rplus (single_exact x) (single_exact y))) /\
     (eq (single_model res) (Rplus (single_model x) (single_model y))).

(*Why predicate*) Definition sub_single_post  (m:mode) (x:single) (y:single) (res:single)
  := (eq (single_value res) (round_single
                             m (Rminus (single_value x) (single_value y)))) /\
     (eq (single_exact res) (Rminus (single_exact x) (single_exact y))) /\
     (eq (single_model res) (Rminus (single_model x) (single_model y))).

(*Why predicate*) Definition mul_single_post  (m:mode) (x:single) (y:single) (res:single)
  := (eq (single_value res) (round_single
                             m (Rmult (single_value x) (single_value y)))) /\
     (eq (single_exact res) (Rmult (single_exact x) (single_exact y))) /\
     (eq (single_model res) (Rmult (single_model x) (single_model y))).

(*Why predicate*) Definition div_single_post  (m:mode) (x:single) (y:single) (res:single)
  := (eq (single_value res) (round_single
                             m (Rdiv (single_value x) (single_value y)))) /\
     (eq (single_exact res) (Rdiv (single_exact x) (single_exact y))) /\
     (eq (single_model res) (Rdiv (single_model x) (single_model y))).

(*Why predicate*) Definition sqrt_single_post  (m:mode) (x:single) (res:single)
  := (eq (single_value res) (round_single m (sqrt (single_value x)))) /\
     (eq (single_exact res) (sqrt (single_exact x))) /\
     (eq (single_model res) (sqrt (single_model x))).

(*Why predicate*) Definition neg_single_post  (x:single) (res:single)
  := (eq (single_value res) (Ropp (single_value x))) /\
     (eq (single_exact res) (Ropp (single_exact x))) /\
     (eq (single_model res) (Ropp (single_model x))).

(*Why predicate*) Definition abs_single_post  (x:single) (res:single)
  := (eq (single_value res) (Rabs (single_value x))) /\
     (eq (single_exact res) (Rabs (single_exact x))) /\
     (eq (single_model res) (Rabs (single_model x))).

(*Why predicate*) Definition double_of_real_post  (m:mode) (x:R) (res:double)
  := (eq (double_value res) (round_double m x)) /\
     (eq (double_exact res) x) /\ (eq (double_model res) x).

(*Why predicate*) Definition add_double_post  (m:mode) (x:double) (y:double) (res:double)
  := (eq (double_value res) (round_double
                             m (Rplus (double_value x) (double_value y)))) /\
     (eq (double_exact res) (Rplus (double_exact x) (double_exact y))) /\
     (eq (double_model res) (Rplus (double_model x) (double_model y))).

(*Why predicate*) Definition sub_double_post  (m:mode) (x:double) (y:double) (res:double)
  := (eq (double_value res) (round_double
                             m (Rminus (double_value x) (double_value y)))) /\
     (eq (double_exact res) (Rminus (double_exact x) (double_exact y))) /\
     (eq (double_model res) (Rminus (double_model x) (double_model y))).

(*Why predicate*) Definition mul_double_post  (m:mode) (x:double) (y:double) (res:double)
  := (eq (double_value res) (round_double
                             m (Rmult (double_value x) (double_value y)))) /\
     (eq (double_exact res) (Rmult (double_exact x) (double_exact y))) /\
     (eq (double_model res) (Rmult (double_model x) (double_model y))).

(*Why predicate*) Definition div_double_post  (m:mode) (x:double) (y:double) (res:double)
  := (eq (double_value res) (round_double
                             m (Rdiv (double_value x) (double_value y)))) /\
     (eq (double_exact res) (Rdiv (double_exact x) (double_exact y))) /\
     (eq (double_model res) (Rdiv (double_model x) (double_model y))).

(*Why predicate*) Definition sqrt_double_post  (m:mode) (x:double) (res:double)
  := (eq (double_value res) (round_double m (sqrt (double_value x)))) /\
     (eq (double_exact res) (sqrt (double_exact x))) /\
     (eq (double_model res) (sqrt (double_model x))).

(*Why predicate*) Definition neg_double_post  (x:double) (res:double)
  := (eq (double_value res) (Ropp (double_value x))) /\
     (eq (double_exact res) (Ropp (double_exact x))) /\
     (eq (double_model res) (Ropp (double_model x))).

(*Why predicate*) Definition abs_double_post  (x:double) (res:double)
  := (eq (double_value res) (Rabs (double_value x))) /\
     (eq (double_exact res) (Rabs (double_exact x))) /\
     (eq (double_model res) (Rabs (double_model x))).